• No results found

4 (2 Nitro­benzyl­­idene­amino) 3 (1H 1,2,4 triazol 1 ylmeth­yl) 1H 1,2,4 triazole 5(4H) thione

N/A
N/A
Protected

Academic year: 2020

Share "4 (2 Nitro­benzyl­­idene­amino) 3 (1H 1,2,4 triazol 1 ylmeth­yl) 1H 1,2,4 triazole 5(4H) thione"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o3189–o3190 doi:10.1107/S1600536806022082 Luet al. C

12H10N8O2S

o3189

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

4-(2-Nitrobenzylideneamino)-3-(1

H

-1,2,4-triazol-1-ylmethyl)-1

H

-1,2,4-triazole-5(4

H

)-thione

Xiao-Lan Lu,aWen-Zhao Bi,b Yu-Qing Shang,bLiang-Zhong Xub* and Guan-Ping Yub

aCollege of Chemistry and Chemical

Engineering, Ocean University of China, Qingdao 266003, People’s Republic of China, andbCollege of Chemistry and Molecular

Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China

Correspondence e-mail: qknhs@yahoo.com.cn

Key indicators Single-crystal X-ray study T= 294 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.043 wRfactor = 0.112

Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 23 May 2006 Accepted 9 June 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, C12H10N8O2S, the thione-substituted

triazole ring forms dihedral angles of 79.86 (2) and 9.86 (3), respectively, with the other triazole ring and the benzene ring. Intermolecular N—H N hydrogen bonds link the molecules into chains extended along the [101] direction. The crystal packing is further stabilized by van der Waals forces.

Comment

Recently, compounds containing the 1H-1,2,4-triazole group have attracted much interest because they have good plant-growth regulatory activity for a wide variety of crops (Xuet al., 2002). In addition, amine- and thione-substituted triazoles have been studied as anti-inflammatory and antimicrobial agents (Eweisset al., 1986; Awadet al., 1991). In a search for new triazole compounds with better biological activity, the title compound, (I), was synthesized. We report here the crystal structure of (I) (Fig. 1).

Bond lengths and angles in the triazole rings in (I) are in agreement with those in previous reports (Liet al., 2005; Xuet al., 2005). The molecule exists in the thione tautomeric form, with an S=C distance of 1.672 (2) A˚ , indicating substantial double-bond character (Escobar-Valderramaet al., 1989). The mean planes C10–C12/N6/N7/N8 and C1–C7/N1 make dihe-dral angles of 79.86 (2) and 9.86 (3), respectively, with the thione-substituted triazole plane C8–C10/N3/N4/N5/S1.

Intermolecular N—H N hydrogen bonds (Table 1) link the molecules into chains extended along the [101] direction. The crystal packing (Fig. 2) is further stabilized by van der Waals forces.

Experimental

(2)

10–20 min in glacial acetic acid. The mixture was then filtered and crystallized from ethanol to afford the title compound (yield: 1.55 g, 93.7%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Crystal data

C12H10N8O2S

Mr= 330.34 Monoclinic,P21=n

a= 11.421 (2) A˚

b= 8.1070 (14) A˚

c= 16.446 (3) A˚

= 105.345 (3) V= 1468.5 (5) A˚3

Z= 4

Dx= 1.494 Mg m3 MoKradiation

= 0.25 mm1

T= 294 (2) K Block, yellow 0.180.100.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.950,Tmax= 0.985

8026 measured reflections 2991 independent reflections 1894 reflections withI> 2(I)

Rint= 0.038

max= 26.4

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.043

wR(F2) = 0.112

S= 1.03 2991 reflections 212 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0393P)2

+ 0.548P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.26 e A˚

3

min=0.24 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N4—H4A N8i 0.88 (3) 1.97 (3) 2.838 (3) 171 (2)

Symmetry code: (i)xþ1

2;yþ32;zþ12.

The positional and isotropic displacement parameters of the H atoms attached to N4 were refined freely. All other H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 A˚ , and refined using a riding model, withUiso(H) = 1.2Ueq(C).

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1999); software used to prepare material for publication:SHELXTL.

References

Awad, I., Abdel-Rahman, A. & Bakite, E. (1991). J. Chem. Technol. Biotechnol.51, 483–486.

Bruker (1998).SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison,

Wisconsin, USA.

Escobar-Valderrama, J. L., Garcia-Tapia, J. H., Ramirez-Ortiz, J., Rosales, M. J., Toscano, R. A. & Valdes-Martinez, J. (1989).Can. J. Chem.67, 198–201. Eweiss, N., Bahajaj, A. & Elsherbini, E. (1986).J. Heterocycl. Chem.23, 1451–

1458.

