• No results found

6 Chloro 8 thia 1,4 ep­oxy­bi­cyclo­[4 3 0]non 2 ene

N/A
N/A
Protected

Academic year: 2020

Share "6 Chloro 8 thia 1,4 ep­oxy­bi­cyclo­[4 3 0]non 2 ene"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2144

Kos¸aret al. C

8H9ClOS doi:10.1107/S1600536806015698 Acta Cryst.(2006). E62, o2144–o2145

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Chloro-8-thia-1,4-epoxybicyclo[4.3.0]non-2-ene

Bas¸ak Kos¸ar,aErsen Go¨ktu¨rk,b Cavit Kazaz,c

Orhan Bu¨yu¨kgu¨ngo¨raand Aydın Demircanb*

aDepartment of Physics, Ondokuz Mayıs

University, TR-55139 Samsun, Turkey,

bDepartment of Chemistry, Nigde University,

TR-51100 Nigde, Turkey, andcDepartment of

Chemistry, Ataturk University, TR-25250 Erzurum, Turkey

Correspondence e-mail: bkosar@omu.edu.tr

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.047

wRfactor = 0.127

Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 25 April 2006 Accepted 28 April 2006

#2006 International Union of Crystallography All rights reserved

In the structure of the title compound, C8H9ClOS, the

six-membered ring has a boat conformation and the S-containing five-membered ring has an envelope conformation. The molecules are linked only by weak van der Waals interactions.

Comment

Five-membered heteroaromatic compounds such as furans, thiophenes and pyroles possess dienic reactivity and have been well documented in the literature (Lipshutz, 1986; Kappe

et al., 1997). Furans, in particular, take part in inter- and intramolecular Diels–Alder reactions with a variety of dienophiles. The intramolecular Diels–Alder (IMDA) reac-tions of furan is particularly attractive as two, three or more rings can be constructed in a single step with high regio- and stereocontrol, providing convenient entry into natural products and the synthesis of polycyclic structures (Keay & Hunt, 1999; Demircan & Parsons, 2002; Williams, 2002). We have recently described and reported a bromo Diels–Alder cycloadduct (Bu¨yu¨kgu¨ngo¨ret al., 2005). Now we outline the synthesis and crystal structure of the title compound, (2), isolated from the thermal cycloaddition of (1) in toluene in reasonably good yield. The IMDA reaction of furans under-goes a retro-cycloaddition; when the reaction is cooled to room temperature, part of the cycloadduct, (2), transforms back to (1).

In general, reactions were conducted in hot toluene and the cycloaddition process is promoted by the Thorpe–Ingold (Scissor) effect. The relative stereochemistry of the cyclo-adduct, (2), is expected to be that of the previous examples,i.e.

arising from an ‘exo’ (the substituent on the dienophile is directed away from the diene) orientation 0.94(4)-1.06(4)of the dienophile side chain (Sammes & Weller, 1995; Parkeret al., 1978).

(2)

Experimental

Simple furanyl sulfides have been preparedviaalkylation of furfuryl mercaptan; a sodium hydride suspension (0.03 g, 1.2 mmol) dehy-drogenated the mercaptanol (0.09 g, 0.8 mmol); dropwise addition of 2,3-dichloropropene (0.09 g, 0.8 mmol) in tetrahydrofuran (10 ml) at 273 K afforded the precursor (1) quantitatively (yield 0.12 g, 78%). Compound (1) (0.12 g, 0.6 mmol) was then refluxed in 10 ml toluene (383 K) for 4 d. The reaction was monitored by thin layer chroma-tography and halted when no further change of (1) to cycloadduct (2) was noted. The ratio of furan starting material and cycloadduct was calculated after purification by flash column chromatography. The yield of cycloaddition can increase to 70% when the recovered starting material is repeatedly used for the same reaction.

Crystal data

C8H9ClOS

Mr= 188.66

Triclinic,P1

a= 6.651 (3) A˚

b= 7.971 (3) A˚

c= 8.048 (3) A˚

= 80.33 (3)

= 89.07 (3)

= 81.43 (3)

V= 415.9 (3) A˚3

Z= 2

Dx= 1.507 Mg m 3

MoKradiation

= 0.64 mm 1

T= 293 (2) K Prism, colorless 0.430.340.17 mm

Data collection

Stoe IPDS-2 diffractometer

!scans

Absorption correction: integration (X-RED32; Stoe & Cie, 2002)

Tmin= 0.769,Tmax= 0.896

3731 measured reflections 1624 independent reflections 1330 reflections withI> 2(I)

Rint= 0.106

max= 26.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.047

wR(F2) = 0.127

S= 1.06 1624 reflections 136 parameters

All H-atom parameters refined

w= 1/[2

(Fo2) + (0.0578P)2

+ 0.0767P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.30 e A˚ 3

[image:2.610.63.274.73.226.2]

min= 0.50 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

C1—Cl1 1.805 (2) C7—S1 1.823 (3)

C8—S1 1.812 (3)

C1—C2—C3—C4 73.0 (3) C2—C3—C4—C5 72.9 (3)

C3—C4—C5—C6 1.0 (3) C4—C5—C6—C1 71.2 (3)

All H-atom parameters were freely refined.Uisovalues are in the range 0.47–0.80 A˚2. The C—H distances are in the range 0.94 (4)– 1.06 (4) A˚ .

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement:

X-AREA; data reduction:X-RED32(Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEP-3 for Windows(Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

The authors thank TUBITAK (PN: 103 T121) and the State Planning Organization (DPT) (PN: 03 K120880–1) for finan-cial support of this project.

References

Bu¨yu¨kgu¨ngo¨r, O., Kos¸ar, B., Demircan, A. & Turac¸, E. (2005).Acta Cryst.E61, o1441–o1442.

Demircan, A. & Parsons, P. J. (2002). Heterocycl. Commun. 8, 531– 536.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Kappe, C. O., Murphree, S. S. & Padwa, A. (1997).Tetrahedron,53, 14179– 14233.

Keay, B. A. & Hunt, I. R. (1999).Adv. Cycloaddit.6, 173–210. Lipshutz, B. H. (1986).Chem. Rev.86, 795–819.

Parker, K. A. & Adamchuk, M. R. (1978). Tetrahedron Lett. 19, 1689– 1692.

Sammes, P. G. & Weller, D. J. (1995).Synthesis, pp. 1205–1222.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Stoe & Cie (2002).X-AREAandX-RED32. Stoe & Cie, Darmstadt, Germany. Williams, R. M. (2002).Chem. Pharm. Bull.50, 711–740.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2144–o2145

supporting information

Acta Cryst. (2006). E62, o2144–o2145 [https://doi.org/10.1107/S1600536806015698]

6-Chloro-8-thia-1,4-epoxybicyclo[4.3.0]non-2-ene

Başak Koşar, Ersen Göktürk, Cavit Kazaz, Orhan Büyükgüngör and Aydın Demircan

6-Chloro-8-thia-1,4-epoxybicyclo[4.3.0]non-2-ene

Crystal data C8H9ClOS

Mr = 188.66

Triclinic, P1 a = 6.651 (3) Å b = 7.971 (3) Å c = 8.048 (3) Å α = 80.33 (3)° β = 89.07 (3)° γ = 81.43 (3)° V = 415.9 (3) Å3

Z = 2 F(000) = 196 Dx = 1.507 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5795 reflections θ = 2.6–27.9°

µ = 0.64 mm−1

T = 293 K Prism, colorless 0.43 × 0.34 × 0.17 mm

Data collection Stoe IPDS-2

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 6.67 pixels mm-1

ω scans

Absorption correction: integration (X-RED32; Stoe & Cie, 2002) Tmin = 0.769, Tmax = 0.896

3731 measured reflections 1624 independent reflections 1330 reflections with I > 2σ(I) Rint = 0.106

θmax = 26.0°, θmin = 3.1°

h = −8→8 k = −9→9 l = −9→9

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.047

wR(F2) = 0.127

S = 1.06 1624 reflections 136 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined w = 1/[σ2(F

o2) + (0.0578P)2 + 0.0767P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.30 e Å−3

Δρmin = −0.50 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.1559 (4) 0.1993 (3) 0.7146 (3) 0.0389 (5) C2 0.0671 (5) 0.2975 (4) 0.8531 (4) 0.0535 (7) C3 0.2251 (5) 0.4229 (4) 0.8537 (4) 0.0551 (7) C4 0.4166 (5) 0.3190 (5) 0.9338 (4) 0.0617 (8) C5 0.4960 (4) 0.2269 (4) 0.8226 (4) 0.0518 (7) C6 0.3569 (3) 0.2748 (3) 0.6707 (3) 0.0386 (5) C7 0.4288 (4) 0.2466 (4) 0.4992 (4) 0.0492 (6) C8 0.0336 (4) 0.2329 (4) 0.5525 (4) 0.0461 (6) O1 0.2791 (3) 0.4507 (2) 0.6782 (2) 0.0467 (5) S1 0.21149 (13) 0.21040 (11) 0.38192 (9) 0.0601 (3) Cl1 0.20835 (11) −0.03010 (8) 0.78573 (9) 0.0523 (2) H1 0.482 (6) 0.345 (5) 0.446 (5) 0.070 (10)* H2 0.053 (6) 0.226 (5) 0.964 (6) 0.080 (12)* H3 0.162 (6) 0.530 (5) 0.876 (5) 0.075 (11)* H4 −0.058 (5) 0.143 (4) 0.552 (4) 0.050 (8)* H5 0.536 (5) 0.148 (4) 0.510 (4) 0.056 (9)* H6 −0.070 (6) 0.354 (4) 0.823 (4) 0.052 (8)* H7 −0.038 (5) 0.347 (4) 0.532 (4) 0.047 (8)* H8 0.617 (7) 0.144 (5) 0.838 (5) 0.078 (12)* H10 0.460 (6) 0.314 (4) 1.060 (5) 0.065 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0338 (11) 0.0347 (11) 0.0471 (14) −0.0095 (9) 0.0042 (9) −0.0006 (10) C2 0.0487 (16) 0.0581 (16) 0.0572 (18) −0.0151 (13) 0.0139 (13) −0.0146 (14) C3 0.0606 (17) 0.0544 (17) 0.0565 (18) −0.0145 (13) 0.0122 (14) −0.0223 (14) C4 0.0664 (19) 0.0711 (19) 0.0542 (18) −0.0264 (15) −0.0059 (15) −0.0141 (15) C5 0.0406 (14) 0.0589 (17) 0.0578 (17) −0.0157 (12) −0.0078 (12) −0.0069 (13) C6 0.0334 (11) 0.0361 (11) 0.0464 (14) −0.0104 (9) 0.0047 (10) −0.0033 (10) C7 0.0480 (14) 0.0539 (15) 0.0499 (16) −0.0191 (12) 0.0126 (12) −0.0112 (13) C8 0.0401 (13) 0.0472 (14) 0.0488 (15) −0.0074 (11) −0.0040 (10) −0.0006 (11) O1 0.0499 (10) 0.0361 (9) 0.0551 (12) −0.0113 (7) 0.0075 (8) −0.0072 (8) S1 0.0642 (5) 0.0781 (6) 0.0397 (4) −0.0195 (4) −0.0008 (3) −0.0067 (3) Cl1 0.0603 (4) 0.0406 (4) 0.0541 (4) −0.0169 (3) −0.0030 (3) 0.0062 (3)

Geometric parameters (Å, º)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2144–o2145

C1—C6 1.558 (3) C5—H8 0.96 (4) C1—Cl1 1.805 (2) C6—O1 1.432 (3) C2—C3 1.555 (4) C6—C7 1.495 (4) C2—H2 0.98 (4) C7—S1 1.823 (3) C2—H6 0.97 (4) C7—H1 0.94 (4) C3—O1 1.441 (4) C7—H5 0.97 (3) C3—C4 1.502 (5) C8—S1 1.812 (3) C3—H3 0.94 (4) C8—H4 1.01 (3) C4—C5 1.307 (5) C8—H7 0.95 (3)

C8—C1—C2 115.8 (2) C4—C5—H8 126 (3) C8—C1—C6 106.2 (2) C6—C5—H8 128 (3) C2—C1—C6 102.5 (2) O1—C6—C7 113.2 (2) C8—C1—Cl1 108.65 (19) O1—C6—C5 101.8 (2) C2—C1—Cl1 112.67 (19) C7—C6—C5 121.8 (2) C6—C1—Cl1 110.64 (16) O1—C6—C1 97.47 (18) C1—C2—C3 99.9 (2) C7—C6—C1 110.9 (2) C1—C2—H2 115 (2) C5—C6—C1 108.6 (2) C3—C2—H2 113 (3) C6—C7—S1 107.76 (19) C1—C2—H6 110 (2) C6—C7—H1 109 (2) C3—C2—H6 114.0 (19) S1—C7—H1 111 (2) H2—C2—H6 104 (3) C6—C7—H5 109 (2) O1—C3—C4 101.8 (2) S1—C7—H5 111 (2) O1—C3—C2 100.8 (2) H1—C7—H5 109 (3) C4—C3—C2 107.3 (3) C1—C8—S1 107.43 (18) O1—C3—H3 106 (3) C1—C8—H4 110.8 (18) C4—C3—H3 127 (3) S1—C8—H4 106.6 (18) C2—C3—H3 111 (2) C1—C8—H7 111 (2) C5—C4—C3 105.7 (3) S1—C8—H7 107.7 (18) C5—C4—H10 129 (2) H4—C8—H7 113 (3) C3—C4—H10 124 (2) C6—O1—C3 96.1 (2) C4—C5—C6 106.3 (3) C8—S1—C7 94.61 (13)

(6)

Figure

Table 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical