• No results found

DL Threoninium tri­chloro­acetate

N/A
N/A
Protected

Academic year: 2020

Share "DL Threoninium tri­chloro­acetate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o1355±o1357 DOI: 10.1107/S1600536804016630 K. Rajagopalet al. C4H10NO3+C2Cl3O2ÿ

o1355

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

DL

-Threoninium trichloroacetate

K. Rajagopal,aR. Dinesh

Franklin,b R. V. Krishnakumar,c

K. Ravikumardand

S. Natarajanb*

aDepartment of Physics, Saraswathi Narayanan College, Madurai 625 022, India,bDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India,cDepartment of Physics, Thiagarajar College, Madurai 625 009, India, anddLaboratory of Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail: s_natarajan50@yahoo.com

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.033

wRfactor = 0.085

Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, C4H10NO3+C2Cl3O2ÿ, (I), the amino

acid molecule exists in the cationic form, with a positively charged amino group and an uncharged carboxylic acid group. The trichloroacetic acid molecule exists in the anionic state. The threoninium cations and the trichloroacetate anions form hydrogen-bonded double layers, linked together by a network

of NÐH O and OÐH O hydrogen bonds and extended

along the b axis. These double layers have no

hydrogen-bonded interactions between them. No classic head-to-tail hydrogen bonds are observed in (I).

Comment

Threonine, an essential amino acid necessary to maintain nitrogen equilibrium in the adult human, is a signi®cant constituent of many common plant and milk proteins. It does not undergo transamination and is also potentially glucogenic.

X-ray (Shoemakeret al., 1950) and neutron (Ramanathamet

al., 1973) diffraction investigations on crystals of thel-isomer have already been carried out. Recently, a precise determi-nation of the crystal structure ofl-threonine at 12 K (Janczak

et al., 1997) was reported. However, the crystal structure of its

racemate is not yet known since, on crystallization,dl

-threo-nine produces a mixture of crystals of the d- and l- forms

(Shoemaker et al., 1950). A similar phenomenon has been

observed in the case of l-allothreonine (Swaminathan &

Srinivasan, 1975). Recently, we have reported the crystal structures ofdl-threoninium maleate (Rajagopalet al., 2004),

dl-threoninium oxalate (Subha Nandhini et al., 2001), dl

-valinium trichloroacetate (Rajagopal et al., 2002), dl

-methioninium trichloroacetate (Rajagopal, Krishnakumar,

Mostad & Natarajan, 2003a), -alaninium trichloroacetate

(Rajagopal, Krishnakumar, Subha Nandhini, Mostad &

Natarajan, 2003), l-prolinium trichloroacetate (Rajagopal,

Krishnakumar, Mostad & Natarajan, 2003b) and l

-phenyl-alaninium trichloroacetate monohydrate (Rajagopal, Krish-nakumar, Subha Nandhini, Cameron & Natarajan, 2003). The crystal structure of trichloroacetic acid itself was determined

only recently in our laboratory (Rajagopal, Mostad et al.,

2003). The present study, which reports the crystal structure of

dl-threoninium trichloroacetate, (I), a complex ofdl

-threo-nine with trichloroacetic acid, is part of a series of X-ray investigations on proton-transfer complexes of amino acid± trichloroacetic acid. The results of these investigations will be useful in the understanding of ionization states, biomolecular interactions and characteristic aggregation patterns.

(2)

Fig. 1 shows the molecular structure of (I) with the atom-numbering scheme. The asymmetric unit of (I) comprises two threoninium cations, which are related through the

pseudo-symmetry operation (1

2+x, 1ÿy,z), and two trichloroacetate

anions, related to each other through the pseudo-symmetry operation (1

2ÿx,32ÿy, 1ÿz). The threonine molecules in (I)

exist in the cationic form, with a positively charged amino group and an uncharged carboxylic acid group. The tri-chloroacetic acid is in the anionic state. The conformation

angles 1 and 2 for the two dl-threoninium cations,

describing the torsions of the two CÐO bonds around C1Ð C2, are ÿ175.2 (2) and 4.9 (3), and 177.5 (2) andÿ2.5 (3),

respectively, indicating that the carboxylic acid and amino groups of the threoninium cations lie in the same planes. This

is in agreement with the values reported fordl-threoninium

oxalate [177.2 (2) andÿ2.5 (4); Subha Nandhiniet al., 2001].

Fig. 2 shows the packing of the molecules of (I), viewed

down theaaxis. The threoninium cations and trichloroacetate

anions are linked together by an in®nite network of hydrogen

bonds. Atoms O3A and O3B participate in the

hydrogen-bonding network as both acceptors and donors, mediating the amino acid±amino acid interactions. No classic head-to-tail hydrogen bonds are observed in the crystal structure of (I), as

observed in similar structures, viz. dl-threoninium maleate

and dl-threoninium oxalate. The molecules aggregate into

parallel layers which extend along the b axis. These layers

have no hydrogen-bonded interactions between them, only van der Waals interactions. The structure is stabilized by an

in®nite network of NÐH O and OÐH O hydrogen bonds

(Table 2). The aggregation pattern observed in (I) is similar to

those observed in dl-threoninium maleate and dl

-threoni-nium oxalate.

Experimental

Colourless needle-shaped single crystals of (I) were grown from a saturated aqueous solution containing dl-threonine and trichloro-acetic acid in a 1:1 stoichiometric ratio..

Crystal data

C4H10NO3+C2Cl3O2ÿ Mr= 282.50

Monoclinic,P21 a= 10.3290 (11) AÊ

b= 10.4271 (11) AÊ

c= 10.7795 (11) AÊ

= 103.115 (12) V= 1130.7 (2) AÊ3 Z= 4

Dx= 1.660 Mg mÿ3

Dm= 1.65 Mg mÿ3

Dmmeasured by ¯otation in xylene±

bromoform MoKradiation Cell parameters from 3441

re¯ections

= 1.9±25.0 = 0.81 mmÿ1 T= 293 (2) K Block, colourless 0.400.300.25 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin= 0.734,Tmax= 0.812

6904 measured re¯ections

4451 independent re¯ections 4159 re¯ections withI> 2(I)

Rint= 0.016 max= 28.0 h=ÿ13!9

k=ÿ13!13

l=ÿ11!14

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.033 wR(F2) = 0.085 S= 1.05 4451 re¯ections 277 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0485P)2

+ 0.2061P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.26 e AÊÿ3 min=ÿ0.25 e AÊÿ3

organic papers

o1356

K. Rajagopalet al. C4H10NO3+C2Cl3O2ÿ Acta Cryst.(2004). E60, o1355±o1357

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Figure 2

(3)

Table 1

Selected geometric parameters (AÊ,).

Cl1AÐC5A 1.766 (3) Cl2AÐC5A 1.745 (3) Cl3AÐC5A 1.769 (3) Cl1BÐC5B 1.762 (3) Cl2BÐC5B 1.766 (3) Cl3BÐC5B 1.760 (3) O1AÐC1A 1.306 (3) O2AÐC1A 1.198 (3) O3AÐC3A 1.429 (4) O4AÐC6B 1.200 (4) O5AÐC6B 1.226 (3) O1BÐC1B 1.303 (3) O2BÐC1B 1.208 (3)

O3BÐC3B 1.413 (4) O4BÐC6A 1.226 (3) O5BÐC6A 1.202 (3) N1AÐC2A 1.477 (3) N1BÐC2B 1.484 (3) C1AÐC2A 1.510 (4) C2AÐC3A 1.539 (4) C3AÐC4A 1.502 (5) C5AÐC6A 1.555 (4) C1BÐC2B 1.517 (4) C2BÐC3B 1.536 (4) C3BÐC4B 1.505 (5) C5BÐC6B 1.555 (4) O2AÐC1AÐO1A 126.5 (3)

O2AÐC1AÐC2A 122.3 (2) O1AÐC1AÐC2A 111.2 (2) N1AÐC2AÐC1A 108.4 (2) N1AÐC2AÐC3A 111.2 (2) C1AÐC2AÐC3A 113.3 (2) O3AÐC3AÐC4A 107.2 (2) O3AÐC3AÐC2A 110.1 (2) C4AÐC3AÐC2A 112.9 (3) C6AÐC5AÐCl2A 112.33 (18) C6AÐC5AÐCl1A 111.75 (19) Cl2AÐC5AÐCl1A 109.13 (14) C6AÐC5AÐCl3A 107.13 (18) Cl2AÐC5AÐCl3A 108.99 (16) Cl1AÐC5AÐCl3A 107.33 (14) O5BÐC6AÐO4B 126.6 (3) O5BÐC6AÐC5A 117.5 (2) O4BÐC6AÐC5A 115.8 (2)

O2BÐC1BÐO1B 126.7 (3) O2BÐC1BÐC2B 122.3 (2) O1BÐC1BÐC2B 111.1 (2) N1BÐC2BÐC1B 107.5 (2) N1BÐC2BÐC3B 111.7 (2) C1BÐC2BÐC3B 113.0 (2) O3BÐC3BÐC4B 107.1 (3) O3BÐC3BÐC2B 111.2 (2) C4BÐC3BÐC2B 112.3 (3) C6BÐC5BÐCl3B 111.6 (2) C6BÐC5BÐCl1B 111.5 (2) Cl3BÐC5BÐCl1B 108.95 (16) C6BÐC5BÐCl2B 106.74 (19) Cl3BÐC5BÐCl2B 108.94 (16) Cl1BÐC5BÐCl2B 109.02 (17) O4AÐC6BÐO5A 126.2 (3) O4AÐC6BÐC5B 118.0 (3) O5AÐC6BÐC5B 115.7 (3) O2AÐC1AÐC2AÐN1A 4.9 (3)

O1AÐC1AÐC2AÐN1A ÿ175.3 (2) O2AÐC1AÐC2AÐC3A 128.8 (3) O1AÐC1AÐC2AÐC3A ÿ51.4 (3) N1AÐC2AÐC3AÐO3A 54.9 (3) C1AÐC2AÐC3AÐO3A ÿ67.4 (3) N1AÐC2AÐC3AÐC4A ÿ64.8 (3) C1AÐC2AÐC3AÐC4A 172.8 (3) Cl2AÐC5AÐC6AÐO5B 149.4 (3) Cl1AÐC5AÐC6AÐO5B 26.3 (3) Cl3AÐC5AÐC6AÐO5B ÿ91.0 (3) Cl2AÐC5AÐC6AÐO4B ÿ31.0 (3) Cl1AÐC5AÐC6AÐO4B ÿ154.1 (3) Cl3AÐC5AÐC6AÐO4B 88.6 (3)

O2BÐC1BÐC2BÐN1B ÿ2.3 (3) O1BÐC1BÐC2BÐN1B 177.5 (2) O2BÐC1BÐC2BÐC3B ÿ126.0 (3) O1BÐC1BÐC2BÐC3B 53.8 (3) N1BÐC2BÐC3BÐO3B ÿ54.4 (3) C1BÐC2BÐC3BÐO3B 67.0 (3) N1BÐC2BÐC3BÐC4B 65.6 (3) C1BÐC2BÐC3BÐC4B ÿ173.0 (3) Cl3BÐC5BÐC6BÐO4A 27.0 (4) Cl1BÐC5BÐC6BÐO4A 149.1 (3) Cl2BÐC5BÐC6BÐO4A ÿ91.9 (3) Cl3BÐC5BÐC6BÐO5A ÿ156.3 (3) Cl1BÐC5BÐC6BÐO5A ÿ34.2 (3) Cl2BÐC5BÐC6BÐO5A 84.7 (3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O1AÐH1A O5Ai 0.82 1.82 2.571 (3) 152

O3AÐH3A O2Bii 0.82 2.03 2.824 (3) 163

O1BÐH1B O4Biii 0.82 1.81 2.597 (3) 160

O3BÐH3B O2Aiv 0.82 1.98 2.780 (3) 167

N1AÐH1A1 O3Av 0.89 2.11 2.926 (3) 151

N1AÐH1A2 O4Avi 0.89 1.85 2.724 (3) 167

N1AÐH1A3 O4Bv 0.89 1.98 2.841 (3) 162

N1BÐH1B1 O5Avii 0.89 1.94 2.798 (3) 161

N1BÐH1B2 O5B 0.89 1.87 2.756 (3) 171 N1BÐH1B3 O3Biv 0.89 2.25 3.015 (3) 144 Symmetry codes: (i) 1ÿx;yÿ1

2;1ÿz; (ii) 1ÿx;yÿ21;2ÿz; (iii) 1‡x;y;z; (iv)

1ÿx;1

2‡y;2ÿz; (v)ÿx;yÿ12;2ÿz; (vi)ÿx;yÿ12;1ÿz; (vii)x;y;1‡z.

All H atoms were treated as riding on their respective parent atoms, with NÐH = 0.89, OÐH = 0.82 and CÐH = 0.96±0.98 AÊ, and withUiso= 1.2Ueq(C,N) or 1.5Ueq(C,O).

Data collection:SMART(Bruker, 2001); cell re®nement:SAINT

(Bruker, 2001); data reduction:SAINT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1990); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON (Spek, 1999); software used to prepare material for publication:SHELXL97.

KR thanks the UGC and the management of Saraswathi Narayanan College for the FIP programme. The authors thank the UGC for the Special Assistance Programme.

References

Bruker (1998).SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA. Bruker (2001). SMART and SAINT. Versions 6.12. Bruker AXS Inc.,

Madison, Wisconsin, USA.

Janczak, J., Zobel, D. & Luger, P. (1997).Acta Cryst.C53, 1901±1904. Rajagopal, K., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2003a).Acta

Cryst.E59, o31±o33.

Rajagopal, K., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2003b).Acta Cryst.E59, o277±o279.

Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Cameron, T. S. & Natarajan, S. (2003).Acta Cryst.E59, o1084±o1086.

Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Mostad, A. & Natarajan, S. (2002).Acta Cryst.E58, o279±o281.

Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Mostad, A. & Natarajan, S. (2003).Acta Cryst.E59, o206±o208.

Rajagopal, K., Mostad, A., Krishnakumar, R. V., Subha Nandhini, M. & Natarajan, S. (2003).Acta Cryst.E59, o316±o318.

Rajagopal, K., Ramachandran, E., Mostad, A. & Natarajan, S. (2004).Acta Cryst.E60, o386±o388.

Ramanatham, M., Sikka, S. K. & Chidambaram, R. (1973).Pramana,1, 247± 259.

Sheldrick, G. M. (1990).Acta Cryst.A46, 467±473.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Shoemaker, D. P., Donohue, J., Schomaker, V. & Corey, R. B. (1950).J. Am.

Chem. Soc.72, 2328±2349.

Spek, A. L. (1999). PLATON for Windows. University of Utrecht, The Netherlands.

Subha Nandhini, M., Krishnakumar, R. V., Malathi, R., Rajan, S. S. & Natarajan, S. (2001).Acta Cryst.E57, o769±o771.

Swaminathan, P. & Srinivasan, R. (1975).Acta Cryst.B31, 217±221.

organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, o1355–o1357

supporting information

Acta Cryst. (2004). E60, o1355–o1357 [https://doi.org/10.1107/S1600536804016630]

DL

-Threoninium trichloroacetate

K. Rajagopal, R. Dinesh Franklin, R. V. Krishnakumar, K. Ravikumar and S. Natarajan

L-Threoninium trichloroacetate

Crystal data

C4H10NO3+·C2Cl3O2−

Mr = 282.50 Monoclinic, P21

Hall symbol: P 2yb

a = 10.3290 (11) Å

b = 10.4271 (11) Å

c = 10.7795 (11) Å

β = 103.115 (12)°

V = 1130.7 (2) Å3

Z = 4

F(000) = 576

Dx = 1.660 Mg m−3

Dm = 1.65 Mg m−3

Dm measured by flotation method

Mo radiation, λ = 0.71073 Å Cell parameters from 3441 reflections

θ = 1.9–25.0°

µ = 0.81 mm−1

T = 293 K Plates, colourless 0.40 × 0.30 × 0.25 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin = 0.734, Tmax = 0.812

6904 measured reflections 4451 independent reflections 4159 reflections with I > 2σ(I)

Rint = 0.016

θmax = 28.0°, θmin = 1.9°

h = −13→9

k = −13→13

l = −11→14

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.033

wR(F2) = 0.085

S = 1.05 3583 reflections 277 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0485P)2 + 0.2061P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.26 e Å−3

Δρmin = −0.25 e Å−3

Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, o1355–o1357

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1A 0.15018 (8) 0.77898 (8) 0.54988 (7) 0.0551 (2)

Cl2A −0.12917 (9) 0.78120 (11) 0.53852 (7) 0.0653 (3)

Cl3A 0.02379 (13) 1.01105 (8) 0.59632 (10) 0.0796 (3)

Cl1B 0.60543 (10) 0.54570 (9) 0.39365 (11) 0.0743 (3)

Cl2B 0.49122 (12) 0.78646 (10) 0.44236 (8) 0.0776 (3)

Cl3B 0.32634 (10) 0.56317 (9) 0.38366 (10) 0.0721 (3)

O1A 0.2097 (2) 0.2408 (2) 0.7807 (2) 0.0491 (5)

H1A 0.2813 0.2035 0.7917 0.074*

O2A 0.1848 (2) 0.1270 (2) 0.9496 (2) 0.0472 (5)

O3A 0.0636 (2) 0.4609 (2) 0.9443 (2) 0.0533 (6)

H3A 0.1416 0.4385 0.9662 0.080*

O4A 0.3255 (3) 0.7040 (3) 0.1526 (2) 0.0682 (7)

O5A 0.5378 (2) 0.7028 (3) 0.1666 (2) 0.0729 (8)

O1B 0.7041 (2) 0.7570 (2) 0.76184 (19) 0.0508 (5)

H1B 0.7767 0.7924 0.7727 0.076*

O2B 0.6808 (2) 0.8774 (2) 0.9280 (2) 0.0493 (5)

O3B 0.5583 (2) 0.5470 (2) 0.9393 (2) 0.0554 (6)

H3B 0.6363 0.5694 0.9603 0.083*

O4B −0.0448 (2) 0.8146 (3) 0.81102 (19) 0.0681 (8)

O5B 0.1669 (2) 0.8051 (3) 0.8197 (2) 0.0695 (7)

N1A −0.0576 (2) 0.2145 (2) 0.9410 (2) 0.0370 (5)

H1A1 −0.0381 0.1326 0.9596 0.056*

H1A2 −0.1453 0.2235 0.9155 0.056*

H1A3 −0.0278 0.2625 1.0099 0.056*

N1B 0.4370 (2) 0.7963 (2) 0.9204 (2) 0.0393 (5)

H1B1 0.4620 0.7496 0.9909 0.059*

H1B2 0.3491 0.7926 0.8932 0.059*

H1B3 0.4618 0.8775 0.9371 0.059*

C1A 0.1445 (3) 0.1998 (2) 0.8635 (2) 0.0329 (6)

C2A 0.0062 (3) 0.2559 (2) 0.8382 (2) 0.0313 (6)

H2A −0.0448 0.2198 0.7579 0.038*

C3A 0.0041 (3) 0.4030 (3) 0.8249 (3) 0.0408 (6)

H3A1 0.0551 0.4273 0.7621 0.049*

C4A −0.1341 (4) 0.4563 (3) 0.7836 (3) 0.0579 (9)

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, o1355–o1357

H4A2 −0.1838 0.4358 0.8462 0.087*

H4A3 −0.1771 0.4195 0.7032 0.087*

C5A 0.0242 (3) 0.8429 (2) 0.6183 (2) 0.0352 (6)

C6A 0.0528 (3) 0.8181 (3) 0.7642 (2) 0.0358 (6)

C1B 0.6397 (3) 0.8016 (3) 0.8434 (2) 0.0359 (6)

C2B 0.5008 (3) 0.7453 (3) 0.8204 (2) 0.0349 (6)

H2B 0.4502 0.7759 0.7376 0.042*

C3B 0.5001 (3) 0.5979 (3) 0.8181 (3) 0.0439 (7)

H3B1 0.5513 0.5687 0.7573 0.053*

C4B 0.3616 (3) 0.5439 (3) 0.7793 (4) 0.0613 (9)

H4B1 0.3659 0.4520 0.7793 0.092*

H4B2 0.3201 0.5737 0.6955 0.092*

H4B3 0.3106 0.5717 0.8385 0.092*

C5B 0.4640 (3) 0.6445 (3) 0.3507 (3) 0.0409 (7)

C6B 0.4383 (3) 0.6859 (3) 0.2087 (3) 0.0392 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, o1355–o1357

C6B 0.0281 (19) 0.0468 (15) 0.0437 (14) −0.0006 (13) 0.0107 (13) −0.0062 (12)

Geometric parameters (Å, º)

Cl1A—C5A 1.766 (3) N1A—H1A3 0.8900

Cl2A—C5A 1.745 (3) N1B—C2B 1.484 (3)

Cl3A—C5A 1.769 (3) N1B—H1B1 0.8900

Cl1B—C5B 1.762 (3) N1B—H1B2 0.8900

Cl2B—C5B 1.766 (3) N1B—H1B3 0.8900

Cl3B—C5B 1.760 (3) C1A—C2A 1.510 (4)

O1A—C1A 1.306 (3) C2A—C3A 1.539 (4)

O1A—H1A 0.8200 C2A—H2A 0.9800

O2A—C1A 1.198 (3) C3A—C4A 1.502 (5)

O3A—C3A 1.429 (4) C3A—H3A1 0.9800

O3A—H3A 0.8200 C4A—H4A1 0.9600

O4A—C6B 1.200 (4) C4A—H4A2 0.9600

O5A—C6B 1.226 (3) C4A—H4A3 0.9600

O1B—C1B 1.303 (3) C5A—C6A 1.555 (4)

O1B—H1B 0.8200 C1B—C2B 1.517 (4)

O2B—C1B 1.208 (3) C2B—C3B 1.536 (4)

O3B—C3B 1.413 (4) C2B—H2B 0.9800

O3B—H3B 0.8200 C3B—C4B 1.505 (5)

O4B—C6A 1.226 (3) C3B—H3B1 0.9800

O5B—C6A 1.202 (3) C4B—H4B1 0.9600

N1A—C2A 1.477 (3) C4B—H4B2 0.9600

N1A—H1A1 0.8900 C4B—H4B3 0.9600

N1A—H1A2 0.8900 C5B—C6B 1.555 (4)

C1A—O1A—H1A 109.5 C6A—C5A—Cl1A 111.75 (19)

C3A—O3A—H3A 109.5 Cl2A—C5A—Cl1A 109.13 (14)

C1B—O1B—H1B 109.5 C6A—C5A—Cl3A 107.13 (18)

C3B—O3B—H3B 109.5 Cl2A—C5A—Cl3A 108.99 (16)

C2A—N1A—H1A1 109.5 Cl1A—C5A—Cl3A 107.33 (14)

C2A—N1A—H1A2 109.5 O5B—C6A—O4B 126.6 (3)

H1A1—N1A—H1A2 109.5 O5B—C6A—C5A 117.5 (2)

C2A—N1A—H1A3 109.5 O4B—C6A—C5A 115.8 (2)

H1A1—N1A—H1A3 109.5 O2B—C1B—O1B 126.7 (3)

H1A2—N1A—H1A3 109.5 O2B—C1B—C2B 122.3 (2)

C2B—N1B—H1B1 109.5 O1B—C1B—C2B 111.1 (2)

C2B—N1B—H1B2 109.5 N1B—C2B—C1B 107.5 (2)

H1B1—N1B—H1B2 109.5 N1B—C2B—C3B 111.7 (2)

C2B—N1B—H1B3 109.5 C1B—C2B—C3B 113.0 (2)

H1B1—N1B—H1B3 109.5 N1B—C2B—H2B 108.2

H1B2—N1B—H1B3 109.5 C1B—C2B—H2B 108.2

O2A—C1A—O1A 126.5 (3) C3B—C2B—H2B 108.2

O2A—C1A—C2A 122.3 (2) O3B—C3B—C4B 107.1 (3)

O1A—C1A—C2A 111.2 (2) O3B—C3B—C2B 111.2 (2)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, o1355–o1357

N1A—C2A—C3A 111.2 (2) O3B—C3B—H3B1 108.7

C1A—C2A—C3A 113.3 (2) C4B—C3B—H3B1 108.7

N1A—C2A—H2A 107.9 C2B—C3B—H3B1 108.7

C1A—C2A—H2A 107.9 C3B—C4B—H4B1 109.5

C3A—C2A—H2A 107.9 C3B—C4B—H4B2 109.5

O3A—C3A—C4A 107.2 (2) H4B1—C4B—H4B2 109.5

O3A—C3A—C2A 110.1 (2) C3B—C4B—H4B3 109.5

C4A—C3A—C2A 112.9 (3) H4B1—C4B—H4B3 109.5

O3A—C3A—H3A1 108.9 H4B2—C4B—H4B3 109.5

C4A—C3A—H3A1 108.9 C6B—C5B—Cl3B 111.6 (2)

C2A—C3A—H3A1 108.9 C6B—C5B—Cl1B 111.5 (2)

C3A—C4A—H4A1 109.5 Cl3B—C5B—Cl1B 108.95 (16)

C3A—C4A—H4A2 109.5 C6B—C5B—Cl2B 106.74 (19)

H4A1—C4A—H4A2 109.5 Cl3B—C5B—Cl2B 108.94 (16)

C3A—C4A—H4A3 109.5 Cl1B—C5B—Cl2B 109.02 (17)

H4A1—C4A—H4A3 109.5 O4A—C6B—O5A 126.2 (3)

H4A2—C4A—H4A3 109.5 O4A—C6B—C5B 118.0 (3)

C6A—C5A—Cl2A 112.33 (18) O5A—C6B—C5B 115.7 (3)

O2A—C1A—C2A—N1A 4.9 (3) O2B—C1B—C2B—N1B −2.3 (3)

O1A—C1A—C2A—N1A −175.3 (2) O1B—C1B—C2B—N1B 177.5 (2)

O2A—C1A—C2A—C3A 128.8 (3) O2B—C1B—C2B—C3B −126.0 (3)

O1A—C1A—C2A—C3A −51.4 (3) O1B—C1B—C2B—C3B 53.8 (3)

N1A—C2A—C3A—O3A 54.9 (3) N1B—C2B—C3B—O3B −54.4 (3)

C1A—C2A—C3A—O3A −67.4 (3) C1B—C2B—C3B—O3B 67.0 (3)

N1A—C2A—C3A—C4A −64.8 (3) N1B—C2B—C3B—C4B 65.6 (3)

C1A—C2A—C3A—C4A 172.8 (3) C1B—C2B—C3B—C4B −173.0 (3)

Cl2A—C5A—C6A—O5B 149.4 (3) Cl3B—C5B—C6B—O4A 27.0 (4)

Cl1A—C5A—C6A—O5B 26.3 (3) Cl1B—C5B—C6B—O4A 149.1 (3)

Cl3A—C5A—C6A—O5B −91.0 (3) Cl2B—C5B—C6B—O4A −91.9 (3)

Cl2A—C5A—C6A—O4B −31.0 (3) Cl3B—C5B—C6B—O5A −156.3 (3)

Cl1A—C5A—C6A—O4B −154.1 (3) Cl1B—C5B—C6B—O5A −34.2 (3)

Cl3A—C5A—C6A—O4B 88.6 (3) Cl2B—C5B—C6B—O5A 84.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1A—H1A···O5Ai 0.82 1.82 2.571 (3) 152

O3A—H3A···O2Bii 0.82 2.03 2.824 (3) 163

O1B—H1B···O4Biii 0.82 1.81 2.597 (3) 160

O3B—H3B···O2Aiv 0.82 1.98 2.780 (3) 167

N1A—H1A1···O3Av 0.89 2.11 2.926 (3) 151

N1A—H1A2···O4Avi 0.89 1.85 2.724 (3) 167

N1A—H1A3···O4Bv 0.89 1.98 2.841 (3) 162

(9)

supporting information

sup-6

Acta Cryst. (2004). E60, o1355–o1357

N1B—H1B2···O5B 0.89 1.87 2.756 (3) 171

N1B—H1B3···O3Biv 0.89 2.25 3.015 (3) 144

Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x+1, y−1/2, −z+2; (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+2; (v) −x, y−1/2, −z+2; (vi) −x, y−1/2, −z+1; (vii) x, y,

References

Related documents

The percentage of dis- ambiguation terms found in the query document is used to boost in the initial jwSim value, in addi- tion to an acronym check (whether the NE textual mention

policies, and other worker rights. In the context of pay inequality, we will focus only on the pay component of collective bargaining, although the other components may also

Cop- ing strategies included limiting the length of phrases to something small, not using the entire training data set, computing phrases probabilities on disk, and fil- tering

L’ analyse en composantes principales cherche à représenter dans un espace de dimension faible (deux ou trois axes) un nuage de points représentant les n individus ou

Cartogram by the number of full-time employees in agriculture per unit of land area in the United States, 2012. The number of full-time equivalent agricultural employees in

If the national status is at extremes, the society stays in the same equilibrium: when the status is very high ( very low ) , all individuals always identify with the nation (

Figure 2: Distribution of responses of employed persons to the survey question “During the past 30 days, for about how many days did you find yourself unintentionally falling

maximin allocation, which maximizes the rank of the least preferred item received by..