Li, W.-H., Yu, G.-P., Liu, F.-Q., Hou, B.-R. & Yu, Z.-G. (2005).Acta Cryst.E61, o2058–o2060.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Xu, L.-Z., Yu, G.-P., Xu, F.-L. & Li, W.-H. (2005).Acta Cryst.E61, o2061– o2062.

[image:2.610.311.562.72.320.2] [image:2.610.313.563.375.514.2]

Xu, L.-Z., Zhang, S.-S., Li, H.-J. & Jiao, K. (2002).J. Chem. Res. Chin. Univ.18, 284–286.

Figure 1

View of (I), with displacement ellipsoids drawn at the 40% probability level.

Figure 2

A packing diagram, viewed down thebaxis. Hydrogen bonds are shown

(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o3189–o3190

supporting information

Acta Cryst. (2006). E62, o3189–o3190 [https://doi.org/10.1107/S1600536806022082]

4-(2-Nitrobenzylideneamino)-3-(1

H

-1,2,4-triazol-1-ylmethyl)-1

H

-1,2,4-triazole-5(4

H

)-thione

Xiao-Lan Lu, Wen-Zhao Bi, Yu-Qing Shang, Liang-Zhong Xu and Guan-Ping Yu

4-(2-Nitrobenzylideneamino)-3-(1H-1,2,4-triazol-1-ylmethyl)-1H-1,2,4-triazole- 5(4H)-thione

Crystal data

C12H10N8O2S Mr = 330.34 Monoclinic, P21/n

Hall symbol: -P 2yn

a = 11.421 (2) Å

b = 8.1070 (14) Å

c = 16.446 (3) Å

β = 105.345 (3)°

V = 1468.5 (5) Å3

Z = 4

F(000) = 680

Dx = 1.494 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 1979 reflections

θ = 2.5–25.9°

µ = 0.25 mm−1

T = 294 K

Block, yellow

0.18 × 0.10 × 0.06 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.950, Tmax = 0.985

8026 measured reflections 2991 independent reflections 1894 reflections with I > 2σ(I)

Rint = 0.038

θmax = 26.4°, θmin = 2.0°

h = −14→13

k = −10→4

l = −20→20

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.043 wR(F2) = 0.112

S = 1.03

2991 reflections 212 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.0393P)2 + 0.548P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.26 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S1 0.59893 (6) 0.69127 (10) 0.62340 (4) 0.0568 (2)

O1 0.7180 (2) 0.6319 (3) 0.45292 (16) 0.0877 (8)

O2 0.7361 (2) 0.4553 (3) 0.35946 (18) 0.1013 (9)

N1 0.6874 (2) 0.5739 (3) 0.3820 (2) 0.0661 (7)

N2 0.40527 (17) 0.8406 (2) 0.44138 (11) 0.0400 (5)

N3 0.39256 (16) 0.8451 (2) 0.52331 (11) 0.0335 (5)

N4 0.41264 (18) 0.8584 (3) 0.65536 (12) 0.0412 (5)

H4A 0.438 (2) 0.842 (3) 0.7099 (17) 0.056 (8)*

N5 0.30740 (17) 0.9419 (2) 0.61942 (11) 0.0404 (5)

N6 0.11614 (16) 0.8818 (3) 0.42617 (11) 0.0375 (5)

N7 0.05211 (19) 0.7839 (3) 0.46600 (13) 0.0536 (6)

N8 0.0092 (2) 0.7219 (3) 0.32815 (13) 0.0553 (6)

C1 0.4790 (2) 0.7390 (3) 0.42440 (15) 0.0425 (6)

H1 0.5218 0.6659 0.4651 0.051*

C2 0.4954 (2) 0.7389 (3) 0.33855 (15) 0.0416 (6)

C3 0.4123 (2) 0.8181 (4) 0.27341 (15) 0.0526 (7)

H3 0.3455 0.8698 0.2845 0.063*

C4 0.4263 (3) 0.8221 (4) 0.19243 (17) 0.0651 (9)

H4 0.3697 0.8766 0.1498 0.078*

C5 0.5252 (3) 0.7444 (4) 0.1750 (2) 0.0729 (10)

H5 0.5356 0.7484 0.1208 0.087*

C6 0.6067 (3) 0.6626 (4) 0.2370 (2) 0.0687 (9)

H6 0.6720 0.6086 0.2249 0.082*

C7 0.5927 (2) 0.6597 (3) 0.31775 (18) 0.0513 (7)

C8 0.4685 (2) 0.7967 (3) 0.60077 (14) 0.0370 (6)

C9 0.29860 (19) 0.9337 (3) 0.53949 (13) 0.0333 (5)

