Tris(3 nitro­phenyl)­phosphine oxide

Download (0)

Full text

(1)

organic papers

o1646

Gregory Jean-NoeÈlet al. C18H12N3O7P DOI: 10.1107/S1600536804020732 Acta Cryst.(2004). E60, o1646±o1647 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Tris(3-nitrophenyl)phosphine oxide

Gregory Jean-NoeÈl,aFrank R.

Fronczekband Ralph Isovitscha*

aXavier University of Louisiana, Department of

Chemistry, 1 Drexel Drive, New Orleans, LA 70125, USA, andbDepartment of Chemistry,

Louisiana State University, Baton Rouge, LA 70803-1804, USA

Correspondence e-mail: risovits@xula.edu

Key indicators Single-crystal X-ray study

T= 105 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.044

wRfactor = 0.087 Data-to-parameter ratio = 8.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C18H15N3O7P, has a P O bond length of 1.486 (2) AÊ. The PÐC bond lengths range from 1.806 (4) to 1.812 (3) AÊ, and the CÐN bond distances are in the range 1.471 (4)±1.479 (5) AÊ.

Comment

Arylphosphines with highly polar functional groups are the most frequently used as ligands in aqueous transition metal catalysis (Dressicket al., 2000; Stelzer, 1998). While preparing potentially water-soluble nitrogen heterocycle derivatized arylphosphines (Hessleret al., 1997), we have obtained tris(3-nitrophenyl)phosphine oxide, (I).

The molecular structure of (I) is shown in Fig. 1 and selected bond distances and angles are given in Table 1. The latter correspond well with those of related compounds, such as tris(3-chlorophenyl)phosphine oxide (Shawkataly et al., 1997) and triphenylphosphine oxide (Baures & Silverton, 1990; Thomas & Hamor, 1993). The torsion angles in Table 1 indicate that the benzene rings are twisted by different amounts away from conformations having the nitro groups eclipsed with P O. Furthermore, while nitro groups N2 and N3 are essentially coplanar with the attached benzene rings, nitro group N1 is twisted slightly [7.5 (5)] out of its benzene

plane.

Experimental

Melting points were determined in open capillaries and are uncor-rected. 1H and13C NMR spectra were acquired in DMSO-d

6on a

Varian Unity Inova 400 MHz spectrometer with TMS as the internal standard.31P NMR spectra were acquired in DMSO-d

6on a Bruker

DPX-250 MHz spectrometer with 85% H3PO4as the internal

refer-ence. The title compound was prepared using standard aromatic nitration procedures (Furniss et al., 1998). Triphenylphosphine (6.10 g, 23.26 mmol) was added to 36 ml of cold concentrated H2SO4.

12 ml of cold concentrated H2SO4was slowly added to 12 ml of cold

concentrated HNO3. This mixture was added to the cold

triphenyl-phosphine±H2SO4mixture dropwise with stirring. During the

addi-tion, the reaction mixture turned a dark rust color. When the addition was complete, the reaction mixture was warmed to room temperature and then stirred for 2 h. The crude product was precipitated by

(2)

pouring the reaction mixture over an excess of ice and water, ®ltering and washing with excess water. Soxhlet extraction of the crude product with chloroform resulted in 7.75 g (81%) of (I) as a light-yellow powder. X-Ray quality crystals were grown by slow evaporation of a saturated solution of (I) in chloroform (m.p. 511± 513 K).1H NMR (DMSO-d

6): 8.53 (m, 2H), 8.20 (m, 1H), 7.90 p.p.m.

(m, 1H); 13C NMR (DMSO-d

6): 138.50 (d,JCP= 10.7 Hz), 133.89,

132.85, 131.86 (d, JCP = 12.3 Hz), 128.43, 126.98 p.p.m. (d, JCP =

11.4 Hz); 31P NMR (DMSO-d

6): 23.96 p.p.m.; IR (KBr disk): 3010,

1606, 1522, 1347, 881 cmÿ1; FAB±MS:m/z413.90 (M+).

Crystal data

C18H12N3O7P Mr= 413.28

Orthorhombic,Pca21 a= 19.1402 (9) AÊ b= 5.4608 (2) AÊ c= 16.8888 (7) AÊ V= 1765.23 (13) AÊ3 Z= 4

Dx= 1.555 Mg mÿ3

MoKradiation Cell parameters from 2409

re¯ections

= 2.5±28.3

= 0.21 mmÿ1 T= 105 K Needle, colorless 0.450.050.05 mm

Data collection

KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

!scans withoffsets

Absorption correction: multi-scan (HKL SCALEPACK; Otwi-nowski & Minor, 1997) Tmin= 0.896,Tmax= 0.990

12164 measured re¯ections 2233 independent re¯ections 1731 re¯ections withI> 2(I) Rint= 0.063

max= 28.3 h=ÿ25!25 k=ÿ7!7 l=ÿ22!22

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.044 wR(F2) = 0.087 S= 1.04 2233 re¯ections 263 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0336P)2

+ 0.4389P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.29 e AÊÿ3 min=ÿ0.41 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0052 (11)

Table 1

Selected geometric parameters (AÊ,).

P1ÐO1 1.486 (2)

P1ÐC1 1.812 (3)

P1ÐC7 1.810 (4)

P1ÐC13 1.806 (4)

N1ÐC3 1.471 (5)

N2ÐC9 1.479 (5)

N3ÐC15 1.471 (4)

O1ÐP1ÐC13 113.76 (18)

O1ÐP1ÐC7 112.17 (17)

C13ÐP1ÐC7 107.80 (16)

O1ÐP1ÐC1 111.87 (14)

C13ÐP1ÐC1 106.27 (18)

C7ÐP1ÐC1 104.36 (18)

O1ÐP1ÐC1ÐC2 ÿ41.1 (4)

O2ÐN1ÐC3ÐC2 7.5 (5)

O1ÐP1ÐC7ÐC8 145.7 (3)

O4ÐN2ÐC9ÐC8 ÿ1.1 (5)

O1ÐP1ÐC13ÐC14 130.8 (3) O6ÐN3ÐC15ÐC14 ÿ0.6 (5)

The Flack (1983) parameter re®ned to a value of 0.48(13), thus the crystal was assumed to be an inversion twin, and Friedel pairs were averaged for the ®nal re®nement. H atoms attached to C atoms were placed in idealized positions, with bond distances of 0.95 AÊ and displacement parameters assigned asUiso(H) = 1.2Ueq(C).

Data collection:COLLECT(Nonius, 2000); cell re®nement:HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction:HKL SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure:SIR97 (Altomare et al., 1999); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEP-3 for Windows(Farrugia, 1997); soft-ware used to prepare material for publication:SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF (1999±2000)-ENH-TR-13, administered by the Louisiana Board of Regents. This research was funded by the Xavier University Center for Undergraduate Research.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999).J. Appl. Cryst.32, 115±119.

Baures, P. W. & Silverton, J. V. (1990).Acta Cryst.C46, 715±717.

Dressick, W. J., George, C., Brandow, S. L., Schull, T. L. & Knight, D. A. (2000). J. Org. Chem.65, 5059±5062.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Flack, H. D. (1983).Acta Cryst. A39, 876±881.

Furniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1998). Vogel's Textbook of Practical Organic Chemistry, 5th ed., pp. 854±855. New York: John Wiley and Sons.

Hessler, A., Stelzer, O., Dibowski, H., Worm, K. & Schmidtchen, F. P. (1997).J. Org. Chem.62, 2362±2369.

Nonius (2000).COLLECT.Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307±326. New York: Academic Press.

Shawkataly, O. B., Ramalingam, K., Selvakumar, S., Fun, H.-K. & Ibrahim, A. R. (1997).Acta Cryst.C53, 1451±1452.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Stelzer, O. (1998). InAqueous-Phase Organometallic Catalysis: Concepts and

Applications, edited by B. Cornils and W. A. Herman, ch. 3. Weinheim: Wiley-VCH.

