• No results found

(Benzo­phenone imine N)­nona­carbonyldirhenium(0)(Re—Re)

N/A
N/A
Protected

Academic year: 2020

Share "(Benzo­phenone imine N)­nona­carbonyldirhenium(0)(Re—Re)"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m130

Javier A. Cabezaet al. [Re2(C13H11N)(CO)9] DOI: 101107/S1600536801003658 Acta Cryst.(2001). E57, m130±m131 Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

(Benzophenone imine-

N

)nonacarbonyl-dirhenium(0)(

Re

Ð

Re

)

Javier A. Cabeza,aIgnacio del

RõÂo,aNoe ZunÄiga-Villarrealaand

Santiago GarcõÂa-Grandab*

aDepartamento de QuõÂmica OrgaÂnica e

InorgaÂ-nica, Facultad de QuõÂmica, Universidad de Oviedo, Avda. JuliaÂn ClaverõÂa, 8, 33006 Oviedo, Spain, andbDepartamento de QuõÂmica

FõÂsica y AnalõÂtica, Facultad de QuõÂmica, Universidad de Oviedo, Avda. JuliaÂn ClaverõÂa, 8, 33006 Oviedo, Spain

Correspondence e-mail: sgg@sauron.quimica.uniovi.es

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.016 AÊ Rfactor = 0.034 wRfactor = 0.094

Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2001 International Union of Crystallography Printed in Great Britain ± all rights reserved

The reaction of [Re2(CO)10] with benzophenone imine in

dichloroethane, in the presence of Me3NO, leads to the

binuclear title compound, nonacarbonyl(diphenylmethan-imine-N)dirhenium(0)(ReÐRe), [Re2(HN CPh2)(CO)9].

Both Re atoms are in an octahedral environment. The HN CPh2 ligand is attached to one of the metal atoms

through the N atom, occupying an equatorial position. The equatorial carbonyl ligands of each octahedral fragment are staggered by 45.

Comment

Interest in the synthesis and reactivity of late-transition-metal amido complexes has grown considerably in recent years as a consequence of the relative scarcity of such compounds and of their potential use in carbon±nitrogen bond-forming reactions (Cabezaet al., 1998). In this ®eld, we have recently commu-nicated the ®rst insertion of a non-activated alkyne into a metal±nitrogen bond, achieved on a triruthenium cluster derived from benzophenone imine (Cabezaet al., 1997). In an extension of the interesting reactivity observed for these ruthenium complexes to other transition metals, we studied the reactivity of benzophenone imine with osmium (Cabezaet al., 2000) and rhenium carbonyl derivatives. The crystal structure reported herein of (benzophenone imine-N )nona-carbonyldirhenium(0)(ReÐRe), (I), is part of this latter study.

Experimental

Me3NO (46 mg, 0.767 mmol) was added to a solution of [Re2(CO)10] (200 mg, 0.307 mmol) and benzophenone imine (103ml, 0.614 mmol) in 1,2-dichloroethane (20 ml). The color changed immediately to dark orange. The mixture was heated at re¯ux temperature for 1 h. The solution was concentrated under reduced pressure toca3 ml and the residue set on the top of a column of neutral alumina (210 cm, activity I). Elution with hexanes afforded a small amount of unreacted [Re2(CO)10]. Subsequent elution with hexanes/dichloro-methane (3:1) afforded an orange band which contained 110 mg (44%) of the title compound, which was crystallized from Et2O/ hexanes at 253 K.

(2)

Crystal data

[Re2(C13H11N)(CO)9] Mr= 805.72 Monoclinic,P21/c a= 10.8071 (6) AÊ b= 13.6951 (8) AÊ c= 16.4285 (11) AÊ

= 102.780 (4) V= 2371.3 (2) AÊ3 Z= 4

Dx= 2.275 Mg mÿ3 MoKradiation Cell parameters from 2241

re¯ections

= 1±25

= 10.25 mmÿ1 T= 293 (2) K Prismatic, yellow 0.260.100.07 mm

Data collection

Nonius CAD-4 diffractometer

!±2scans

Absorption correction: empirical (XABS2; Parkinet al., 1995) Tmin= 0.113,Tmax= 0.485

7361 measured re¯ections 4499 independent re¯ections 2349 re¯ections withI> 2(I) Rint= 0.054

max= 26.0 h=ÿ13!12 k= 0!16 l= 0!20

3 standard re¯ections every 200 re¯ections frequency: 60 min intensity decay: 2.4%

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.034 wR(F2) = 0.094 S= 1.00 4499 re¯ections 307 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.0426P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.94 e AÊÿ3 min=ÿ1.28 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Re1ÐC15 1.904 (11)

Re1ÐC17 1.929 (11)

Re1ÐC16 1.976 (12)

Re1ÐC14 1.986 (12)

Re1ÐN1 2.209 (7)

Re1ÐRe2 3.0542 (6)

Re2ÐC18 1.918 (14)

Re2ÐC20 1.956 (12)

Re2ÐC21 1.960 (13)

Re2ÐC19 1.968 (14)

Re2ÐC22 1.995 (12)

N1ÐC1 1.285 (11)

O14ÐC14 1.137 (13)

O15ÐC15 1.160 (12)

O16ÐC16 1.136 (12)

O17ÐC17 1.146 (11)

O18ÐC18 1.169 (15)

O19ÐC19 1.133 (13)

O20ÐC20 1.166 (12)

O21ÐC21 1.145 (13)

O22ÐC22 1.143 (12)

C15ÐRe1ÐC17 90.5 (4)

C15ÐRe1ÐC16 91.3 (4)

C17ÐRe1ÐC16 89.6 (5)

C15ÐRe1ÐC14 94.4 (5)

C17ÐRe1ÐC14 88.6 (4)

C16ÐRe1ÐC14 174.0 (5)

C15ÐRe1ÐN1 93.6 (3)

C17ÐRe1ÐN1 175.9 (4)

C16ÐRe1ÐN1 89.9 (4)

C14ÐRe1ÐN1 91.5 (4)

C15ÐRe1ÐRe2 177.1 (3)

C17ÐRe1ÐRe2 87.3 (3)

C16ÐRe1ÐRe2 86.9 (3)

C14ÐRe1ÐRe2 87.3 (3)

N1ÐRe1ÐRe2 88.6 (2)

C18ÐRe2ÐC20 94.3 (5)

C18ÐRe2ÐC21 94.2 (6)

C20ÐRe2ÐC21 90.5 (5)

C18ÐRe2ÐC19 96.2 (6)

C20ÐRe2ÐC19 87.9 (5)

C21ÐRe2ÐC19 169.5 (5)

C18ÐRe2ÐC22 96.4 (5)

C20ÐRe2ÐC22 169.0 (5)

C21ÐRe2ÐC22 91.2 (5)

C19ÐRe2ÐC22 88.5 (5)

C18ÐRe2ÐRe1 177.6 (4)

C20ÐRe2ÐRe1 83.9 (3)

C21ÐRe2ÐRe1 84.1 (4)

C19ÐRe2ÐRe1 85.4 (3)

C22ÐRe2ÐRe1 85.4 (3)

C1ÐN1ÐRe1 137.4 (7)

H atoms were placed in geometrically idealized positions employing appropriate riding models with isotropic displacement parameters constrained to 1.2 times theUeqof their carrier atoms.

Data collection: CAD-4 EXPRESS (Enraf±Nonius, 1994); cell re®nement: CRYSDA (Beurskens et al., 1992); data reduction: REFLEX (GarcõÂa-Granda et al., 1999); program(s) used to solve structure:DIRDIF(Beurskenset al., 1992); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: EUCLID(Spek, 1982); software used to prepare material for publi-cation:SHELXL97.

We thank the Spanish CICYT (BQU2000-0219) for partial support.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.

Cabeza, J. A., del RõÂo, I., Franco, R. J., Grepioni, F. & Riera, V. (1997). Organometallics,16, 2763±2764.

Cabeza, J. A., del RõÂo, I., Grepioni, F. & Riera, V. (2000).Organometallics,19, 4643±4646.

Cabeza, J. A., del RõÂo, I., Moreno, M., Riera, V. & Grepioni, F. (1998). Organometallics,17, 3027±3033.