C10 0.1982 (2) 1.0076 (3) 0.47272 (14) 0.0394 (6)

H10A 0.1530 1.0837 0.4984 0.047*

H10B 0.2321 1.0696 0.4339 0.047*

C11 0.0892 (2) 0.8421 (3) 0.34524 (15) 0.0489 (7)

H11 0.1225 0.8925 0.3057 0.059*

C12 −0.0098 (2) 0.6914 (4) 0.40393 (16) 0.0559 (7)

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o3189–o3190 Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0446 (4) 0.0770 (6) 0.0449 (4) 0.0168 (4) 0.0050 (3) 0.0145 (4)

O1 0.0668 (15) 0.115 (2) 0.0797 (17) 0.0251 (14) 0.0167 (13) −0.0072 (15)

O2 0.0695 (15) 0.0721 (17) 0.167 (3) 0.0103 (13) 0.0388 (16) −0.0375 (17)

N1 0.0440 (14) 0.0640 (18) 0.097 (2) −0.0020 (13) 0.0308 (15) −0.0169 (16)

N2 0.0445 (11) 0.0504 (14) 0.0263 (10) 0.0030 (10) 0.0114 (9) 0.0014 (9)

N3 0.0335 (10) 0.0415 (12) 0.0245 (9) 0.0016 (8) 0.0059 (8) 0.0008 (8)

N4 0.0414 (11) 0.0583 (14) 0.0204 (10) 0.0004 (10) 0.0022 (9) 0.0040 (10)

N5 0.0404 (11) 0.0526 (14) 0.0264 (10) −0.0002 (10) 0.0054 (8) −0.0028 (9)

N6 0.0344 (10) 0.0521 (13) 0.0238 (10) 0.0053 (9) 0.0037 (8) −0.0022 (9)

N7 0.0491 (13) 0.0778 (17) 0.0344 (12) −0.0106 (12) 0.0121 (10) −0.0089 (11)

N8 0.0537 (14) 0.0737 (17) 0.0339 (12) −0.0055 (12) 0.0036 (10) −0.0126 (11)

C1 0.0418 (14) 0.0500 (16) 0.0360 (14) 0.0026 (12) 0.0107 (11) −0.0004 (11)

C2 0.0413 (13) 0.0475 (16) 0.0399 (14) −0.0107 (11) 0.0178 (11) −0.0097 (12)

C3 0.0525 (16) 0.068 (2) 0.0392 (15) −0.0100 (14) 0.0160 (12) −0.0050 (14)

C4 0.075 (2) 0.083 (2) 0.0381 (16) −0.0315 (18) 0.0156 (15) −0.0065 (15)

C5 0.088 (2) 0.095 (3) 0.0501 (19) −0.047 (2) 0.0439 (19) −0.0278 (18)

C6 0.066 (2) 0.081 (2) 0.074 (2) −0.0292 (18) 0.0446 (18) −0.0351 (19)

C7 0.0457 (15) 0.0532 (18) 0.0616 (18) −0.0143 (13) 0.0259 (13) −0.0182 (14)

C8 0.0363 (12) 0.0431 (15) 0.0287 (12) −0.0052 (11) 0.0037 (10) 0.0047 (11)

C9 0.0343 (12) 0.0383 (14) 0.0263 (12) −0.0023 (10) 0.0062 (9) −0.0043 (10)

C10 0.0405 (13) 0.0446 (15) 0.0309 (13) 0.0069 (11) 0.0057 (10) −0.0037 (11)

C11 0.0533 (16) 0.0658 (19) 0.0255 (12) 0.0045 (14) 0.0069 (11) −0.0030 (12)

C12 0.0470 (15) 0.075 (2) 0.0448 (16) −0.0132 (14) 0.0114 (13) −0.0128 (15)

Geometric parameters (Å, º)

S1—C8 1.672 (2) C1—C2 1.473 (3)

O1—N1 1.220 (3) C1—H1 0.9300

O2—N1 1.216 (3) C2—C3 1.387 (4)

N1—C7 1.472 (4) C2—C7 1.402 (3)

N2—C1 1.261 (3) C3—C4 1.383 (3)

N2—N3 1.393 (2) C3—H3 0.9300

N3—C9 1.375 (3) C4—C5 1.387 (5)

N3—C8 1.394 (3) C4—H4 0.9300

N4—C8 1.329 (3) C5—C6 1.357 (5)

N4—N5 1.370 (3) C5—H5 0.9300

N4—H4A 0.88 (3) C6—C7 1.380 (4)

N5—C9 1.293 (3) C6—H6 0.9300

N6—C11 1.324 (3) C9—C10 1.487 (3)