Thomas, J. A. & Hamor, T. A. (1993).Acta Cryst.C49, 355±357.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, o1646–o1647

supporting information

Acta Cryst. (2004). E60, o1646–o1647 [https://doi.org/10.1107/S1600536804020732]

Tris(3-nitrophenyl)phosphine oxide

Gregory Jean-No

ë

l, Frank R. Fronczek and Ralph Isovitsch

tris(3-nitrophenyl)phosphine oxide

Crystal data C18H12N3O7P Mr = 413.28

Orthorhombic, Pca21 Hall symbol: P 2c -2ac a = 19.1402 (9) Å b = 5.4608 (2) Å c = 16.8888 (7) Å V = 1765.23 (13) Å3 Z = 4

F(000) = 848 Dx = 1.555 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2409 reflections θ = 2.5–28.3°

µ = 0.21 mm−1 T = 105 K Needle, colorless 0.45 × 0.05 × 0.05 mm

Data collection

KappaCCD (with an Oxford Cryosystems Cryostream cooler)

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans with κ offsets

Absorption correction: multi-scan

(HKL SCALEPACK; Otwinowski & Minor, 1997)

Tmin = 0.896, Tmax = 0.990 12164 measured reflections 2233 independent reflections 1731 reflections with I > 2σ(I) Rint = 0.063

θmax = 28.3°, θmin = 3.2° h = −25→25

k = −7→7 l = −22→22

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.044 wR(F2) = 0.087 S = 1.04 2233 reflections 263 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0336P)2 + 0.4389P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.29 e Å−3 Δρmin = −0.41 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

P1 0.79288 (4) 0.73595 (15) 0.61513 (7) 0.0136 (2) O1 0.79709 (12) 1.0072 (4) 0.60987 (19) 0.0189 (5) O2 0.55803 (14) 1.0206 (5) 0.74225 (17) 0.0274 (7) O3 0.47919 (12) 0.7426 (5) 0.72288 (18) 0.0269 (6) O4 0.74673 (15) 0.0293 (5) 0.82389 (18) 0.0261 (6) O5 0.81876 (15) 0.0729 (5) 0.92162 (17) 0.0285 (7) O6 0.97054 (14) 0.0028 (5) 0.56494 (18) 0.0265 (6) O7 0.98516 (16) −0.0385 (5) 0.4384 (2) 0.0343 (7) N1 0.53813 (15) 0.8245 (5) 0.7136 (2) 0.0205 (7) N2 0.79523 (17) 0.1349 (5) 0.8572 (2) 0.0206 (7) N3 0.95912 (15) 0.0642 (5) 0.4957 (2) 0.0198 (7) C1 0.70323 (16) 0.6291 (6) 0.6153 (3) 0.0143 (6) C2 0.65604 (17) 0.7648 (7) 0.6604 (2) 0.0155 (7)

H2 0.6706 0.9084 0.6876 0.019*

C3 0.58770 (18) 0.6854 (6) 0.6645 (2) 0.0153 (8) C4 0.56390 (17) 0.4785 (6) 0.6246 (3) 0.0189 (8)

H4 0.5165 0.4282 0.6285 0.023*

C5 0.61127 (18) 0.3479 (6) 0.5791 (2) 0.0180 (8)

H5 0.5961 0.2073 0.5508 0.022*

C6 0.68047 (18) 0.4200 (6) 0.5743 (2) 0.0156 (7)

H6 0.7126 0.3281 0.5434 0.019*

C7 0.82896 (18) 0.6206 (6) 0.7069 (2) 0.0143 (8) C8 0.80087 (18) 0.4157 (6) 0.7441 (2) 0.0146 (7)

H8 0.7647 0.3238 0.7197 0.017*

C9 0.82680 (18) 0.3490 (6) 0.8172 (2) 0.0164 (8) C10 0.88027 (19) 0.4751 (7) 0.8542 (2) 0.0201 (8)

H10 0.8978 0.4226 0.9040 0.024*

C11 0.9077 (2) 0.6798 (7) 0.8169 (3) 0.0245 (9)

H11 0.9440 0.7709 0.8416 0.029*

C12 0.88212 (17) 0.7513 (6) 0.7436 (2) 0.0174 (8)

H12 0.9012 0.8915 0.7182 0.021*

C13 0.83592 (18) 0.5791 (6) 0.5346 (2) 0.0152 (8) C14 0.88292 (17) 0.3876 (6) 0.5477 (2) 0.0145 (8)

H14 0.8945 0.3372 0.5999 0.017*

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, o1646–o1647

C16 0.89710 (19) 0.3411 (7) 0.4054 (2) 0.0217 (9)

