• No results found

2 (Biphen­yl 4 yl) 3 (4 meth­oxy­phen­yl) 1,3 thia­zolidin 4 one

N/A
N/A
Protected

Academic year: 2020

Share "2 (Biphen­yl 4 yl) 3 (4 meth­oxy­phen­yl) 1,3 thia­zolidin 4 one"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o2315–o2317 doi:10.1107/S1600536805019732 Mahendraet al. C

22H19NO2S

o2315

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(Biphenyl-4-yl)-3-(4-methoxyphenyl)-1,3-thiazolidin-4-one

M Mahendra,aK. Jayalakshmi,b Basappa,bK. S. Rangappa,b M. A. Sridharaand

J. Shashidhara Prasada*

aDepartment of Studies in Physics,

Mansagangotri, University of Mysore, Mysore 570 006, India, andbDepartment of Studies in

Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India

Correspondence e-mail: mas@physics.uni-mysore.ac.in

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.045 wRfactor = 0.110

Data-to-parameter ratio = 23.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title molecule, C22H19NO2S, the thiazolidinone ring

exhibits a flattened envelope conformation. The methoxy-phenyl and bimethoxy-phenyl substituents are in pseudo-equatorial and pseudo-axial orientations, respectively, with respect to the thiazolidinone ring.

Comment

The thiazolidin-4-one ring system exists in a number of biologically active compounds which exhibit anticonvulsant (Ragab et al., 1997), hypnotic (Chaudhary et al., 1975), anti-inflammatory (Vigorita et al., 2001), antiproteolytic (Chaud-hari et al., 1976) and antituberculous (Babaogluet al., 2003) properties. The usual conformations of the thiazolidin-4-one ring are envelope or half-chair (Diurno et al., 1992). The structural and conformational features of thiazolidin-4-one derivatives are essential in the study of their structure–activity relationships. As part of our continuing research in the synthesis of nitrogen-containing biologically active hetero-cyclic compounds (Ravikumar et al., 2003; Basappa et al., 2003), the title compound, (I) (Fig. 1), has been synthesized and we present its crystal structure here.

The thiazolidinone ring in (I) exhibits a flattened envelope conformation, where atom S14 is displaced by 0.3918 (8) A˚ from the mean plane of atoms C15/C16/N18/C13. This conformation may be caused by the different steric hindrance of the substituents attached to atoms N18 and C13. These substituents, viz. methoxyphenyl and biphenyl, respectively, show pseudo-equatorial and pseudo-axial orientations, respectively, with respect to the thiazolidinone ring. Most of

(2)

the bond lengths and angles (Table 1) have normal values. The crystal packing (Fig. 2) is stabilized by van der Waals forces.

A detailed study of the biological activity of (I) is under-way.

Experimental

4-Methoxyaniline (5 g, 1 mol), 4-biphenylcarboxaldehyde (7.39 g, 1.0 mol) and anhydrous-ferrite (12.96 g, 2 mol) were refluxed with constant stirring in dry benzene for 30 min, after which thioglycolic acid (2.82 ml, 1 mol) was added to the reaction mixture. Reflux and

stirring were continued for another 3 h. The reaction was monitored by thin-layer chromatography (RF= 0.56). After completion of the

reaction, a red–brown amorphous solid, Fe2O32H2O/FeO(OH), was

removed by filtration. The filtrate was concentrated to dryness under reduced pressure. The product was confirmed by spectroscopic characterization (yield 78, m.p. 415–417 K). Anaylsis calculated:

C 73.10, H 5.29, N 3.87, S 8.87%; found: C 73.17, H 5.22, N 3.89, S 8.86%. 1 g of (I) was taken up in 15 ml of methanol. Charcoal (1 g) was added and the solution was heated for 2 to 3 min. The hot solution was filtered through a Whatmann 42 filter paper. The solu-tion was kept in a slightly opened conical flask. Crystals were obtained after a few days.