N6—N7 1.359 (3) C10—H10A 0.9700

N6—C10 1.458 (3) C10—H10B 0.9700

N7—C12 1.312 (3) C11—H11 0.9300

N8—C11 1.314 (3) C12—H12 0.9300

(6)

O2—N1—O1 123.9 (3) C6—C5—C4 120.1 (3)

O2—N1—C7 117.6 (3) C6—C5—H5 120.0

O1—N1—C7 118.3 (2) C4—C5—H5 120.0

C1—N2—N3 118.5 (2) C5—C6—C7 120.0 (3)

C9—N3—N2 119.14 (17) C5—C6—H6 120.0

C9—N3—C8 107.40 (18) C7—C6—H6 120.0

N2—N3—C8 132.64 (19) C6—C7—C2 121.9 (3)

C8—N4—N5 114.70 (18) C6—C7—N1 116.7 (3)

C8—N4—H4A 123.3 (17) C2—C7—N1 121.4 (2)

N5—N4—H4A 121.9 (17) N4—C8—N3 102.6 (2)

C9—N5—N4 103.68 (18) N4—C8—S1 126.92 (17)

C11—N6—N7 109.3 (2) N3—C8—S1 130.51 (18)

C11—N6—C10 130.1 (2) N5—C9—N3 111.64 (19)

N7—N6—C10 120.58 (18) N5—C9—C10 124.5 (2)

C12—N7—N6 101.9 (2) N3—C9—C10 123.80 (19)

C11—N8—C12 102.3 (2) N6—C10—C9 111.64 (19)

N2—C1—C2 118.3 (2) N6—C10—H10A 109.3

N2—C1—H1 120.8 C9—C10—H10A 109.3

C2—C1—H1 120.8 N6—C10—H10B 109.3

C3—C2—C7 116.6 (2) C9—C10—H10B 109.3

C3—C2—C1 120.3 (2) H10A—C10—H10B 108.0

C7—C2—C1 123.0 (2) N8—C11—N6 111.0 (2)

C4—C3—C2 121.7 (3) N8—C11—H11 124.5

C4—C3—H3 119.2 N6—C11—H11 124.5

C2—C3—H3 119.2 N7—C12—N8 115.5 (3)

C3—C4—C5 119.7 (3) N7—C12—H12 122.3

C3—C4—H4 120.1 N8—C12—H12 122.3

C5—C4—H4 120.1

C1—N2—N3—C9 −168.9 (2) O1—N1—C7—C2 −35.4 (4)

C1—N2—N3—C8 22.9 (4) N5—N4—C8—N3 0.1 (3)

C8—N4—N5—C9 −0.9 (3) N5—N4—C8—S1 179.03 (17)

C11—N6—N7—C12 −0.2 (3) C9—N3—C8—N4 0.8 (2)

C10—N6—N7—C12 179.4 (2) N2—N3—C8—N4 170.0 (2)

N3—N2—C1—C2 −177.79 (19) C9—N3—C8—S1 −178.13 (19)

N2—C1—C2—C3 −15.5 (4) N2—N3—C8—S1 −8.9 (4)

N2—C1—C2—C7 165.2 (2) N4—N5—C9—N3 1.4 (2)

C7—C2—C3—C4 −1.5 (4) N4—N5—C9—C10 −179.8 (2)

C1—C2—C3—C4 179.1 (2) N2—N3—C9—N5 −172.38 (19)

C2—C3—C4—C5 0.4 (4) C8—N3—C9—N5 −1.5 (3)

C3—C4—C5—C6 1.1 (4) N2—N3—C9—C10 8.8 (3)

C4—C5—C6—C7 −1.4 (4) C8—N3—C9—C10 179.7 (2)

C5—C6—C7—C2 0.2 (4) C11—N6—C10—C9 −118.1 (3)

C5—C6—C7—N1 −177.7 (3) N7—N6—C10—C9 62.4 (3)

C3—C2—C7—C6 1.2 (4) N5—C9—C10—N6 −107.2 (3)

C1—C2—C7—C6 −179.4 (2) N3—C9—C10—N6 71.4 (3)

C3—C2—C7—N1 179.0 (2) C12—N8—C11—N6 −0.3 (3)

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, o3189–o3190

O2—N1—C7—C6 −32.7 (4) C10—N6—C11—N8 −179.2 (2)

O1—N1—C7—C6 142.5 (3) N6—N7—C12—N8 0.0 (3)

O2—N1—C7—C2 149.3 (3) C11—N8—C12—N7 0.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N4—H4A···N8i 0.88 (3) 1.97 (3) 2.838 (3) 171 (2)

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical