• No results found

catena Poly[[[di­aqua­hexa­pyridine μ sulfato dicobalt(II)] μ sulfato] tetra­hydrate]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly[[[di­aqua­hexa­pyridine μ sulfato dicobalt(II)] μ sulfato] tetra­hydrate]"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m474

Aliet al. [Co

2(SO4)2(C5H5N)6(H2O)2]4H2O doi:10.1107/S1600536805003429 Acta Cryst.(2005). E61, m474–m475

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena

-Poly[[[diaquahexapyridine-

l

-sulfato-dicobalt(II)]-

l

-sulfato] tetrahydrate]

Hapipah M. Ali, Subramaniam Puvaneswary and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.047

wRfactor = 0.111

Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

In the crystal structure of the title compound, [Co2(SO4)2

-(C5H5N)6(H2O)2]4H2O, the sulfate dianion bridges a

(C5H5N)4Co unit to a (C5H5N)2(H2O)2Co unit, forming a

chain that runs along theaaxis of the monoclinic unit cell. The Co atoms of the units lie on special positions, each of 1 site symmetry. Adjacent chains are linked through the uncoordi-nated water molecules into layers.

Comment

Cobalt(II) sulfate crystallizes from pyridine as the2

-sulfato-bridged pyridine-coordinated triaqua compound, (I). The compound adopts a six-coordinate chain structure and the O atoms of the sulfate groups are cisto each other in an octa-hedral geometry (Zhang, 2004). The formulation of the title compound, expressed as [(C5H5N)3(SO4)(H2O)Co]2H2O, has

two of the three water molecules in outer-sphere coordination. There are two cobalt(II) atoms, and both lie on special posi-tions of 1 site symmetry. The sulfate dianion bridges a (C5H5N)4Co unit to a (C5H5N)2(H2O)2Co unit, forming a

chain that runs along the a axis of the monoclinic unit cell (Fig. 1). The manner of bridging leads to atransalignment of the O atoms of the dianion. Adjacent chains are linked by hydrogen bonds (Table 2) into layers.

Experimental

4-Methylmercaptobenzaldehyde (0.33 g, 2.17 mmol) and N -phenyl-thiourea (0.32 g, 2.17 mmol) were heated with cobalt(II) acetate tetrahydrate (0.27 g, 1.09 mmol) in ethanol (30 ml) for several hours. Several drops of triethylamine were also added. The solvent was then removed and the product recrystallized from pyridine to furnish pale-pink crystals. The sulfur in the compound is probably derived from the decomposition of the thiourea; the mechanism of formation was not investigated further.

(2)

Crystal data

[Co2(SO4)2(C5H5N)6(H2O)2]4H2O Mr= 892.68

Monoclinic, P21=n a= 12.486 (2) A˚

b= 9.443 (1) A˚

c= 16.839 (2) A˚

= 108.289 (2)

V= 1885.1 (4) A˚3

Z= 2

Dx= 1.573 Mg m 3

MoKradiation Cell parameters from 837

reflections

= 1.8–27.5 = 1.06 mm1 T= 298 (2) K Block, pink

0.260.190.13 mm

Data collection

Bruker APEX area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.769,Tmax= 0.874

10 748 measured reflections

4221 independent reflections 3588 reflections withI> 2(I)

Rint= 0.026

max= 27.5 h=16!13

k=11!12

l=21!20

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.048

wR(F2) = 0.111 S= 1.14 4221 reflections 271 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0514P)2

+ 0.7327P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.39 e A˚

3

min=0.25 e A˚

[image:2.610.74.557.72.484.2]

3

Table 1

Selected geometric parameters (A˚ ,).

Co1—O1 2.096 (2) Co1—N1 2.152 (2) Co1—N2 2.223 (2)

Co2—O2 2.124 (2) Co2—O1w 2.134 (2) Co2—N3 2.148 (2) O1—Co1—O1i

180 O1—Co1—N1 89.12 (8) O1—Co1—N1i

90.88 (8) O1—Co1—N2 84.94 (8) O1—Co1—N2i 95.06 (8) N1—Co1—N1i

180 N1—Co1—N2 92.06 (8) N1—Co1—N2i 87.94 (8) N2—Co1—N2i 180 O2—Co2—O2ii 180 O2—Co2—O1w 88.51 (7) O2—Co2—O1wii

91.49 (7) O2—Co2—N3ii

88.86 (8) O2—Co2—N3 91.14 (8) O1w—Co2—O1wii

180 O1w—Co2—N3ii

92.23 (9) O1w—Co2—N3 87.77 (9) N3ii

—Co2—N3 180

[image:2.610.305.562.74.466.2]

Symmetry codes: (i)xþ1;yþ1;zþ1; (ii)x;yþ1;zþ1.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1w—H1w1 O3ii

0.85 (1) 1.80 (1) 2.644 (3) 170 (3) O1w—H1w2 O2w 0.85 (1) 2.05 (1) 2.891 (3) 175 (3) O2w—H2w1 O4iii

0.85 (1) 1.92 (1) 2.759 (3) 168 (4) O2w—H2w2 O3w 0.85 (1) 1.97 (2) 2.742 (4) 150 (4) O3w—H3w1 O2iii

0.85 (1) 1.98 (1) 2.821 (3) 173 (4) O3w—H3w2 O2wiii

0.85 (1) 1.95 (1) 2.787 (4) 168 (4)

Symmetry codes: (ii)x;yþ1;zþ1; (iii)xþ1 2;yþ

1 2;zþ

3 2.

The carbon-bound H atoms were placed in calculated positions (C—H = 0.93 A˚ ) and were treated as riding, withUiso(H) values set at

1.2 timesUeq(C). The water H atoms were located and refined with

distance restraints of O—H = 0.85 (1) A˚ and H H = 1.39 (1) A˚ . Data collection:SMART(Bruker, 2002); cell refinement:SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve

structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the Ministry of Science, Technology and the Environment (IPRA 09–02-03–1025) for supporting this study, and Professor Bohari M. Yamin of Universiti Kebang-saan Malaysia for the diffraction measurements.

References

Bruker (2002).SADABS,SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M.(1997).SHELXS97andSHELXL97. University of Go¨ttingen, Germany.

Zhang, Y.-X. (2004).Acta Cryst.E60, m30–m31.

Figure 1

[image:2.610.42.297.568.641.2]
(3)

supporting information

sup-1 Acta Cryst. (2005). E61, m474–m475

supporting information

Acta Cryst. (2005). E61, m474–m475 [https://doi.org/10.1107/S1600536805003429]

catena

-Poly[[[diaquahexapyridine-

µ

-sulfato-dicobalt(II)]-

µ

-sulfato] tetrahydrate]

Hapipah M. Ali, Subramaniam Puvaneswary and Seik Weng Ng

catena-Poly[[[diaquahexapyridine-µ2-sulfato-dicobalt(II)]-µ-sulfato] tetrahydrate]

Crystal data

[Co2(SO4)2(C5H5N)6(H2O)2]·4H2O Mr = 892.68

Monoclinic, P21/n Hall symbol: -P 2yn a = 12.486 (2) Å b = 9.443 (1) Å c = 16.839 (2) Å β = 108.289 (2)° V = 1885.1 (4) Å3 Z = 2

F(000) = 924 Dx = 1.573 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 837 reflections θ = 1.8–27.5°

µ = 1.06 mm−1 T = 298 K Block, pink

0.26 × 0.19 × 0.13 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002) Tmin = 0.769, Tmax = 0.874

10748 measured reflections 4221 independent reflections 3588 reflections with I > 2σ(I) Rint = 0.026

θmax = 27.5°, θmin = 1.8° h = −16→13

k = −11→12 l = −21→20

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.048 wR(F2) = 0.111 S = 1.14 4221 reflections 271 parameters 6 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0514P)2 + 0.7327P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.39 e Å−3 Δρmin = −0.25 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Co1 0.5000 0.5000 0.5000 0.02287 (13)

(4)

S1 0.25329 (5) 0.36127 (7) 0.51985 (4) 0.02301 (15)

O1 0.35526 (15) 0.4470 (2) 0.53129 (12) 0.0333 (4)

O2 0.17400 (14) 0.44946 (19) 0.55036 (11) 0.0288 (4)

O3 0.20038 (16) 0.3282 (2) 0.43151 (12) 0.0380 (5)

O4 0.28205 (18) 0.2335 (2) 0.56972 (13) 0.0409 (5)

O1w −0.00036 (17) 0.5488 (2) 0.62367 (12) 0.0355 (5)

H1w1 −0.0632 (15) 0.592 (3) 0.612 (2) 0.047 (10)*

H1w2 0.046 (2) 0.598 (3) 0.6611 (15) 0.046 (10)*

O2w 0.1564 (2) 0.7038 (3) 0.75883 (17) 0.0569 (6)

H2w1 0.167 (3) 0.706 (4) 0.8111 (8) 0.070 (13)*

H2w2 0.175 (4) 0.785 (2) 0.746 (3) 0.082 (16)*

O3w 0.2166 (3) 0.9841 (3) 0.77666 (17) 0.0648 (8)

H3w1 0.255 (3) 0.974 (4) 0.8277 (9) 0.062 (12)*

H3w2 0.248 (3) 1.052 (3) 0.759 (3) 0.073 (13)*

N1 0.60081 (18) 0.3919 (2) 0.61077 (14) 0.0297 (5)

N2 0.49823 (18) 0.6982 (2) 0.57082 (14) 0.0296 (5)

N3 −0.04650 (18) 0.2874 (2) 0.52054 (14) 0.0297 (5)

C1 0.5656 (2) 0.3697 (3) 0.67742 (18) 0.0391 (7)

H1 0.4957 0.4052 0.6762 0.047*

C2 0.6282 (3) 0.2971 (4) 0.74721 (19) 0.0459 (8)

H2 0.6014 0.2864 0.7926 0.055*

C3 0.7295 (3) 0.2409 (4) 0.7496 (2) 0.0503 (8)

H3 0.7724 0.1898 0.7959 0.060*

C4 0.7667 (3) 0.2614 (4) 0.6820 (2) 0.0532 (9)

H4 0.8355 0.2241 0.6818 0.064*

C5 0.7013 (2) 0.3375 (3) 0.61463 (19) 0.0408 (7)

H5 0.7281 0.3519 0.5696 0.049*

C6 0.5510 (2) 0.8141 (3) 0.55798 (19) 0.0370 (7)

H6 0.5862 0.8114 0.5168 0.044*

C7 0.5564 (3) 0.9376 (3) 0.6023 (2) 0.0518 (9)

H7 0.5952 1.0157 0.5917 0.062*

C8 0.5037 (3) 0.9438 (4) 0.6625 (2) 0.0562 (9)

H8 0.5060 1.0260 0.6933 0.067*

C9 0.4476 (3) 0.8263 (4) 0.6762 (2) 0.0490 (8)

H9 0.4107 0.8277 0.7163 0.059*

C10 0.4467 (3) 0.7067 (3) 0.62978 (19) 0.0395 (7)

H10 0.4085 0.6274 0.6396 0.047*

C11 −0.1377 (2) 0.2238 (3) 0.46978 (19) 0.0385 (7)

H11 −0.1810 0.2728 0.4227 0.046*

C12 −0.1711 (3) 0.0896 (3) 0.4834 (2) 0.0469 (8)

H12 −0.2353 0.0493 0.4462 0.056*

C13 −0.1086 (3) 0.0163 (3) 0.5526 (2) 0.0477 (8)

H13 −0.1294 −0.0746 0.5632 0.057*

C14 −0.0143 (3) 0.0802 (3) 0.6061 (2) 0.0442 (7)

H14 0.0294 0.0334 0.6539 0.053*

C15 0.0144 (2) 0.2143 (3) 0.58789 (18) 0.0362 (6)

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, m474–m475

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Co1 0.0192 (2) 0.0261 (3) 0.0237 (3) −0.00153 (18) 0.00736 (19) 0.00081 (19) Co2 0.0196 (2) 0.0262 (3) 0.0252 (3) −0.00169 (18) 0.00654 (19) −0.00192 (19) S1 0.0190 (3) 0.0249 (3) 0.0256 (3) −0.0016 (2) 0.0077 (2) −0.0020 (2) O1 0.0236 (9) 0.0417 (11) 0.0373 (11) −0.0074 (8) 0.0135 (8) −0.0030 (9) O2 0.0214 (9) 0.0373 (10) 0.0279 (10) 0.0011 (8) 0.0081 (7) −0.0056 (8) O3 0.0304 (10) 0.0519 (13) 0.0298 (10) 0.0031 (9) 0.0066 (8) −0.0118 (9) O4 0.0499 (13) 0.0284 (11) 0.0472 (13) 0.0035 (9) 0.0190 (10) 0.0070 (9) O1w 0.0281 (11) 0.0470 (12) 0.0289 (11) 0.0018 (9) 0.0055 (9) −0.0070 (9) O2w 0.0661 (17) 0.0561 (17) 0.0469 (16) −0.0065 (13) 0.0156 (13) −0.0164 (13) O3w 0.0727 (19) 0.0735 (19) 0.0372 (14) −0.0247 (15) 0.0014 (13) 0.0109 (13) N1 0.0272 (11) 0.0333 (13) 0.0287 (12) 0.0007 (9) 0.0088 (9) 0.0022 (9) N2 0.0254 (11) 0.0318 (12) 0.0306 (12) 0.0028 (9) 0.0074 (9) −0.0015 (9) N3 0.0259 (11) 0.0276 (12) 0.0361 (13) −0.0018 (9) 0.0106 (10) −0.0006 (9) C1 0.0327 (15) 0.0517 (18) 0.0345 (16) 0.0041 (13) 0.0128 (12) 0.0070 (14) C2 0.0506 (19) 0.059 (2) 0.0288 (16) 0.0011 (16) 0.0131 (14) 0.0098 (14) C3 0.049 (2) 0.054 (2) 0.0372 (18) 0.0063 (16) −0.0025 (15) 0.0108 (15) C4 0.0365 (17) 0.070 (2) 0.049 (2) 0.0198 (16) 0.0074 (15) 0.0088 (17) C5 0.0354 (16) 0.0527 (19) 0.0352 (16) 0.0081 (14) 0.0125 (13) 0.0044 (14) C6 0.0362 (15) 0.0329 (15) 0.0442 (17) 0.0028 (12) 0.0158 (13) 0.0015 (13) C7 0.057 (2) 0.0307 (17) 0.067 (2) −0.0046 (15) 0.0189 (18) −0.0035 (16) C8 0.069 (2) 0.0409 (19) 0.056 (2) 0.0056 (17) 0.0168 (19) −0.0184 (17) C9 0.058 (2) 0.053 (2) 0.0411 (18) 0.0061 (16) 0.0224 (16) −0.0077 (15) C10 0.0404 (17) 0.0426 (17) 0.0384 (16) −0.0002 (13) 0.0166 (14) −0.0025 (13) C11 0.0343 (16) 0.0347 (16) 0.0411 (17) −0.0047 (12) 0.0040 (13) −0.0031 (13) C12 0.0436 (18) 0.0372 (17) 0.055 (2) −0.0131 (14) 0.0088 (15) −0.0070 (15) C13 0.054 (2) 0.0303 (16) 0.061 (2) −0.0092 (14) 0.0226 (18) −0.0002 (15) C14 0.0499 (19) 0.0378 (17) 0.0451 (19) 0.0041 (14) 0.0151 (15) 0.0115 (14) C15 0.0307 (15) 0.0415 (17) 0.0351 (15) −0.0017 (12) 0.0084 (12) 0.0016 (13)

Geometric parameters (Å, º)

Co1—O1 2.096 (2) C1—C2 1.373 (4)

Co1—O1i 2.096 (2) C1—H1 0.9300

Co1—N1 2.152 (2) C2—C3 1.361 (5)

Co1—N1i 2.152 (2) C2—H2 0.9300

Co1—N2 2.223 (2) C3—C4 1.371 (5)

Co1—N2i 2.223 (2) C3—H3 0.9300

Co2—O2 2.124 (2) C4—C5 1.375 (4)

Co2—O2ii 2.124 (2) C4—H4 0.9300

Co2—O1w 2.134 (2) C5—H5 0.9300

Co2—O1wii 2.134 (2) C6—C7 1.375 (4)

Co2—N3 2.148 (2) C6—H6 0.9300

Co2—N3ii 2.148 (2) C7—C8 1.372 (5)

S1—O4 1.449 (2) C7—H7 0.9300

(6)

S1—O1 1.4693 (18) C8—H8 0.9300

S1—O2 1.5023 (18) C9—C10 1.372 (4)

O1w—H1w1 0.85 (1) C9—H9 0.9300

O1w—H1w2 0.85 (1) C10—H10 0.9300

O2w—H2w1 0.85 (1) C11—C12 1.376 (4)

O2w—H2w2 0.85 (1) C11—H11 0.9300

O3w—H3w1 0.85 (1) C12—C13 1.369 (5)

O3w—H3w2 0.85 (1) C12—H12 0.9300

N1—C5 1.338 (3) C13—C14 1.378 (5)

N1—C1 1.344 (3) C13—H13 0.9300

N2—C6 1.330 (3) C14—C15 1.377 (4)

N2—C10 1.344 (3) C14—H14 0.9300

N3—C11 1.333 (3) C15—H15 0.9300

N3—C15 1.341 (4)

O1—Co1—O1i 180.0 C11—N3—C15 117.0 (2)

O1—Co1—N1 89.12 (8) C11—N3—Co2 122.49 (19)

O1—Co1—N1i 90.88 (8) C15—N3—Co2 120.46 (18)

O1—Co1—N2 84.94 (8) N1—C1—C2 123.1 (3)

O1—Co1—N2i 95.06 (8) N1—C1—H1 118.5

O1i—Co1—N1 90.88 (8) C2—C1—H1 118.5

O1i—Co1—N1i 89.12 (8) C3—C2—C1 119.6 (3)

O1i—Co1—N2 95.06 (8) C3—C2—H2 120.2

O1i—Co1—N2i 84.94 (8) C1—C2—H2 120.2

N1—Co1—N1i 180 C2—C3—C4 118.3 (3)

N1—Co1—N2 92.06 (8) C2—C3—H3 120.8

N1—Co1—N2i 87.94 (8) C4—C3—H3 120.8

N1i—Co1—N2 87.94 (8) C5—C4—C3 119.4 (3)

N1i—Co1—N2i 92.06 (8) C5—C4—H4 120.3

N2—Co1—N2i 180 C3—C4—H4 120.3

O2—Co2—O2ii 180 N1—C5—C4 123.1 (3)

O2—Co2—O1w 88.51 (7) N1—C5—H5 118.5

O2—Co2—O1wii 91.49 (7) C4—C5—H5 118.5

O2—Co2—N3ii 88.86 (8) N2—C6—C7 123.5 (3)

O2—Co2—N3 91.14 (8) N2—C6—H6 118.2

O2ii—Co2—O1w 91.49 (7) C7—C6—H6 118.2

O2ii—Co2—O1wii 88.51 (7) C6—C7—C8 118.9 (3)

O2ii—Co2—N3 88.86 (8) C6—C7—H7 120.5

O2ii—Co2—N3ii 91.14 (8) C8—C7—H7 120.5

O1w—Co2—O1wii 180 C9—C8—C7 118.6 (3)

O1w—Co2—N3ii 92.23 (9) C9—C8—H8 120.7

O1w—Co2—N3 87.77 (9) C7—C8—H8 120.7

O1wii—Co2—N3ii 87.77 (9) C8—C9—C10 119.0 (3)

O1wii—Co2—N3 92.23 (9) C8—C9—H9 120.5

N3ii—Co2—N3 180 C10—C9—H9 120.5

O4—S1—O3 111.30 (12) N2—C10—C9 123.3 (3)

O4—S1—O1 109.60 (12) N2—C10—H10 118.3

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, m474–m475

O4—S1—O2 109.46 (11) N3—C11—C12 123.4 (3)

O3—S1—O2 109.34 (11) N3—C11—H11 118.3

O1—S1—O2 106.67 (11) C12—C11—H11 118.3

S1—O1—Co1 151.49 (12) C13—C12—C11 119.1 (3)

S1—O2—Co2 133.58 (11) C13—C12—H12 120.5

Co2—O1w—H1w1 99 (2) C11—C12—H12 120.5

Co2—O1w—H1w2 129 (2) C12—C13—C14 118.5 (3)

H1w1—O1w—H1w2 106 (3) C12—C13—H13 120.8

H2w1—O2w—H2w2 105 (4) C14—C13—H13 120.8

H3w1—O3w—H3w2 105 (4) C15—C14—C13 119.1 (3)

C5—N1—C1 116.5 (2) C15—C14—H14 120.5

C5—N1—Co1 120.56 (18) C13—C14—H14 120.5

C1—N1—Co1 122.83 (18) N3—C15—C14 122.9 (3)

C6—N2—C10 116.6 (2) N3—C15—H15 118.5

C6—N2—Co1 121.10 (18) C14—C15—H15 118.5

C10—N2—Co1 122.27 (19)

O4—S1—O1—Co1 86.6 (3) O2ii—Co2—N3—C11 33.2 (2)

O3—S1—O1—Co1 −36.3 (3) O1w—Co2—N3—C11 124.8 (2)

O2—S1—O1—Co1 −155.0 (3) O1wii—Co2—N3—C11 −55.2 (2)

N1—Co1—O1—S1 −103.7 (3) O2—Co2—N3—C15 35.6 (2)

N1i—Co1—O1—S1 76.3 (3) O2ii—Co2—N3—C15 −144.4 (2)

N2—Co1—O1—S1 164.2 (3) O1w—Co2—N3—C15 −52.9 (2)

N2i—Co1—O1—S1 −15.8 (3) O1wii—Co2—N3—C15 127.1 (2)

O4—S1—O2—Co2 −109.25 (16) C5—N1—C1—C2 0.8 (5)

O3—S1—O2—Co2 12.91 (19) Co1—N1—C1—C2 178.0 (2)

O1—S1—O2—Co2 132.24 (15) N1—C1—C2—C3 −1.7 (5)

O1w—Co2—O2—S1 158.70 (16) C1—C2—C3—C4 1.2 (5)

O1wii—Co2—O2—S1 −21.30 (16) C2—C3—C4—C5 0.1 (5)

N3ii—Co2—O2—S1 −109.04 (16) C1—N1—C5—C4 0.6 (5)

N3—Co2—O2—S1 70.96 (16) Co1—N1—C5—C4 −176.7 (3)

O1—Co1—N1—C5 153.9 (2) C3—C4—C5—N1 −1.0 (5)

O1i—Co1—N1—C5 −26.1 (2) C10—N2—C6—C7 1.1 (4)

N2—Co1—N1—C5 −121.2 (2) Co1—N2—C6—C7 −177.3 (3)

N2i—Co1—N1—C5 58.8 (2) N2—C6—C7—C8 −0.8 (5)

O1—Co1—N1—C1 −23.1 (2) C6—C7—C8—C9 0.0 (6)

O1i—Co1—N1—C1 156.9 (2) C7—C8—C9—C10 0.4 (5)

N2—Co1—N1—C1 61.8 (2) C6—N2—C10—C9 −0.6 (4)

N2i—Co1—N1—C1 −118.2 (2) Co1—N2—C10—C9 177.8 (2)

O1—Co1—N2—C6 −158.6 (2) C8—C9—C10—N2 −0.1 (5)

O1i—Co1—N2—C6 21.4 (2) C15—N3—C11—C12 0.1 (4)

N1—Co1—N2—C6 112.5 (2) Co2—N3—C11—C12 −177.7 (2)

N1i—Co1—N2—C6 −67.5 (2) N3—C11—C12—C13 0.2 (5)

O1—Co1—N2—C10 23.1 (2) C11—C12—C13—C14 0.1 (5)

O1i—Co1—N2—C10 −156.9 (2) C12—C13—C14—C15 −0.6 (5)

(8)

N1i—Co1—N2—C10 114.2 (2) Co2—N3—C15—C14 177.1 (2)

O2—Co2—N3—C11 −146.8 (2) C13—C14—C15—N3 1.0 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1w—H1w1···O3ii 0.85 (1) 1.80 (1) 2.644 (3) 170 (3)

O1w—H1w2···O2w 0.85 (1) 2.05 (1) 2.891 (3) 175 (3)

O2w—H2w1···O4iii 0.85 (1) 1.92 (1) 2.759 (3) 168 (4)

O2w—H2w2···O3w 0.85 (1) 1.97 (2) 2.742 (4) 150 (4)

O3w—H3w1···O2iii 0.85 (1) 1.98 (1) 2.821 (3) 173 (4)

O3w—H3w2···O2wiii 0.85 (1) 1.95 (1) 2.787 (4) 168 (4)

Figure

Figure 1ORTEPII plot (Johnson, 1976) of (I), with displacement ellipsoids drawnat the 50% probability level

References

Related documents

remove health expenditures from the model (table 3, column 5), which are insignificant anyway, military expenditures become significant at the 10% significance level, the

CDUS should be used as a first modality in evaluation of patients of PAD especially where low grade stenosis is anticipated, patients prone for significant vascular calcification

Long-term sustainability of human and non-human life can be achieved only by creating an entirely new economy that eschews the current economy’s pursuit of continuous growth and

long-term debt and short-term debt and four structured capital flow types: equity, debt, long term and short term.. Extending earlier papers and systematically testing the

Cross-correlations analysis is one of the methods used to determine the re- lationship between the referent country cycle (usually cycle in GDP series of the European Union) and

The aim of this study was to evaluate HER-3 mRNA expression level as a prognostic marker for breast cancer and to correlate its level with other established prognostic parameters

One key advantage of this staged design is that through grounding partially the utterance to some entities and predicates in the KB, we make the search far more efficient by focusing

In both simultaneous-move and private leadership models, if α = 0, then the equilibrium price is equal to the public firm’s marginal cost z.. However, in the simultaneous-move