Enraf±Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf±Nonius, Delft, The Netherlands.

GarcõÂa-Granda, S., Aguirre-PeÂrez, A. & GutieÂrrez-RodrõÂguez, A. (1999).THE REFLEX. Internal Report. X-ray Laboratory, University of Oviedo, Spain. Parkin, S., Moezzi, B. & Hope, H. (1995).J. Appl. Cryst.28, 53±56. Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (1982).The EUCLID Package. InComputational Crystallography,

edited by D. Sayre, p. 528. Oxford: Clarendon Press. Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2001). E57, m130–m131

supporting information

Acta Cryst. (2001). E57, m130–m131 [doi:10.1107/S1600536801003658]

(Benzophenone imine-

N

)nonacarbonyldirhenium(0)(

Re

Re

)

Javier A. Cabeza, Ignacio del R

í

o, No

é

Zu

ñ

iga-Villarreal and Santiago Garc

í

a-Granda

S1. Comment

Interest in the synthesis and reactivity of late-transition-metal amido complexes has grown considerably in recent years as

a consequence of the relative scarcity of such compounds and of their potential use in carbon–nitrogen bond-forming

reactions (Cabeza et al. 1998). In this field, we have recently communicated the first insertion of a non-activated alkyne

into a metal–nitrogen bond, achieved onto a triruthenium cluster derived from benzophenone imine (Cabeza et al., 1997).

In an extension of the interesting reactivity observed for these ruthenium complexes to other transition metals, we studied

the reactivity of benzophenone imine with osmium (Cabeza et al., 2000) and rhenium carbonyl derivatives. The crystal

structure reported herein of (benzophenone imine-N)nonacarbonyldirhenium(0)(Re—Re), (I), is part of this latter study.

S2. Experimental

Me3NO (46 mg, 0.767 mmol) was added to a solution of [Re2(CO)10] (200 mg, 0.307 mmol) and benzophenone imine

(103 µl, 0.614 mmol) in 1,2-dichloroethane (20 ml). The color changed immediately to dark orange. The mixture was

heated at reflux temperature for 1 h. The solution was concentrated under reduced pressure to ca 3 ml and the residue set

on the top of a column of neutral alumina (2 × 10 cm, activity I). Elution with hexanes afforded a small amount of

unreacted [Re2(CO)10]. Subsequent elution with hexanes/dichloromethane (3:1) afforded an orange band which contained

110 mg (44%) of the title compound, which was crystallized from Et2O/hexanes at 253 K.

S3. Refinement

H atoms were placed in geometrically idealized positions employing appropriate riding models with isotropic

(4)
[image:4.610.131.487.70.436.2]

Figure 1

The structure of the title complex showing 50% probability displacement ellipsoids and the atom-numbering scheme.

(N-benzophenoneimine) enea-carbonyl dirhenium(0)

Crystal data

[Re2(C13H11N)(CO)9] Mr = 805.72

Monoclinic, P21/c a = 10.8071 (6) Å b = 13.6951 (8) Å c = 16.4285 (11) Å β = 102.780 (4)° V = 2371.3 (2) Å3 Z = 4

F(000) = 1488 Dx = 2.275 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2241 reflections θ = 1–25°

µ = 10.25 mm−1 T = 293 K Prismatic, yellow 0.26 × 0.10 × 0.07 mm

Data collection Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω–2θ scans

Absorption correction: empirical (using intensity measurements)

(XABS2; Parkin et al., 1995) Tmin = 0.113, Tmax = 0.485

(5)

supporting information

sup-3

Acta Cryst. (2001). E57, m130–m131 2349 reflections with I > 2σ(I) Rint = 0.054

θmax = 26.0°, θmin = 1.9° h = −13→12

k = 0→16 l = 0→20

3 standard reflections every 200 reflections intensity decay: 2.4%

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.034 wR(F2) = 0.094 S = 1.00 4499 reflections 307 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0426P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.94 e Å−3

Δρmin = −1.28 e Å−3

Special details

Experimental. Anal. and spectroscopic data: Calcd for C22H11NO9Re2 (805.72): C, 32.79; H, 1.37; N, 1.74. Found: C,

33.13; H, 1.49; N, 1.83. IR (hexanes): ν(CO) 2098 (vw), 2043 (w), 2012 (w), 1987 (versus), 1980 (s), 1973 (w), 1962 (w), 1929 (w) cm-1. 1H NMR (CD

2Cl2): δ 9.88 (s, 1 H, NH), 7.64–7.25 (m, 10 H, Ph2) p.p.m..

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Re1 0.25591 (4) 0.23125 (4) 0.33923 (2) 0.03652 (13) Re2 0.48456 (4) 0.26694 (4) 0.48277 (3) 0.04584 (15) N1 0.1550 (7) 0.1688 (6) 0.4302 (4) 0.0341 (19)

H1 0.1893 0.1150 0.4508 0.041*

O14 0.1700 (8) 0.4435 (7) 0.3689 (5) 0.068 (3) O15 0.0416 (8) 0.1908 (7) 0.1867 (4) 0.068 (2) O16 0.3742 (8) 0.0282 (7) 0.3178 (5) 0.066 (2) O17 0.4138 (9) 0.3160 (7) 0.2217 (5) 0.085 (3) O18 0.7111 (10) 0.3128 (9) 0.6285 (6) 0.105 (4) O19 0.4194 (9) 0.0615 (7) 0.5402 (5) 0.072 (3) O20 0.2814 (8) 0.3488 (6) 0.5735 (5) 0.074 (3) O21 0.4950 (9) 0.4674 (8) 0.3963 (6) 0.085 (3) O22 0.6364 (8) 0.1639 (7) 0.3649 (5) 0.078 (3) C1 0.0589 (9) 0.1908 (8) 0.4608 (5) 0.035 (2) C2 0.0347 (10) 0.1340 (7) 0.5339 (5) 0.037 (2) C3 −0.0879 (11) 0.1317 (8) 0.5449 (6) 0.049 (3)

H3 −0.1516 0.1641 0.5074 0.059*

(6)

H4 −0.2002 0.0799 0.6199 0.067* C5 −0.0220 (14) 0.0334 (9) 0.6658 (8) 0.063 (4)

H5 −0.0409 −0.0012 0.7102 0.076*

C6 0.0991 (12) 0.0349 (8) 0.6563 (6) 0.052 (3)

H6 0.1625 0.0022 0.6939 0.063*

C7 0.1276 (11) 0.0857 (8) 0.5899 (5) 0.049 (3)

H7 0.2108 0.0871 0.5832 0.059*

C8 −0.0300 (9) 0.2707 (8) 0.4255 (6) 0.039 (2) C9 −0.0470 (11) 0.3485 (8) 0.4760 (6) 0.049 (3)

H9 −0.0013 0.3517 0.5310 0.059*

C10 −0.1319 (12) 0.4206 (9) 0.4439 (7) 0.060 (3)

H10 −0.1450 0.4723 0.4777 0.072*

C11 −0.1963 (12) 0.4175 (10) 0.3640 (7) 0.064 (4)

H11 −0.2506 0.4683 0.3420 0.076*

C12 −0.1820 (11) 0.3400 (10) 0.3152 (6) 0.055 (3)

H12 −0.2299 0.3363 0.2607 0.066*

C13 −0.0980 (9) 0.2675 (9) 0.3455 (6) 0.045 (3)

H13 −0.0871 0.2157 0.3112 0.054*

C14 0.1985 (11) 0.3651 (9) 0.3593 (6) 0.044 (3) C15 0.1190 (11) 0.2073 (8) 0.2463 (6) 0.044 (3) C16 0.3304 (11) 0.1019 (8) 0.3264 (6) 0.045 (3) C17 0.3547 (11) 0.2867 (9) 0.2662 (6) 0.054 (3) C18 0.6254 (13) 0.2947 (11) 0.5735 (8) 0.071 (4) C19 0.4484 (11) 0.1363 (11) 0.5217 (7) 0.053 (3) C20 0.3577 (12) 0.3186 (9) 0.5398 (6) 0.054 (3) C21 0.4927 (11) 0.3932 (10) 0.4280 (7) 0.058 (3) C22 0.5853 (11) 0.2033 (9) 0.4093 (7) 0.056 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-5