Crystal data

C22H19NO2S

Mr= 361.44

Orthorhombic,Pbc21

a= 6.287 (5) A˚

b= 13.248 (9) A˚

c= 22.250 (9) A˚

V= 1853.2 (2) A˚3

Z= 4

Dx= 1.295 Mg m 3

MoKradiation Cell parameters from 5948

reflections = 2.4–32.5

= 0.19 mm1

T= 293 (2) K Block, pale yellow 0.350.20.2 mm

Data collection

DIPLabo 32001 diffractometer !scans

5948 measured reflections 5640 independent reflections 4167 reflections withI> 2(I)

Rint= 0.016 max= 32.5

h=9!9

k=19!19

l=27!27

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.045

wR(F2) = 0.110

S= 1.09 5640 reflections 237 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0375P)2

+ 0.2616P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.19 e A˚

3

min=0.22 e A˚

3

Extinction correction:SHELXL97

Extinction coefficient: 0.0111 (13) Absolute structure: Flack (1983),

with 2218 Friedel pairs Flack parameter: 0.40 (8)

Table 1

Selected geometric parameters (A˚ ,).

S14—C13 1.8261 (19) S14—C15 1.778 (3) O17—C16 1.222 (2) O25—C22 1.367 (3)

O25—C26 1.413 (4) N18—C13 1.465 (2) N18—C16 1.355 (2) N18—C19 1.442 (2)

C13—S14—C15 92.75 (10) C22—O25—C26 118.21 (19) C13—N18—C16 117.21 (15) C13—N18—C19 119.77 (14) C16—N18—C19 120.82 (15) S14—C13—N18 105.11 (12) S14—C13—C10 109.94 (14) N18—C13—C10 114.27 (14)

S14—C15—C16 108.15 (15) O17—C16—N18 124.48 (17) O17—C16—C15 123.18 (18) N18—C16—C15 112.33 (17) N18—C19—C20 119.71 (16) N18—C19—C24 120.52 (16) O25—C22—C21 115.40 (18) O25—C22—C23 124.62 (19)

The H atoms were placed at idealized positions and allowed to ride at the parent C atoms, with C—H = 0.96 A˚ andUiso(H) = 1.2Ueq(C).

The value of the Flack parameter (Flack, 1983) indicates an inversion twin.Pbc21is a unconventional setting ofPca21. Since the

transfor-mation to the conventional setting did not yield a better solution, Pbc21 was retained.

organic papers

o2316

Mahendraet al. C

[image:2.610.44.300.68.267.2] [image:2.610.67.271.304.577.2]

22H19NO2S Acta Cryst.(2005). E61, o2315–o2317

Figure 1

View of (I), with 50% probability displacement ellipsoids.

Figure 2

(3)

Data collection: XPRESS (MacScience, 2002); cell refinement:

SCALEPACK (Otwinowski & Minor, 1997); data reduction:

DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:PLATON(Spek, 2003); software used to prepare material for publication:SHELXL97.

We thank the DST, Government of India, for financial assistance under project No. SP/I2/FOO/93. MM thanks the CSIR, Government of India, for the award of a Senior Research Fellowship.

References

Babaoglu, K., Page, M. A., Jones, V. C., McNeil, M. R., Dong, C., Naismith, J. H. & Lee, R. E. (2003).Bioorg. Med. Chem. Lett.13, 3227–3230.

Basappa, Sadashiva, M. P., Mantelingu, K., Swamy, N. S. & Rangappa, K. S. (2003).Bioorg. Med. Chem.11, 4539–4544.

Chaudhari, A., Kumar, S., Singh, S. P., Parmar, S. S. & Stenberg, V. I. (1976).J. Pharm. Sci.65, 758–761.

Chaudhary, S. K., Verma, M., Chaturvedi, A. K. & Parmar, S. S. (1975).J. Pharm. Sci.64, 615–617.

Diurno, M., Mazzoni, O., Piscopo, E., Calignano, A., Giordano, F. & Bolognese, A. (1992).J. Med. Chem.35, 2910–2912.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

MacScience (2002).XPRESS. MacScience Co. Ltd, Yokohama, Japan. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Ragab, F. A., Eid, N. M. & El-Tawab, H. A. (1997).Pharmazie,52, 926–929. Ravikumar, K. R., Mallesh, H., Basappa & Rangappa, K. S. (2003).Eur. J.

Med. Chem.38, 613–619.

