• No results found

catena Poly[[[aqua­(1,10 phenanthroline)manganese(II)] μ endo norbornene cis 5,6 di­carboxyl­ato] monohydrate]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly[[[aqua­(1,10 phenanthroline)manganese(II)] μ endo norbornene cis 5,6 di­carboxyl­ato] monohydrate]"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1105–m1107 doi:10.1107/S1600536805014017 Hu and Zhu [Mn(C

9H8O4)(C12H8N2)(H2O)]H2O

m1105

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

catena

-Poly[[[aqua(1,10-phenanthroline)-manganese(II)]-

l

-

endo

-norbornene-

cis

-5,6-dicarboxylato] monohydrate]

Mao-Lin Hua* and Nan-Wen Zhub

a

Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People’s Republic of China, and

bSchool of Environmental Science and

Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

Correspondence e-mail: hu403cn@yahoo.com.cn

Key indicators Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.040

wRfactor = 0.099

Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, {[Mn(endc)(phen)(H2O)]H2O}n[phen is 1,10-phenanthroline (C12H8N2) and endc is the endo -norbornene-cis-5,6-dicarboxylate anion (C9H8O4)], each Mn

II

ion is surrounded by two N atoms from a phen ligand, four O atoms from water molecules and two carboxylate groups of two endc anions, with one endc carboxylate group coordi-nating in a monodentate fashion and the other in a chelating fashion, forming a distorted MnO4N2 octahedron. The endc anions act as bridges between MnIIions, resulting in a zigzag chain structure along the [010] axis.

Comment

Carboxylate anions can coordinate to metal ions in versatile binding modes, such as monodentate, chelating bidentate, bridging bidentate and bridging tridentate, generating varied and sometimes surprising molecular architectures (Zhang et al., 1990). Numerous complexes with carboxylate anions have been extensively studied (Hu et al., 2003, 2004; Wang et al., 2003), but only three Mn complexes including endo -norbor-nene-cis-5,6-dicarboxylate anions (endc) have been char-acterized to date (Hartunget al., 1993; Devereuxet al., 1995; Baumeister & Hartung, 1997). Thus, we have selected the Mn– endc–phen system (phen is 1,10-phenanthroline) in order to extend this research and we present here the crystal structure of the title compound, namely [Mn(endc)(phen)(H2O)]H2O, (I).

In the polymeric structure of (I), the Mn centre possesses a distorted octahedral geometry (Fig. 1 and Table 1). The equatorial plane consists of one phen N atom, one carboxylate

(2)

O atom from an endc anion and two carboxylate O atoms from another symmetry-related endc anion, while the two axial sites are occupied by an aqua O atom and the other phen N atom. The equatorial plane N2/O1/O3i/O4i [symmetry code: (i) 1x, y1

2, 1

2z] is seriously distorted, with an r.m.s. deviation of 0.233 A˚ . The interaxial O5—Mn1—N1 angle [160.44 (7)] is also distorted.

The two carboxylate functionalities of each endc anion show different coordination modes: one is chelating bidentate, the other is monodentate. Moreover, each endc anion acts as a bridge to link two adjacent MnII ions, with an Mn Mni separation of 5.6983 (10) A˚ [symmetry code: (i) 1x,y1

2, 1

2z], forming a zigzag chain structure along the [010] axis (Fig. 2).

In the crystal structure, O—H O hydrogen-bond inter-actions strengthen the above-mentioned zigzag chains (Table 2).

Experimental

The title compound was synthesized by the hydrothermal method using a mixture of 1,10-phenanthroline (2 mmol, 0.36 g), MnCl22H2O (1 mmol, 0.16 g),endo-norbornene-cis-5,6-dicarboxylic

acid (1 mmol, 0.18 g) and water (20 ml) in a 30 ml Teflon-lined stainless steel reactor. The solution was heated to 432 K for 4 d. After slow cooling of the reaction system to room temperature, pink block crystals of (I) were collected and washed with distilled water.

Crystal data

[Mn(C9H8O4)(C12H8N2)(H2O)] -H2O

Mr= 451.33 Monoclinic, P21=c

a= 10.941 (3) A˚

b= 9.135 (2) A˚

c= 20.013 (4) A˚ = 103.605 (4) V= 1944.1 (8) A˚3

Z= 4

Dx= 1.542 Mg m

3 MoKradiation Cell parameters from 4067

reflections = 2.5–24.9

= 0.72 mm1

T= 298 (2) K Block, pink

0.270.230.21 mm

Data collection

Bruker APEX CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.829,Tmax= 0.863 9928 measured reflections

3501 independent reflections 3002 reflections withI> 2(I)

Rint= 0.020 max= 25.3

h=13!9

k=9!10

l=24!23

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.040

wR(F2) = 0.099

S= 1.07 3501 reflections 271 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0491P)2 + 0.9627P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.32 e A˚

3

min=0.25 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Mn1—O1 2.0992 (16) Mn1—O5 2.1384 (18) Mn1—O3i 2.2165 (17) Mn1—N2 2.2633 (19)

Mn1—O4i

2.3015 (16) Mn1—N1 2.3045 (19) Mn1—Mn1i 5.6983 (10)

O1—Mn1—O5 86.91 (7) O1—Mn1—O3i

98.63 (6) O5—Mn1—O3i

108.27 (7) O1—Mn1—N2 104.11 (7) O5—Mn1—N2 88.88 (8) O3i

—Mn1—N2 152.23 (7) O1—Mn1—O4i 153.64 (6) O5—Mn1—O4i 89.91 (7) O3i —Mn1—O4i 57.73 (6) N2—Mn1—O4i 101.98 (6) O1—Mn1—N1 103.44 (6) O5—Mn1—N1 160.44 (7) O3i

—Mn1—N1 86.83 (7) N2—Mn1—N1 72.62 (7) O4i

—Mn1—N1 87.83 (6)

Symmetry code: (i) 1x;y1 2;

1 2z.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O5—H5A O2 0.82 1.91 2.666 (2) 152 O5—H5B O3ii

0.82 1.87 2.677 (2) 169 O6—H6A O2 0.82 2.06 2.773 (4) 145

Symmetry code: (ii)x;y1;z.

metal-organic papers

m1106

Hu and Zhu [Mn(C

[image:2.610.47.293.73.290.2]

9H8O4)(C12H8N2)(H2O)]H2O Acta Cryst.(2005). E61, m1105–m1107

Figure 1

The coordination environment of the MnIIion in (I), with the atom

numbering for the asymmetric unit, showing displacement ellipsoids at the 30% probability level. Unlabelled atoms are related by the symmetry operator (1x;y1

[image:2.610.46.295.360.508.2]

2; 1 2z).

Figure 2

(3)

Water H atoms were found in difference maps and regularized using the restraints O—H = 0.820 (1) A˚ and H H = 1.39 (1) A˚ . In the final cycles of refinement, these H atoms were constrained to ride on their parent O atoms, with Uiso(H) = 1.2Ueq(parent atom). H

atoms bonded to C atoms were positioned geometrically and allowed to ride on their parent atoms at distances of Csp2—H = 0.93 A˚ with Uiso(H) = 1.2Ueq(parent atom), Csp

3

—H = 0.97 A˚ withUiso(H) =

1.5Ueq(parent atom) for methylene H, and Csp 3

—H = 0.98 A˚ with Uiso(H) = 1.5Ueq(parent atom) for methine H.

Data collection:SMART(Bruker, 2002); cell refinement:SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication:SHELXL97.

This work was supported by the Wenzhou Technology Project Foundation of China (grant No. S2004A004), the Zhejiang Provincial Natural Science Foundation of China

(grant No. Y404118) and the National Natural Science Foundation of China (grant No. 20471043).

References

Baumeister, U. & Hartung, H. (1997).Acta Cryst.C53, 1246–1248.