H16 0.9178 0.2577 0.3620 0.026*

C17 0.8509 (2) 0.5346 (7) 0.3930 (3) 0.0232 (9)

H17 0.8399 0.5852 0.3406 0.028*

C18 0.82085 (19) 0.6532 (7) 0.4573 (2) 0.0192 (8)

H18 0.7898 0.7860 0.4486 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23 P1 0.0124 (3) 0.0137 (4) 0.0148 (4) −0.0005 (3) 0.0008 (4) 0.0001 (4) O1 0.0191 (11) 0.0133 (10) 0.0243 (14) −0.0028 (10) 0.0004 (12) 0.0002 (14) O2 0.0262 (15) 0.0293 (15) 0.0267 (17) −0.0008 (12) 0.0032 (13) −0.0121 (14) O3 0.0160 (13) 0.0282 (14) 0.0366 (18) −0.0004 (11) 0.0069 (13) 0.0003 (14) O4 0.0289 (15) 0.0279 (13) 0.0215 (15) −0.0118 (13) −0.0005 (13) 0.0035 (14) O5 0.0409 (17) 0.0290 (15) 0.0156 (16) −0.0025 (12) −0.0029 (13) 0.0052 (13) O6 0.0308 (15) 0.0269 (14) 0.0217 (15) 0.0098 (12) −0.0027 (14) 0.0009 (14) O7 0.0391 (17) 0.0316 (16) 0.0323 (18) 0.0147 (13) 0.0143 (15) −0.0056 (14) N1 0.0175 (16) 0.0234 (17) 0.0205 (18) 0.0017 (13) 0.0028 (15) 0.0018 (14) N2 0.0261 (17) 0.0216 (16) 0.0142 (18) 0.0006 (14) 0.0064 (16) −0.0003 (14) N3 0.0162 (15) 0.0181 (15) 0.025 (2) 0.0005 (12) 0.0027 (15) 0.0006 (15) C1 0.0110 (14) 0.0167 (14) 0.0153 (17) 0.0016 (13) −0.0003 (17) 0.0044 (18) C2 0.0169 (16) 0.0172 (16) 0.0124 (19) 0.0011 (15) −0.0030 (15) −0.0009 (16) C3 0.0163 (17) 0.0164 (18) 0.0133 (19) 0.0042 (13) 0.0009 (16) 0.0009 (15) C4 0.0118 (16) 0.0212 (17) 0.024 (2) −0.0012 (13) −0.0009 (17) 0.0062 (18) C5 0.0191 (18) 0.0155 (16) 0.020 (2) −0.0017 (14) −0.0050 (17) 0.0006 (16) C6 0.0198 (17) 0.0119 (16) 0.0151 (19) 0.0034 (14) 0.0038 (17) −0.0005 (15) C7 0.0122 (16) 0.0177 (18) 0.013 (2) 0.0037 (13) −0.0002 (15) −0.0031 (16) C8 0.0138 (16) 0.0164 (17) 0.0135 (19) −0.0016 (14) 0.0022 (16) −0.0040 (15) C9 0.0168 (18) 0.0181 (17) 0.014 (2) 0.0019 (14) 0.0041 (16) 0.0006 (16) C10 0.0194 (18) 0.028 (2) 0.0131 (19) 0.0008 (16) −0.0026 (17) −0.0016 (17) C11 0.024 (2) 0.027 (2) 0.023 (2) −0.0054 (15) −0.0059 (19) −0.0044 (17) C12 0.0149 (16) 0.0165 (17) 0.021 (2) −0.0033 (15) 0.0040 (16) −0.0025 (17) C13 0.0121 (17) 0.0174 (18) 0.016 (2) −0.0043 (14) −0.0011 (16) 0.0016 (16) C14 0.0130 (16) 0.0140 (17) 0.017 (2) −0.0006 (14) 0.0012 (15) 0.0041 (14) C15 0.0129 (15) 0.0157 (16) 0.018 (2) 0.0000 (14) 0.0010 (15) 0.0014 (16) C16 0.020 (2) 0.0267 (19) 0.018 (2) 0.0015 (15) 0.0049 (17) −0.0044 (17) C17 0.023 (2) 0.031 (2) 0.016 (2) −0.0013 (17) 0.0004 (17) 0.0050 (18) C18 0.0188 (18) 0.0214 (19) 0.017 (2) 0.0036 (16) 0.0000 (16) 0.0033 (17)

Geometric parameters (Å, º)

P1—O1 1.486 (2) C6—H6 0.9500

P1—C1 1.812 (3) C7—C12 1.389 (5)

P1—C7 1.810 (4) C7—C8 1.391 (5)

P1—C13 1.806 (4) C8—C9 1.380 (5)

O2—N1 1.235 (4) C8—H8 0.9500

(6)

O4—N2 1.229 (4) C10—C11 1.386 (6)

O5—N2 1.225 (4) C10—H10 0.9500

O6—N3 1.236 (4) C11—C12 1.388 (6)

O7—N3 1.225 (4) C11—H11 0.9500

N1—C3 1.471 (5) C12—H12 0.9500

N2—C9 1.479 (5) C13—C14 1.397 (5)

N3—C15 1.471 (4) C13—C18 1.398 (5)

C1—C2 1.395 (5) C14—C15 1.383 (5)

C1—C6 1.404 (5) C14—H14 0.9500

C2—C3 1.380 (5) C15—C16 1.384 (6)

C2—H2 0.9500 C16—C17 1.394 (5)

C3—C4 1.392 (5) C16—H16 0.9500

C4—C5 1.387 (5) C17—C18 1.388 (6)

C4—H4 0.9500 C17—H17 0.9500

C5—C6 1.384 (5) C18—H18 0.9500

C5—H5 0.9500

O1—P1—C13 113.76 (18) C8—C7—P1 121.3 (3)

O1—P1—C7 112.17 (17) C9—C8—C7 118.5 (3)

C13—P1—C7 107.80 (16) C9—C8—H8 120.7

O1—P1—C1 111.87 (14) C7—C8—H8 120.7

C13—P1—C1 106.27 (18) C8—C9—C10 122.6 (3)

C7—P1—C1 104.36 (18) C8—C9—N2 118.1 (3)

O3—N1—O2 123.5 (3) C10—C9—N2 119.4 (3)

O3—N1—C3 118.5 (3) C9—C10—C11 118.6 (4)

O2—N1—C3 118.0 (3) C9—C10—H10 120.7

O5—N2—O4 123.7 (3) C11—C10—H10 120.7

O5—N2—C9 118.3 (3) C10—C11—C12 119.8 (4)

O4—N2—C9 118.1 (3) C10—C11—H11 120.1

O7—N3—O6 123.5 (3) C12—C11—H11 120.1

O7—N3—C15 119.0 (3) C11—C12—C7 120.8 (4)

O6—N3—C15 117.5 (3) C11—C12—H12 119.6

C2—C1—C6 120.0 (3) C7—C12—H12 119.6

C2—C1—P1 116.3 (3) C14—C13—C18 119.8 (3)

C6—C1—P1 123.7 (3) C14—C13—P1 122.0 (3)

C3—C2—C1 118.3 (3) C18—C13—P1 118.2 (3)

C3—C2—H2 120.8 C15—C14—C13 118.1 (3)

C1—C2—H2 120.8 C15—C14—H14 120.9

C2—C3—C4 122.7 (3) C13—C14—H14 120.9

C2—C3—N1 118.5 (3) C14—C15—C16 123.0 (3)

C4—C3—N1 118.7 (3) C14—C15—N3 118.5 (3)

C5—C4—C3 118.2 (3) C16—C15—N3 118.5 (3)

C5—C4—H4 120.9 C15—C16—C17 118.4 (4)

C3—C4—H4 120.9 C15—C16—H16 120.8

C6—C5—C4 120.8 (3) C17—C16—H16 120.8

C6—C5—H5 119.6 C18—C17—C16 119.9 (4)

C4—C5—H5 119.6 C18—C17—H17 120.1

(7)

supporting information

sup-5

Acta Cryst. (2004). E60, o1646–o1647

C5—C6—H6 120.0 C17—C18—C13 120.7 (3)

C1—C6—H6 120.0 C17—C18—H18 119.6

C12—C7—C8 119.7 (4) C13—C18—H18 119.6

C12—C7—P1 118.9 (3)

Figure

Updating...

References