Vigorita, M. G., Ottana, R., Monforte, F., Maccari, R., Trovato, A., Monforte, M. T. & Toviano, M. F. (2001).Bioorg. Med. Chem. Lett.11, 2791–2794. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

organic papers

Acta Cryst.(2005). E61, o2315–o2317 Mahendraet al. C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o2315–o2317

supporting information

Acta Cryst. (2005). E61, o2315–o2317 [https://doi.org/10.1107/S1600536805019732]

2-(Biphenyl-4-yl)-3-(4-methoxyphenyl)-1,3-thiazolidin-4-one

M Mahendra, K. Jayalakshmi, Basappa, K. S. Rangappa, M. A. Sridhar and J. Shashidhara Prasad

2-(Biphenyl-4-yl)-3-(4-methoxyphenyl)-1,3-thiazolidin-4-one

Crystal data

C22H19NO2S

Mr = 361.44

Orthorhombic, Pbc21 Hall symbol: P 2c -2b

a = 6.2870 (5) Å

b = 13.2480 (9) Å

c = 22.2500 (9) Å

V = 1853.2 (2) Å3

Z = 4

F(000) = 760

Dx = 1.295 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5948 reflections

θ = 2.4–32.5°

µ = 0.19 mm−1

T = 293 K

Block, pale yellow 0.35 × 0.2 × 0.2 mm

Data collection

DIPLabo 32001 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 10.0 pixels mm-1 IP scans

5948 measured reflections

5640 independent reflections 4167 reflections with I > 2σ(I)

Rint = 0.016

θmax = 32.5°, θmin = 3.2°

h = −9→9

k = −19→19

l = −27→27

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.045

wR(F2) = 0.110

S = 1.09 5640 reflections 237 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0375P)2 + 0.2616P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.19 e Å−3 Δρmin = −0.22 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0111 (13)

Absolute structure: Flack (1983), 2218 Friedel pairs

Absolute structure parameter: 0.40 (8)

Special details

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o2315–o2317

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S14 0.47430 (12) 0.84944 (4) 0.06480 (4) 0.0789 (2)

O17 0.0947 (2) 0.75915 (12) 0.18922 (8) 0.0709 (6)

O25 0.4577 (3) 0.36236 (13) 0.28651 (10) 0.0860 (7)

N18 0.3991 (2) 0.70609 (11) 0.14324 (7) 0.0513 (5)

C1 1.1412 (5) 0.3062 (2) −0.08604 (14) 0.0916 (11)

C2 1.0788 (4) 0.30694 (19) −0.14545 (12) 0.0767 (9)

C3 0.9339 (4) 0.37670 (18) −0.16394 (12) 0.0725 (8)

C4 0.8498 (4) 0.44579 (16) −0.12432 (9) 0.0626 (7)

C5 0.9093 (3) 0.44590 (14) −0.06383 (9) 0.0541 (6)

C6 1.0576 (4) 0.3749 (2) −0.04596 (12) 0.0821 (9)

C7 0.8203 (3) 0.52020 (13) −0.02102 (9) 0.0504 (5)

C8 0.6089 (3) 0.55222 (14) −0.02406 (9) 0.0551 (6)

C9 0.5297 (3) 0.62208 (15) 0.01663 (10) 0.0557 (6)

C10 0.6571 (3) 0.66175 (12) 0.06182 (10) 0.0511 (5)

C11 0.8650 (3) 0.63026 (14) 0.06461 (11) 0.0601 (6)

C12 0.9455 (3) 0.56024 (16) 0.02415 (10) 0.0597 (6)

C13 0.5765 (3) 0.74020 (13) 0.10568 (9) 0.0554 (6)

C15 0.2631 (4) 0.86795 (15) 0.11680 (11) 0.0711 (8)

C16 0.2412 (3) 0.77328 (13) 0.15415 (9) 0.0561 (6)

C19 0.4225 (3) 0.61685 (12) 0.17974 (8) 0.0472 (5)

C20 0.2706 (3) 0.54170 (14) 0.17699 (9) 0.0566 (6)

C21 0.2869 (3) 0.45739 (15) 0.21370 (10) 0.0616 (7)

C22 0.4570 (3) 0.44766 (14) 0.25192 (9) 0.0587 (6)

C23 0.6111 (4) 0.52147 (16) 0.25374 (10) 0.0644 (7)

C24 0.5933 (3) 0.60657 (15) 0.21775 (10) 0.0587 (6)

C26 0.6373 (5) 0.3434 (2) 0.32296 (14) 0.0990 (11)