Bruker (2002).SADABS (Version 2.03), SAINT (Version 6.02), SMART

(Version 5.62) andSHELXTL(Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Devereux, M., Curran, M., McCann, M., Casey, M. T. & McKee, V. (1995).

Polyhedron,14, 2247–2253.

Hartung, H., Baumeister, U., Kaplonek, R. & Fechtel, G. (1993).Z. Anorg. Allg. Chem.619, 1196–1202.

Hu, M.-L., Xiao, H.-P., Wang, S. & Li, X.-H. (2003).Acta Cryst.C59, m454– m455.

Hu, M.-L., Yuan, J.-X., Xiao, H.-P. & Chen, F. (2004).Acta Cryst.C60, m235– 237.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 (Release 97-2). University of Go¨ttingen, Germany.

Wang, M., Xia, J., Jin, L., Cai, G. & Lu, S. (2003).J. Mol. Struct.655, 443– 449.

Zhang, D. L., Huang, C. H. & Xu, G. X. (1990).Chin. J. Chem . 8, 529– 535.

metal-organic papers

Acta Cryst.(2005). E61, m1105–m1107 Hu and Zhu [Mn(C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1105–m1107

supporting information

Acta Cryst. (2005). E61, m1105–m1107 [https://doi.org/10.1107/S1600536805014017]

catena

-Poly[[[aqua(1,10-phenanthroline)manganese(II)]-

µ

-

endo

-norbornene-cis

-5,6-dicarboxylato] monohydrate]

Mao-Lin Hu and Nan-Wen Zhu

catena-Poly[[[aqua(1,10-phenanthroline)manganese(II)]-µ-endo-norbornene- cis-5,6-dicarboxylato]

monohydrate]

Crystal data

[Mn(C9H8O4)(C12H8N2)(H2O)]·H2O

Mr = 451.33

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 10.941 (3) Å

b = 9.135 (2) Å

c = 20.013 (4) Å

β = 103.605 (4)°

V = 1944.1 (8) Å3

Z = 4

F(000) = 932

Dx = 1.542 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 4067 reflections

θ = 2.5–24.9°

µ = 0.72 mm−1

T = 298 K Block, pink

0.27 × 0.23 × 0.21 mm

Data collection

Bruker APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin = 0.829, Tmax = 0.863

9928 measured reflections 3501 independent reflections 3002 reflections with I > 2σ(I)

Rint = 0.020

θmax = 25.3°, θmin = 1.9°

h = −13→9

k = −9→10

l = −24→23

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.040

wR(F2) = 0.099

S = 1.07 3501 reflections 271 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0491P)2 + 0.9627P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.32 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1105–m1107

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Mn1 0.54328 (3) 0.25324 (4) 0.173606 (17) 0.03121 (13) O1 0.67961 (15) 0.41325 (17) 0.21165 (8) 0.0351 (4) O2 0.79614 (16) 0.32338 (18) 0.30950 (9) 0.0427 (4) O3 0.60661 (16) 0.83219 (17) 0.27767 (8) 0.0368 (4) O4 0.63046 (15) 0.61386 (16) 0.32313 (8) 0.0361 (4) O5 0.65970 (19) 0.10364 (19) 0.24268 (9) 0.0565 (5) H5A 0.7103 0.1486 0.2723 0.068* H5B 0.6354 0.0255 0.2551 0.068* O6 0.9932 (5) 0.1852 (5) 0.4001 (3) 0.236 (3) H6A 0.9576 0.2213 0.3631 0.283* H6B 0.9565 0.1962 0.4310 0.283* N1 0.42814 (18) 0.3548 (2) 0.07296 (9) 0.0336 (4) N2 0.60989 (18) 0.1488 (2) 0.08592 (9) 0.0326 (4) C1 0.9014 (3) 0.7807 (3) 0.33231 (16) 0.0486 (7)

H1 0.8990 0.8878 0.3344 0.058*

C2 0.9013 (3) 0.7027 (3) 0.39818 (15) 0.0520 (7)