Acta Cryst. (2001). E57, m130–m131

C6 0.077 (9) 0.040 (8) 0.033 (5) 0.005 (7) 0.000 (6) 0.009 (5) C7 0.057 (8) 0.055 (9) 0.034 (6) −0.001 (6) 0.006 (5) 0.000 (5) C8 0.030 (5) 0.039 (7) 0.048 (6) 0.006 (5) 0.007 (4) 0.006 (5) C9 0.076 (9) 0.039 (8) 0.035 (6) 0.003 (6) 0.017 (6) −0.003 (5) C10 0.077 (9) 0.049 (9) 0.060 (7) 0.021 (7) 0.025 (7) 0.010 (6) C11 0.075 (9) 0.059 (10) 0.056 (7) 0.029 (7) 0.012 (7) 0.021 (6) C12 0.049 (7) 0.072 (10) 0.040 (6) 0.008 (7) 0.001 (5) 0.014 (6) C13 0.040 (6) 0.053 (7) 0.045 (5) 0.005 (6) 0.015 (5) −0.002 (5) C14 0.062 (8) 0.034 (8) 0.039 (6) −0.011 (6) 0.016 (5) −0.008 (5) C15 0.060 (8) 0.040 (8) 0.035 (6) −0.002 (6) 0.016 (6) 0.001 (5) C16 0.052 (7) 0.033 (8) 0.047 (6) −0.007 (6) 0.007 (5) −0.008 (5) C17 0.058 (8) 0.063 (10) 0.039 (6) −0.017 (6) 0.003 (5) −0.010 (5) C18 0.064 (9) 0.079 (12) 0.069 (9) 0.018 (8) 0.010 (7) 0.003 (7) C19 0.034 (6) 0.067 (10) 0.059 (7) 0.002 (6) 0.014 (5) −0.002 (7) C20 0.072 (9) 0.043 (8) 0.043 (6) −0.003 (7) −0.001 (6) −0.009 (5) C21 0.044 (7) 0.055 (10) 0.073 (8) −0.009 (7) 0.006 (6) 0.008 (7) C22 0.048 (7) 0.050 (9) 0.063 (7) 0.002 (6) 0.002 (6) 0.007 (6)

Geometric parameters (Å, º)

Re1—C15 1.904 (11) C1—C2 1.501 (12)

Re1—C17 1.929 (11) C2—C7 1.373 (14)

Re1—C16 1.976 (12) C2—C3 1.377 (13)

Re1—C14 1.986 (12) C3—C4 1.398 (13)

Re1—N1 2.209 (7) C3—H3 0.9300

Re1—Re2 3.0542 (6) C4—C5 1.367 (16)

Re2—C18 1.918 (14) C4—H4 0.9300

Re2—C20 1.956 (12) C5—C6 1.352 (16)

Re2—C21 1.960 (13) C5—H5 0.9300

Re2—C19 1.968 (14) C6—C7 1.385 (12)

Re2—C22 1.995 (12) C6—H6 0.9300

N1—C1 1.285 (11) C7—H7 0.9300

N1—H1 0.8600 C8—C13 1.357 (13)

O14—C14 1.137 (13) C8—C9 1.387 (14)

O15—C15 1.160 (12) C9—C10 1.372 (15)

O16—C16 1.136 (12) C9—H9 0.9300

O17—C17 1.146 (11) C10—C11 1.344 (15)

O18—C18 1.169 (15) C10—H10 0.9300

O19—C19 1.133 (13) C11—C12 1.359 (15)

O20—C20 1.166 (12) C11—H11 0.9300

O21—C21 1.145 (13) C12—C13 1.363 (14)

O22—C22 1.143 (12) C12—H12 0.9300

C1—C8 1.486 (14) C13—H13 0.9300

C15—Re1—C17 90.5 (4) C4—C3—H3 119.6

C15—Re1—C16 91.3 (4) C5—C4—C3 118.3 (12)

C17—Re1—C16 89.6 (5) C5—C4—H4 120.9

(8)

C17—Re1—C14 88.6 (4) C6—C5—C4 122.0 (11)

C16—Re1—C14 174.0 (5) C6—C5—H5 119.0

C15—Re1—N1 93.6 (3) C4—C5—H5 119.0

C17—Re1—N1 175.9 (4) C5—C6—C7 119.2 (11)

C16—Re1—N1 89.9 (4) C5—C6—H6 120.4

C14—Re1—N1 91.5 (4) C7—C6—H6 120.4

C15—Re1—Re2 177.1 (3) C2—C7—C6 120.9 (10)

C17—Re1—Re2 87.3 (3) C2—C7—H7 119.6

C16—Re1—Re2 86.9 (3) C6—C7—H7 119.6

C14—Re1—Re2 87.3 (3) C13—C8—C9 119.2 (10)

N1—Re1—Re2 88.6 (2) C13—C8—C1 121.2 (10)

C18—Re2—C20 94.3 (5) C9—C8—C1 119.5 (9)

C18—Re2—C21 94.2 (6) C10—C9—C8 119.3 (10)

C20—Re2—C21 90.5 (5) C10—C9—H9 120.4

C18—Re2—C19 96.2 (6) C8—C9—H9 120.4

C20—Re2—C19 87.9 (5) C11—C10—C9 120.7 (11)

C21—Re2—C19 169.5 (5) C11—C10—H10 119.6

C18—Re2—C22 96.4 (5) C9—C10—H10 119.6

C20—Re2—C22 169.0 (5) C10—C11—C12 119.9 (12)

C21—Re2—C22 91.2 (5) C10—C11—H11 120.0

C19—Re2—C22 88.5 (5) C12—C11—H11 120.0

C18—Re2—Re1 177.6 (4) C11—C12—C13 120.4 (11)

C20—Re2—Re1 83.9 (3) C11—C12—H12 119.8

C21—Re2—Re1 84.1 (4) C13—C12—H12 119.8

C19—Re2—Re1 85.4 (3) C8—C13—C12 120.3 (11)

C22—Re2—Re1 85.4 (3) C8—C13—H13 119.8

C1—N1—Re1 137.4 (7) C12—C13—H13 119.8

C1—N1—H1 111.3 O14—C14—Re1 176.7 (10)

Re1—N1—H1 111.3 O15—C15—Re1 175.4 (9)

N1—C1—C8 122.0 (8) O16—C16—Re1 178.6 (10)

N1—C1—C2 119.3 (10) O17—C17—Re1 177.3 (11)

C8—C1—C2 118.7 (8) O18—C18—Re2 179.2 (14)

C7—C2—C3 118.8 (9) O19—C19—Re2 175.0 (11)

C7—C2—C1 123.7 (9) O20—C20—Re2 179.4 (11)

C3—C2—C1 117.4 (10) O21—C21—Re2 178.5 (12)

C2—C3—C4 120.8 (11) O22—C22—Re2 175.8 (11)

C2—C3—H3 119.6

(9)

supporting information

sup-7

Acta Cryst. (2001). E57, m130–m131

Figure

Figure 1

References

Related documents

al.,‖ Scrutinizing Elections Strategies by Political Parties via Mining Big Data for. Ensuring Big Win in Indian Subcontinent‖, 4th Edition of International Conference on

[r]

The objective of this study was to identify the risk of nasal, nasopharyngeal, and lung cancer in relation to occu- pational exposure to wood dust and formaldehyde among

the number of people in the room exceeds the acoustic capacity, the ambient noise level may exceed 442. 71 dB and the quality of verbal communication in a distance of 1 m

This may be due to the fact that the CCM-ESPRIT method only uses the CCM to overcome the pair-matching problems, but not for the DOA estimation, and though the JSVD method exploited

For this reason, we use GEI as a gait representation method and apply simple, recursive principal component analysis (PCA) reconstruc- tions [ 16 , 17 ] and error compensation to

Vector Field Driven Design for Lightweight Signal Processing and Control Schemes for Autonomous Robotic Navigation.. Nebu John Mathai, Takis Zourntos, and

In general it is shown that the scheduling problem can be formulated as a weighted sum rate maximization problem, where the characteristics of the scheduling policy is deter- mined