H1 1.24100 0.25650 −0.07220 0.1100*

H2 1.13210 0.25670 −0.17270 0.0920*

H3 0.88860 0.37780 −0.20510 0.0870*

H4 0.75140 0.49470 −0.13980 0.0750*

H6 1.11050 0.37740 −0.00550 0.0990*

H8 0.51800 0.52410 −0.05440 0.0660*

H9 0.38430 0.64300 0.01220 0.0670*

H11 0.95900 0.65640 0.09490 0.0720*

H12 1.09110 0.53970 0.02850 0.0720*

H16A 0.13260 0.88280 0.09620 0.0850*

H16B 0.29920 0.92320 0.14280 0.0850*

H17 0.69580 0.75760 0.13060 0.0670*

H19 0.15580 0.54630 0.14870 0.0680*

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o2315–o2317

H22 0.73370 0.51250 0.27890 0.0770*

H23 0.69930 0.65860 0.21970 0.0700*

H25A 0.60730 0.28160 0.34380 0.1190*

H25B 0.66380 0.39610 0.35160 0.1190*

H25C 0.76050 0.33450 0.29800 0.1190*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S14 0.1188 (5) 0.0443 (2) 0.0737 (3) 0.0094 (3) 0.0027 (4) 0.0155 (2)

O17 0.0682 (9) 0.0671 (9) 0.0773 (11) 0.0151 (7) 0.0001 (8) −0.0061 (8)

O25 0.0953 (12) 0.0628 (9) 0.0998 (14) 0.0157 (8) 0.0109 (10) 0.0366 (9)

N18 0.0607 (9) 0.0398 (7) 0.0534 (9) 0.0053 (6) −0.0037 (7) 0.0043 (6)

C1 0.103 (2) 0.0875 (18) 0.0843 (18) 0.0421 (16) 0.0040 (15) 0.0059 (14)

C2 0.0861 (16) 0.0649 (14) 0.0791 (16) 0.0041 (11) 0.0145 (13) −0.0056 (11)

C3 0.0879 (16) 0.0680 (13) 0.0616 (14) −0.0038 (11) −0.0008 (11) −0.0044 (10)

C4 0.0714 (13) 0.0589 (11) 0.0576 (12) 0.0032 (9) −0.0093 (9) 0.0015 (8)

C5 0.0582 (10) 0.0503 (10) 0.0539 (11) −0.0006 (8) −0.0014 (8) 0.0083 (7)

C6 0.0983 (18) 0.0859 (16) 0.0622 (14) 0.0363 (14) −0.0043 (12) 0.0052 (11)

C7 0.0533 (9) 0.0454 (8) 0.0524 (10) −0.0034 (7) −0.0042 (8) 0.0076 (7)

C8 0.0537 (10) 0.0539 (10) 0.0577 (11) −0.0039 (8) −0.0072 (8) 0.0006 (8)

C9 0.0465 (9) 0.0538 (10) 0.0668 (13) −0.0020 (7) −0.0038 (8) 0.0024 (8)

C10 0.0572 (10) 0.0430 (7) 0.0532 (9) −0.0067 (7) −0.0034 (8) 0.0069 (8)

C11 0.0607 (11) 0.0565 (10) 0.0632 (11) −0.0026 (8) −0.0161 (10) 0.0004 (10)

C12 0.0513 (10) 0.0617 (11) 0.0660 (12) 0.0024 (8) −0.0084 (8) 0.0015 (9)

C13 0.0674 (11) 0.0419 (8) 0.0570 (11) −0.0054 (8) −0.0064 (8) 0.0056 (7)

C15 0.0930 (17) 0.0452 (9) 0.0750 (15) 0.0165 (10) −0.0168 (11) −0.0007 (9)

C16 0.0649 (11) 0.0430 (9) 0.0605 (11) 0.0083 (8) −0.0153 (9) −0.0066 (8)

C19 0.0542 (9) 0.0386 (7) 0.0489 (9) 0.0036 (6) −0.0009 (8) 0.0011 (6)

C20 0.0570 (11) 0.0498 (9) 0.0630 (11) −0.0012 (8) −0.0066 (9) 0.0013 (8)

C21 0.0627 (12) 0.0469 (10) 0.0752 (13) −0.0034 (8) 0.0048 (10) 0.0035 (8)

C22 0.0679 (12) 0.0448 (9) 0.0635 (12) 0.0101 (8) 0.0102 (9) 0.0114 (8)

C23 0.0687 (13) 0.0611 (11) 0.0635 (13) 0.0056 (9) −0.0133 (10) 0.0105 (9)

C24 0.0617 (11) 0.0512 (9) 0.0633 (12) −0.0043 (8) −0.0125 (9) 0.0058 (8)

C26 0.113 (2) 0.097 (2) 0.0870 (18) 0.0434 (17) 0.0121 (16) 0.0399 (15)

Geometric parameters (Å, º)

S14—C13 1.8261 (19) C19—C24 1.374 (3)

S14—C15 1.778 (3) C20—C21 1.388 (3)

O17—C16 1.222 (2) C21—C22 1.372 (3)

O25—C22 1.367 (3) C22—C23 1.377 (3)

O25—C26 1.413 (4) C23—C24 1.387 (3)

N18—C13 1.465 (2) C1—H1 0.9602

N18—C16 1.355 (2) C2—H2 0.9607

N18—C19 1.442 (2) C3—H3 0.9592

C1—C2 1.379 (4) C4—H4 0.9598

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o2315–o2317

C2—C3 1.361 (4) C8—H8 0.9597

C3—C4 1.376 (3) C9—H9 0.9603

C4—C5 1.397 (3) C11—H11 0.9609

C5—C6 1.383 (3) C12—H12 0.9599

C5—C7 1.480 (3) C13—H17 0.9608

C7—C8 1.397 (3) C15—H16A 0.9602

C7—C12 1.382 (3) C15—H16B 0.9602

C8—C9 1.387 (3) C20—H19 0.9596

C9—C10 1.389 (3) C21—H20 0.9599

C10—C11 1.373 (3) C23—H22 0.9600

C10—C13 1.513 (3) C24—H23 0.9598

C11—C12 1.388 (3) C26—H25A 0.9596

C15—C16 1.511 (3) C26—H25B 0.9598

C19—C20 1.381 (3) C26—H25C 0.9603

C13—S14—C15 92.75 (10) C2—C1—H1 119.88

C22—O25—C26 118.21 (19) C6—C1—H1 119.63

C13—N18—C16 117.21 (15) C1—C2—H2 120.06

C13—N18—C19 119.77 (14) C3—C2—H2 120.87

C16—N18—C19 120.82 (15) C2—C3—H3 119.84

C2—C1—C6 120.5 (3) C4—C3—H3 119.17

C1—C2—C3 119.0 (2) C3—C4—H4 117.82

C2—C3—C4 121.0 (2) C5—C4—H4 121.17

C3—C4—C5 121.0 (2) C1—C6—H6 119.82

C4—C5—C6 117.2 (2) C5—C6—H6 118.66

C4—C5—C7 121.31 (18) C7—C8—H8 118.87

C6—C5—C7 121.49 (19) C9—C8—H8 120.29

C1—C6—C5 121.3 (2) C8—C9—H9 117.86

C5—C7—C8 122.05 (17) C10—C9—H9 120.94

C5—C7—C12 120.53 (17) C10—C11—H11 120.50

C8—C7—C12 117.42 (17) C12—C11—H11 118.13

C7—C8—C9 120.84 (18) C7—C12—H12 120.50

C8—C9—C10 121.20 (18) C11—C12—H12 118.15

C9—C10—C11 117.82 (18) S14—C13—H17 111.84

C9—C10—C13 122.26 (17) N18—C13—H17 109.82

C11—C10—C13 119.88 (18) C10—C13—H17 106.00

C10—C11—C12 121.4 (2) S14—C15—H16A 110.84

C7—C12—C11 121.35 (18) S14—C15—H16B 108.70

S14—C13—N18 105.11 (12) C16—C15—H16A 110.78

S14—C13—C10 109.94 (14) C16—C15—H16B 108.84

N18—C13—C10 114.27 (14) H16A—C15—H16B 109.48

S14—C15—C16 108.15 (15) C19—C20—H19 120.23

O17—C16—N18 124.48 (17) C21—C20—H19 119.53

O17—C16—C15 123.18 (18) C20—C21—H20 118.80

N18—C16—C15 112.33 (17) C22—C21—H20 121.33

N18—C19—C20 119.71 (16) C22—C23—H22 119.61

N18—C19—C24 120.52 (16) C24—C23—H22 120.13

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, o2315–o2317

C19—C20—C21 120.21 (18) C23—C24—H23 120.10

C20—C21—C22 119.86 (18) O25—C26—H25A 105.78

O25—C22—C21 115.40 (18) O25—C26—H25B 112.99

O25—C22—C23 124.62 (19) O25—C26—H25C 109.54

C21—C22—C23 119.98 (19) H25A—C26—H25B 109.51

C22—C23—C24 120.2 (2) H25A—C26—H25C 109.46

C19—C24—C23 119.93 (18) H25B—C26—H25C 109.47

C13—S14—C15—C16 −15.47 (16) C4—C5—C7—C8 37.2 (3)

C15—S14—C13—C10 142.82 (14) C5—C7—C12—C11 179.79 (19)

C15—S14—C13—N18 19.40 (14) C8—C7—C12—C11 −0.6 (3)

C26—O25—C22—C23 −5.9 (3) C12—C7—C8—C9 0.5 (3)

C26—O25—C22—C21 174.6 (2) C5—C7—C8—C9 −179.92 (19)

C19—N18—C13—C10 56.4 (2) C7—C8—C9—C10 −0.5 (3)

C13—N18—C19—C20 −129.29 (18) C8—C9—C10—C13 178.24 (18)

C13—N18—C19—C24 51.5 (2) C8—C9—C10—C11 0.6 (3)

C19—N18—C16—C15 171.95 (16) C9—C10—C13—S14 −55.9 (2)

C16—N18—C13—C10 −140.33 (17) C11—C10—C13—S14 121.69 (18)

C13—N18—C16—C15 8.8 (2) C11—C10—C13—N18 −120.42 (19)

C16—N18—C19—C20 68.0 (2) C9—C10—C13—N18 62.0 (2)

C13—N18—C16—O17 −172.44 (18) C13—C10—C11—C12 −178.42 (19)

C19—N18—C16—O17 −9.3 (3) C9—C10—C11—C12 −0.7 (3)

C19—N18—C13—S14 176.98 (13) C10—C11—C12—C7 0.7 (3)

C16—N18—C13—S14 −19.72 (19) S14—C15—C16—N18 7.0 (2)

C16—N18—C19—C24 −111.2 (2) S14—C15—C16—O17 −171.74 (17)

C2—C1—C6—C5 0.2 (4) C20—C19—C24—C23 −0.8 (3)

C6—C1—C2—C3 0.2 (4) C24—C19—C20—C21 1.8 (3)

C1—C2—C3—C4 0.0 (4) N18—C19—C20—C21 −177.36 (17)

C2—C3—C4—C5 −0.5 (4) N18—C19—C24—C23 178.38 (18)

C3—C4—C5—C7 179.7 (2) C19—C20—C21—C22 −1.4 (3)

C3—C4—C5—C6 0.9 (3) C20—C21—C22—C23 0.0 (3)

C6—C5—C7—C12 35.6 (3) C20—C21—C22—O25 179.53 (19)

C7—C5—C6—C1 −179.6 (2) C21—C22—C23—C24 1.1 (3)

C4—C5—C7—C12 −143.2 (2) O25—C22—C23—C24 −178.5 (2)

C6—C5—C7—C8 −144.0 (2) C22—C23—C24—C19 −0.6 (3)

Figure

Figure 1View of (I), with 50% probability displacement ellipsoids.

References

Related documents

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) , pages

Yet, the government majority did not get the required quorum (four-fifths of the deputies of the National Assembly) because the opposition boycotted the vote. Therefore,

1) To study the factor influence Credit Risk performance. 2) To determine relationship between bank specific factor and macroeconomic. 3) To find out the most significant correlated

Проблемът е че, според този закон, координацията не е ясна, понеже за разлика от неокласическите модели, където координацията става пряко чрез цените, чрез

This study is set to formalize a complex systems theory approach to the study of international affairs and introduce a new taxonomy for IR with the two-pronged aim of

We introduce a new task called Multimodal Named Entity Disambiguation (MNED), which is applied on short user-generated social media posts that are composed of text and accompanying

An illustration of complete model comprising of embedding layer, word level encoder, attention layer , utterance level encoder with final layer of CRF classification is depicted

This paper proposed a lifelong learning method to enable CRF to leverage the knowledge gained from extraction results of previous domains (unla- beled) to improve its