H2 0.8748 0.7410 0.4355 0.062*

C3 0.9453 (2) 0.5704 (3) 0.39358 (14) 0.0482 (7)

H3 0.9544 0.4978 0.4269 0.058*

C4 0.9785 (2) 0.5565 (3) 0.32502 (13) 0.0426 (6)

H4 1.0399 0.4802 0.3219 0.051*

C5 0.8544 (2) 0.5534 (2) 0.26790 (12) 0.0338 (5)

H5 0.8801 0.5547 0.2242 0.041*

C6 0.7968 (2) 0.7077 (2) 0.27458 (12) 0.0347 (5)

H6 0.7913 0.7613 0.2315 0.042*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1105–m1107

H12 0.2591 0.4957 −0.0981 0.056* C13 0.3983 (2) 0.3567 (3) −0.05095 (12) 0.0391 (6) C14 0.4386 (3) 0.3027 (3) −0.10956 (13) 0.0492 (7) H14 0.4007 0.3384 −0.1530 0.059* C15 0.5299 (3) 0.2018 (3) −0.10306 (13) 0.0473 (7) H15 0.5539 0.1684 −0.1420 0.057* C16 0.5906 (2) 0.1450 (3) −0.03712 (12) 0.0383 (6) C17 0.6855 (2) 0.0385 (3) −0.02794 (14) 0.0457 (6) H17 0.7119 0.0019 −0.0656 0.055* C18 0.7384 (2) −0.0108 (3) 0.03668 (14) 0.0460 (6) H18 0.8009 −0.0820 0.0437 0.055* C19 0.6976 (2) 0.0470 (3) 0.09217 (13) 0.0409 (6) H19 0.7341 0.0119 0.1359 0.049* C20 0.5559 (2) 0.1972 (2) 0.02186 (11) 0.0324 (5) C21 0.4581 (2) 0.3058 (2) 0.01486 (11) 0.0325 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m1105–m1107

C21 0.0391 (13) 0.0278 (11) 0.0292 (12) −0.0102 (10) 0.0052 (10) 0.0000 (9)

Geometric parameters (Å, º)

Mn1—O1 2.0992 (16) C4—C5 1.556 (3)

Mn1—O5 2.1384 (18) C4—H4 0.9800

Mn1—O3i 2.2165 (17) C5—C8 1.522 (3)

Mn1—N2 2.2633 (19) C5—C6 1.563 (3)

Mn1—O4i 2.3015 (16) C5—H5 0.9800

Mn1—N1 2.3045 (19) C6—C9 1.513 (3)

Mn1—Mn1i 5.6983 (10) C6—H6 0.9800

O1—C8 1.270 (3) C7—H7A 0.9700

O2—C8 1.243 (3) C7—H7B 0.9700

O3—C9 1.274 (3) C10—C11 1.391 (3)

O3—Mn1ii 2.2165 (17) C10—H10 0.9300

O4—C9 1.240 (3) C11—C12 1.361 (4)

O4—Mn1ii 2.3015 (16) C11—H11 0.9300

O5—H5A 0.8200 C12—C13 1.403 (4)

O5—H5B 0.8200 C12—H12 0.9300

O6—H6A 0.8200 C13—C21 1.404 (3)

O6—H6B 0.8200 C13—C14 1.434 (4)

N1—C10 1.323 (3) C14—C15 1.343 (4)

N1—C21 1.356 (3) C14—H14 0.9300

N2—C19 1.322 (3) C15—C16 1.428 (4)

N2—C20 1.354 (3) C15—H15 0.9300

C1—C2 1.499 (4) C16—C17 1.403 (4)

C1—C7 1.538 (4) C16—C20 1.406 (3)

C1—C6 1.571 (3) C17—C18 1.363 (4)

C1—H1 0.9800 C17—H17 0.9300

C2—C3 1.312 (4) C18—C19 1.394 (4)

C2—H2 0.9300 C18—H18 0.9300

C3—C4 1.505 (4) C19—H19 0.9300

C3—H3 0.9300 C20—C21 1.441 (3)

C4—C7 1.542 (4)

O1—Mn1—O5 86.91 (7) C1—C6—H6 108.5 O1—Mn1—O3i 98.63 (6) C1—C7—C4 92.9 (2)

O5—Mn1—O3i 108.27 (7) C1—C7—H7A 113.1

O1—Mn1—N2 104.11 (7) C4—C7—H7A 113.1 O5—Mn1—N2 88.88 (8) C1—C7—H7B 113.1 O3i—Mn1—N2 152.23 (7) C4—C7—H7B 113.1

O1—Mn1—O4i 153.64 (6) H7A—C7—H7B 110.5

O5—Mn1—O4i 89.91 (7) O2—C8—O1 124.8 (2)

O3i—Mn1—O4i 57.73 (6) O2—C8—C5 120.2 (2)

N2—Mn1—O4i 101.98 (6) O1—C8—C5 114.80 (19)

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m1105–m1107

N2—Mn1—N1 72.62 (7) N1—C10—C11 123.7 (2) O4i—Mn1—N1 87.83 (6) N1—C10—H10 118.2

C10—N1—C21 117.5 (2) C11—C10—H10 118.2 C10—N1—Mn1 127.39 (16) C12—C11—C10 119.1 (3) C21—N1—Mn1 115.10 (15) C12—C11—H11 120.5 C19—N2—C20 117.7 (2) C10—C11—H11 120.5 C19—N2—Mn1 125.63 (16) C11—C12—C13 119.5 (2) C20—N2—Mn1 116.63 (15) C11—C12—H12 120.2 C2—C1—C7 100.5 (2) C13—C12—H12 120.2 C2—C1—C6 107.1 (2) C12—C13—C21 117.4 (2) C7—C1—C6 100.4 (2) C12—C13—C14 123.4 (2) C2—C1—H1 115.6 C21—C13—C14 119.2 (2) C7—C1—H1 115.6 C15—C14—C13 121.4 (2)

C6—C1—H1 115.6 C15—C14—H14 119.3

C3—C2—C1 107.4 (3) C13—C14—H14 119.3 C3—C2—H2 126.3 C14—C15—C16 120.8 (2)

C1—C2—H2 126.3 C14—C15—H15 119.6

C2—C3—C4 108.3 (3) C16—C15—H15 119.6 C2—C3—H3 125.9 C17—C16—C20 117.6 (2) C4—C3—H3 125.9 C17—C16—C15 122.8 (2) C3—C4—C7 100.0 (2) C20—C16—C15 119.6 (2) C3—C4—C5 108.4 (2) C18—C17—C16 119.3 (2) C7—C4—C5 99.2 (2) C18—C17—H17 120.3

C3—C4—H4 115.7 C16—C17—H17 120.3

C7—C4—H4 115.7 C17—C18—C19 119.1 (2)

C5—C4—H4 115.7 C17—C18—H18 120.5

C8—C5—C4 117.55 (19) C19—C18—H18 120.5 C8—C5—C6 118.22 (18) N2—C19—C18 123.5 (2) C4—C5—C6 102.72 (18) N2—C19—H19 118.2

C8—C5—H5 105.7 C18—C19—H19 118.2

C4—C5—H5 105.7 N2—C20—C16 122.7 (2) C6—C5—H5 105.7 N2—C20—C21 117.8 (2) C9—C6—C5 117.98 (18) C16—C20—C21 119.5 (2) C9—C6—C1 110.9 (2) N1—C21—C13 122.8 (2) C5—C6—C1 101.96 (19) N1—C21—C20 117.8 (2) C9—C6—H6 108.5 C13—C21—C20 119.3 (2) C5—C6—H6 108.5

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O5—H5A···O2 0.82 1.91 2.666 (2) 152 O5—H5B···O3iii 0.82 1.87 2.677 (2) 169

O6—H6A···O2 0.82 2.06 2.773 (4) 145

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical