• No results found

5 Acetyl 4,6 di­methyl 1,2,3,4 tetra­hydropyrimidin 2 one

N/A
N/A
Protected

Academic year: 2020

Share "5 Acetyl 4,6 di­methyl 1,2,3,4 tetra­hydropyrimidin 2 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o365±o367 doi:10.1107/S1600536805000383 Zavodniket al. C8H12N2O2

o365

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

5-Acetyl-4,6-dimethyl-1,2,3,4-tetrahydro-pyrimidin-2-one

Valery E. Zavodnik,a

Anatoly D. Shutalev,b

Galina V. Gurskaya,c

Adam I. Stasha* and

Vladimir G. Tsirelsond

aKarpov Institute of Physical Chemistry,

10 Vorontsovo Pole, 105064 Moscow, Russia, bLomonosov State Academy of Fine Chemical

Technology, 86 Vernadsky Prospect, 119571 Moscow, Russia,cEngelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia, anddMendeleev University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow, Russia

Correspondence e-mail: adam@cc.nifhi.ac.ru

Key indicators

Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.002 AÊ Rfactor = 0.029 wRfactor = 0.095

Data-to-parameter ratio = 10.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C8H12N2O2, belongs to the class of

5-substituted 1,2,3,4-tetrahydropyrimidin-2-ones, which exhibit a wide spectrum of biological activities. The conformation of the tetrahydropyrimidine ring is that of a distorted boat. In the crystal structure, NÐH O hydrogen bonds form molecular dimers and also link these dimers into chains along thecaxis of the unit cell.

Comment

The title compound, (I), belongs to the class of 5-substituted 1,2,3,4-tetrahydropyrimidin-2-ones, which are known as `Biginelli compounds' (Kappe, 1993). Some representatives of this group have emerged as orally active antihypertensive agents (Atwal et al., 1991; Grover et al., 1995; Kappe, 2000; Kappe et al., 1997; Rovnyaket al., 1995), mitotic kinesin Eg5 inhibitors which can be considered as potential anticancer drugs (Haggartyet al., 2000; Kappe, 2000), and-1a adreno-ceptor-selective antagonists, useful for the treatment of benign prostatic hyperplasia (Kappe, 2000; Nagarathnamet al., 1999).

To establish a correlation between the biological activity and spatial structure of molecules in the series of 1,2,3,4-tetrahydropyrimidin-2-ones and their 2-thioxo analogues, the conformation of the pyrimidine ring is usually considered (Kappeet al., 1997; Gurskayaet al., 2003a,b). In (I) (Fig. 1), the pyrimidine ring has the conformation of a distorted boat. The deviations of atoms N1 and C4 from the C2/N3/C5/C6 plane are 0.146 and 0.412 AÊ, respectively.

Molecules of (I) are linked into dimers by pairs of inter-molecular NÐH O hydrogen bonds (Table 1 and Fig. 2) across centres of symmetry. These dimers are linked by further NÐH O hydrogen bonds to form chains along thecaxis.

Experimental

The title compound was prepared according to the general method of synthesis of 5-substituted 1,2,3,4-tetrahydropyrimidin-2-ones (or

(2)

thiones) (Shutalev et al., 1997, 1998). The synthesis of (I) was performed by the reaction ofN-(1-tosylethyl)urea with the sodium enolate of acetylacetone in dry acetonitrile, followed by a TsOH-catalyzed dehydration of the resulting 5-acetyl-4-hydroxy-4,6-dimethylhexahydropyrimidin-2-one, without isolation of the latter. Crystals of (I) suitable for X-ray structure analysis were prepared at room temperature by slow evaporation of the solvent from a satu-rated solution of (I) (19 mg) in ethanol (1 ml).

Crystal data

C8H12N2O2 Mr= 168.20

Monoclinic,C2/c a= 14.473 (3) AÊ

b= 6.994 (1) AÊ

c= 17.200 (3) AÊ

= 103.37 (3) V= 1693.9 (6) AÊ3 Z= 8

Dx= 1.319 Mg mÿ3

MoKradiation Cell parameters from 24

re¯ections

= 11.7±12.4

= 0.10 mmÿ1 T= 293 (2) K Prism, colourless 0.460.420.12 mm

Data collection

Enraf±Nonius CAD-4 diffractometer

±2scans

Absorption correction: none 1712 measured re¯ections 1660 independent re¯ections 1187 re¯ections withI> 2(I)

Rint= 0.019

max= 26.0 h=ÿ17!15

k= 0!8

l=ÿ21!15 3 standard re¯ections

frequency: 60 min intensity decay: 0.5%

Refinement

Re®nement onF2 R[F2> 2(F2)] = 0.029 wR(F2) = 0.095 S= 1.07 1660 re¯ections 158 parameters

All H-atom parameters re®ned

w= 1/[2(Fo2) + (0.0592P)2

+ 0.1584P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.19 e AÊÿ3

min=ÿ0.12 e AÊÿ3

Extinction correction:SHELXL97

(Sheldrick, 1997)

Extinction coef®cient: 0.0043 (12)

Table 1

Hydrogen-bond geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N1ÐH1 O1i 0.858 (16) 1.991 (17) 2.8487 (15) 177.7 (14)

N3ÐH3 O2ii 0.828 (17) 2.110 (17) 2.8891 (16) 156.8 (13)

Symmetry codes: (i)ÿx‡1

2;ÿy‡32;ÿz‡1; (ii)ÿx‡12;y‡12;ÿz‡12.

All H atoms were located in difference syntheses and re®ned isotropically. The CÐH and NÐH bond lengths are in the ranges 1.00 (2)±0.92 (2) AÊ and 0.86 (2)±0.83 (2) AÊ, respectively.

Data collection:CAD-4-PC Software (Enraf±Nonius, 1993); cell re®nement: CAD-4-PC Software; data reduction: CAD-4-PC Soft-ware; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97(Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1991); software used to prepare material for publication:SHELXL97and

CIFTAB(Sheldrick, 1997).

The authors are grateful to RFBR (grant No. 04±03-33053).

References

Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & O'Reilly, B. C. (1991).J. Med. Chem.34, 806±811.

Enraf±Nonius (1993).CAD-4-PC Software. Version 1.2. Enraf±Nonius, Delft, The Netherlands.

Grover, G. J., Dzwonczyk, S., McMullen, D. M., Normandin, D. E., Parham, C. S., Sleph, P. G. & Moreland, S. (1995).J. Cardiovasc. Pharmacol.26, 289± 294.

Gurskaya, G. V., Zavodnik, V. E. & Shutalev, A. D. (2003a).Crystallogr. Rep. 48, 92±97.

Gurskaya, G. V., Zavodnik, V. E. & Shutalev, A. D. (2003b).Crystallogr. Rep. 48, 416±421.

Haggarty, S. J., Mayer, T. U., Miyamoto, D. T., Fathi, R., King, R. W., Mitchison, T. J. & Schreiber, S. L. (2000).Chem. Biol.7, 275±286.

Kappe, C. O. (1993).Tetrahedron,49, 6937±6963. Kappe, C. O. (2000).Acc. Chem. Res.33, 879±888.

Kappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997).Tetrahedron,53, 2803±2816.

Nagarathnam, D., Miao, S. W., Lagu, B., Chiu, G., Fang, J., Dhar, T. G. M., Zhang, J., Tyagarajan, S., Marzabadi, M. R., Zhang, F. Q., Wong, W. C., Sun, W. Y., Tian, D., Wetzel, J. M., Forray, C.et al. (1999).J. Med. Chem.42, 4764± 4777.

organic papers

o366

Zavodniket al. C8H12N2O2 Acta Cryst.(2005). E61, o365±o367

Figure 1

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

(3)

Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M., McCarthy, J. P., Zhang, R. A. & Moreland, S. (1995).J. Med. Chem.38, 119±129.

Sheldrick, G. M. (1991).SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997).SHELXS97,SHELXL97andCIFTAB. Release 97-2. University of GoÈttingen, Germany.

Shutalev, A. D., Kishko, E. A., Sivova, N. V. & Kuznetsov, A. Yu. (1998).

Molecules, 3, 100±106.

Shutalev, A. D. & Kuksa, V. A. (1997).Khim. Geterotsikl. Soedin.pp. 105±109.

organic papers

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o365–o367

supporting information

Acta Cryst. (2005). E61, o365–o367 [https://doi.org/10.1107/S1600536805000383]

5-Acetyl-4,6-dimethyl-1,2,3,4-tetrahydropyrimidin-2-one

Valery E. Zavodnik, Anatoly D. Shutalev, Galina V. Gurskaya, Adam I. Stash and Vladimir G.

Tsirelson

5-acetyl-4,6-dimethyl-1,2,3,4-tetrahydropyrimidin-2-one

Crystal data

C8H12N2O2

Mr = 168.20

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 14.473 (3) Å

b = 6.994 (1) Å

c = 17.200 (3) Å

β = 103.37 (3)°

V = 1693.9 (6) Å3

Z = 8

F(000) = 720

Dx = 1.319 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 24 reflections

θ = 11.7–12.4°

µ = 0.10 mm−1

T = 293 K

Prism, colourless 0.46 × 0.42 × 0.12 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Beta-filter monochromator

θ–2θ scans

1712 measured reflections 1660 independent reflections 1187 reflections with I > 2σ(I)

Rint = 0.019

θmax = 26.0°, θmin = 2.4°

h = −17→15

k = 0→8

l = −21→15

3 standard reflections every 60 min intensity decay: 0.5%

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.029

wR(F2) = 0.095

S = 1.07

1660 reflections 158 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map All H-atom parameters refined

w = 1/[σ2(F

o2) + (0.0592P)2 + 0.1584P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.19 e Å−3

Δρmin = −0.12 e Å−3

Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o365–o367

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.31811 (7) 0.72513 (15) 0.42729 (5) 0.0529 (3)

O2 0.11886 (8) −0.00279 (14) 0.27906 (6) 0.0581 (3)

N1 0.19369 (8) 0.53897 (15) 0.44034 (6) 0.0407 (3)

N3 0.27067 (7) 0.48107 (15) 0.34084 (6) 0.0387 (3)

C2 0.26391 (9) 0.59101 (17) 0.40215 (7) 0.0375 (3)

C4 0.19446 (8) 0.35429 (17) 0.30044 (7) 0.0376 (3)

C5 0.14675 (8) 0.26497 (17) 0.36127 (7) 0.0356 (3)

C5′ 0.10586 (9) 0.07488 (18) 0.33966 (7) 0.0396 (3)

C5′′ 0.04751 (11) −0.0303 (2) 0.38736 (9) 0.0506 (4)

C6 0.14486 (8) 0.36756 (17) 0.42763 (7) 0.0358 (3)

C4′ 0.12405 (11) 0.4592 (2) 0.23516 (8) 0.0519 (4)

C6′ 0.09575 (11) 0.3223 (2) 0.49339 (8) 0.0473 (3)

H1 0.1901 (11) 0.607 (2) 0.4810 (9) 0.049 (4)*

H3 0.3106 (11) 0.510 (2) 0.3153 (9) 0.042 (4)*

H4 0.2235 (9) 0.255 (2) 0.2758 (8) 0.039 (3)*

H41′ 0.1562 (13) 0.509 (2) 0.1965 (11) 0.069 (5)*

H42′ 0.0723 (13) 0.378 (3) 0.2094 (10) 0.067 (5)*

H43′ 0.0966 (12) 0.569 (2) 0.2588 (10) 0.057 (4)*

H51′′ 0.0255 (13) −0.147 (3) 0.3555 (11) 0.075 (5)*

H52′′ 0.0840 (14) −0.061 (3) 0.4421 (12) 0.080 (6)*

H53′′ −0.0068 (13) 0.047 (3) 0.3957 (10) 0.071 (5)*

H61′ 0.1204 (16) 0.213 (3) 0.5214 (13) 0.095 (7)*

H62′ 0.0987 (13) 0.435 (3) 0.5288 (11) 0.076 (5)*

H63′ 0.0284 (16) 0.309 (3) 0.4739 (12) 0.089 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0623 (6) 0.0563 (6) 0.0438 (5) −0.0194 (5) 0.0197 (4) −0.0117 (4)

O2 0.0692 (7) 0.0551 (6) 0.0602 (7) −0.0178 (5) 0.0360 (5) −0.0197 (5)

N1 0.0500 (6) 0.0413 (5) 0.0353 (5) −0.0029 (5) 0.0189 (4) −0.0063 (4)

N3 0.0398 (5) 0.0449 (6) 0.0351 (5) −0.0054 (4) 0.0164 (4) −0.0017 (4)

C2 0.0418 (6) 0.0402 (6) 0.0307 (5) −0.0008 (5) 0.0088 (5) 0.0007 (5)

C4 0.0432 (6) 0.0392 (6) 0.0343 (6) −0.0034 (5) 0.0171 (5) −0.0060 (5)

C5 0.0364 (6) 0.0392 (6) 0.0339 (6) 0.0022 (5) 0.0140 (4) 0.0015 (5)

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o365–o367

C5′′ 0.0597 (9) 0.0486 (8) 0.0472 (8) −0.0113 (7) 0.0198 (7) 0.0013 (6)

C6 0.0366 (6) 0.0383 (6) 0.0346 (6) 0.0047 (5) 0.0124 (4) 0.0027 (5)

C4′ 0.0551 (8) 0.0644 (9) 0.0351 (6) −0.0096 (7) 0.0081 (6) 0.0031 (6)

C6′ 0.0558 (8) 0.0506 (8) 0.0429 (7) 0.0000 (7) 0.0265 (6) −0.0004 (6)

Geometric parameters (Å, º)

O1—C2 1.2350 (15) C5—C5′ 1.4677 (17)

O2—C5′ 1.2279 (15) C5′—C5′′ 1.4993 (18)

N1—C2 1.3803 (16) C5′′—H51′′ 0.991 (19)

N1—C6 1.3831 (16) C5′′—H52′′ 0.99 (2)

N1—H1 0.858 (16) C5′′—H53′′ 0.991 (19)

N3—C2 1.3270 (15) C6—C6′ 1.5021 (16)

N3—C4 1.4598 (16) C4′—H41′ 0.960 (19)

N3—H3 0.828 (17) C4′—H42′ 0.963 (19)

C4—C5 1.5152 (15) C4′—H43′ 0.997 (18)

C4—C4′ 1.5192 (19) C6′—H61′ 0.93 (2)

C4—H4 0.959 (14) C6′—H62′ 0.99 (2)

C5—C6 1.3538 (16) C6′—H63′ 0.96 (2)

C2—N1—C6 123.98 (10) C5′—C5′′—H51′′ 104.5 (11)

C2—N1—H1 115.5 (10) C5′—C5′′—H52′′ 112.4 (11)

C6—N1—H1 119.1 (10) H51′′—C5′′—H52′′ 112.5 (15)

C2—N3—C4 122.94 (10) C5′—C5′′—H53′′ 112.2 (11)

C2—N3—H3 117.9 (10) H51′′—C5′′—H53′′ 111.3 (15)

C4—N3—H3 116.1 (10) H52′′—C5′′—H53′′ 104.2 (15)

O1—C2—N3 124.11 (11) C5—C6—N1 118.90 (10)

O1—C2—N1 120.77 (11) C5—C6—C6′ 128.93 (12)

N3—C2—N1 115.03 (11) N1—C6—C6′ 112.16 (10)

N3—C4—C5 109.67 (9) C4—C4′—H41′ 109.6 (10)

N3—C4—C4′ 111.24 (11) C4—C4′—H42′ 111.8 (10)

C5—C4—C4′ 111.99 (11) H41′—C4′—H42′ 110.2 (14)

N3—C4—H4 106.8 (8) C4—C4′—H43′ 109.5 (9)

C5—C4—H4 108.9 (8) H41′—C4′—H43′ 107.9 (14)

C4′—C4—H4 108.0 (8) H42′—C4′—H43′ 107.7 (15)

C6—C5—C5′ 127.45 (10) C6—C6′—H61′ 111.8 (15)

C6—C5—C4 117.71 (10) C6—C6′—H62′ 109.5 (11)

C5′—C5—C4 114.83 (10) H61′—C6′—H62′ 112.3 (16)

O2—C5′—C5 118.93 (11) C6—C6′—H63′ 112.1 (13)

O2—C5′—C5′′ 117.63 (12) H61′—C6′—H63′ 109.8 (18)

C5—C5′—C5′′ 123.43 (11) H62′—C6′—H63′ 100.8 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o365–o367

N3—H3···O2ii 0.828 (17) 2.110 (17) 2.8891 (16) 156.8 (13)

References

Related documents

In the crystal, molecules are linked by non-classical C—H O hydrogen bonds, forming chains extending parallel to the a axis.. Keywords: crystal structure; spiro

In the crystal, pairs of O—H O hydrogen bonds form inversion dimers with R 2 2(10) loops and C—H O interactions connect the dimers into [010] chains.. Keywords: crystal

The crystal packing is stabilized by N—H O hydrogen bonds, which link molecules into chains along the a axis. The packing is further stabilized by weak C—H O interactions.

The crystal packing is stabilized by weak O—H O hydrogen bonds which link the molecules into infinite chains along the a axis of the crystal..

In the crystal structure, the molecules are linked through intermolecular N—H Cl hydrogen bonds, forming chains running along the b

molecular N1—H1 O1 i and C12–H12 C F1 ii hydrogen bonds (symmetry codes as in Table 2) to form one-dimensional zigzag polymeric chains parallel to the b axis (Fig.

In the crystal structure of the title compound, C 8 H 8 N 2 O, the molecules form centrosymmetric dimers via NÐH O hydrogen

The NÐH O hydrogen bonds between the protonated nitrogen of the triazolyl ring and the quinolinone O atom link the cations into in®nite chains stretching along the c axis of