catena Poly­[[bis­(1,10 phenanthroline)­samarium] di μ 2 hy­droxy­benzoato sodium di μ 2 hy­droxy­benzoato]

(1)metal-organic papers Acta Crystallographica Section E. Structure Reports Online ISSN 1600-5368. Cun-Jin Xu, Hui Yang, Fei Xie* and Xing-Zhong Guo Center of Nanometer Science and Technology, Zhejiang University, Hangzhou 310027, People's Republic of China Correspondence e-mail: feixie2002@zju.edu.cn. Key indicators Single-crystal X-ray study T = 295 K Ê Mean (C±C) = 0.005 A R factor = 0.021 wR factor = 0.045 Data-to-parameter ratio = 11.4 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. # 2004 International Union of Crystallography Printed in Great Britain ± all rights reserved. Acta Cryst. (2004). E60, m1627±m1629. catena-Poly[[bis(1,10-phenanthroline)samarium]di-l-2-hydroxybenzoato-sodium-di-l-2-hydroxybenzoato] The title complex, [NaSm(C7H5O3)4(C12H8N2)2]n, is a heteronuclear polymer. The Sm and Na atoms are bridged by two carboxylate groups. The Sm atom is eightfold-coordinated by four N atoms of two bidentate phenanthroline ligands and four O atoms of four monodentate carboxyl groups. The Na and Sm atoms lie on a twofold axis. The carboxyl groups of the hydroxybenzoate ligands act as bridges between the Na and Sm atoms, forming a one-dimensional polymer. In addition, there are intramolecular hydrogen bonds between the phenol OH group and an adjacent carboxyl O atom.. Received 4 October 2004 Accepted 7 October 2004 Online 16 October 2004. Comment There has been a growing interest in the study of the enhancement of ¯uorescence of the lanthanides since the lanthanides have low absorptivity and poor quantum yields (Brito et al., 2002). Luminescence investigation of RE3+± aromatic acid complexes (RE = lanthanide) has increased in the past decade due to the higher ef®ciency of energy transfer from aromatic acid ligands to rare earth ions (Panigrahi et al., 1997; Panigrahi, 2002; An et al., 2004). We report here the preparation and crystal structure of the title compound, (I).. Complex (I) is a polymeric chain with crystallographically imposed C2 symmetry, with the Na and Sm atoms lying on a twofold axis. The Sm and Na atoms are bridged by two carboxylate groups (Fig. 1). The coordination environment of the Na atom is approximately tetrahedral. Each carboxylate group acts as a bridging ligand between the Na ion and Sm, via the carboxylate O atoms. Each Sm atom is coordinated by four N atoms of two phenanthroline (phen) ligands and four O doi: 10.1107/S1600536804025346. Xu, Yang, Xie and Guo. . [NaSm(C7H5O3)4(C12H8N2)2]. m1627.

(2) metal-organic papers In many cases, carboxylate groups are coordinated simultaneously to metal ions in three modes, viz. bridging, chelating and bridging±chelating. In (I), however, all the carboxylate groups are coordinated in the bridging mode, in which the two CÐO bond lengths of the carboxylate are slightly different. The longer CÐO bond is linked to the Sm atom while the shorter one is linked to the Na atom.. Experimental 2-Hydroxybenzoic acid (2.0 mmol, 276.2 mg) and 1,10-phenanthroline (1.0 mmol, 180.0 mg) were dissolved in ethanol (20 ml). The pH of the solution was adjusted to 6±7 with 2 M NaOH solution. To the resulting solution was added SmCl36H2O (0.5 mmol, 182.4 mg) in ethanol (5 ml). The reaction mixture was stirred for 4 h at 343 K. A white precipitate was formed. Crystals of (I) suitable for X-ray analysis were obtained from the mother liquor at room temperature after a few days (m.p. 524±529 K). IR (KBr, cmÿ1): 3435.6 (ArÐ OH), 1597.2 and 1389.2 (COOÿ), 1561.3 (C N), 806.1, 760.0 and 727.8 (CÐH, phen). Crystal data. Figure 1. Twice the asymmetric unit of the title complex, showing the atomic numbering scheme and 30% probability displacement ellipsoids. H atoms and some labels have been omitted for clarity. [Symmetry code: (i) 1 ÿ x, y, 12 ÿ z.]. Dx = 1.605 Mg mÿ3 Mo K radiation Cell parameters from 17110 re¯ections  = 2.4±27.5  = 1.40 mmÿ1 T = 295 (1) K Chunk, colorless 0.21  0.20  0.15 mm. [NaSm(C7H5O3)4(C12H8N2)2] Mr = 1082.27 Monoclinic, C2=c Ê a = 28.4989 (7) A Ê b = 9.3347 (2) A Ê c = 22.7954 (5) A

(3) = 132.4010 (8) Ê3 V = 4478.1 (2) A Z=4. Data collection 5126 independent re¯ections 3612 re¯ections with F 2 > 2(F 2) Rint = 0.037 max = 27.5 h = ÿ36 ! 36 k = ÿ12 ! 12 l = ÿ29 ! 29. Rigaku R-AXIS RAPID diffractometer ! scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.687, Tmax = 0.811 20367 measured re¯ections. Refinement Figure 2. A view of the structure of the one-dimensional chain of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted. [Symmetry codes: (ii) x, y ÿ 1, z; (iii) x, y + 1, z.]. atoms of four carboxylate groups, which further coordinate to two neighboring Na atoms, forming a one-dimensional chain structure (Fig. 2). The plane of the phenanthroline ring system formed by atoms N1, N2 and C1±C12 makes a dihedral angle of 80.5 (1) with the C14±C19 benzene ring, and an angle of 89.9 (1) with the C21±C26 benzene ring. The SmÐO Ê ; Table 1] are much shorter distances [2.270 (2) and 2.318 (2) A than the values found in an analogous compound Ê; [Sm2(C12H8N2)2(C6H5COO)6], (II) [2.355 (4)±2.866 (4) A Niu & Jin, 1999]. The difference may be due to their different coordination modes. The SmÐN distances are comparable with the corresponding values found in (II). The NaÐO Ê. distances are 2.348 (2) and 2.383 (3) A. m1628. Xu, Yang, Xie and Guo. . [NaSm(C7H5O3)4(C12H8N2)2]. Re®nement on F 2 R[F 2 > 2(F 2)]= 0.021 wR(F 2) = 0.045 S = 1.01 3612 re¯ections 317 parameters. H-atom parameters constrained w = 1/[0.0002Fo2 + (Fo2)]/(4Fo2) (/)max < 0.001 Ê ÿ3 max = 0.42 e A Ê ÿ3 min = ÿ0.32 e A. Table 1. Ê ,  ). Selected geometric parameters (A Sm1ÐO1 Sm1ÐO4 Sm1ÐN1 O1iÐSm1ÐO1 O4ÐSm1ÐO1 O4iÐSm1ÐO1 N1ÐSm1ÐO1 N1iÐSm1ÐO1 N2ÐSm1ÐO1. 2.318 (2) 2.270 (2) 2.681 (1) 92.05 (8) 95.70 (8) 149.04 (6) 73.22 (6) 74.28 (6) 134.86 (5). Sm1ÐN2 Na1ÐO2 Na1ÐO5ii N2iÐSm1ÐO1 N2ÐSm1ÐO4 N2iÐSm1ÐO4 N1ÐSm1ÐO4i Sm1ÐO1ÐC13 Sm1ÐO4ÐC20. 2.652 (2) 2.383 (3) 2.348 (2) 77.69 (7) 75.63 (8) 76.09 (6) 137.70 (7) 142.5 (2) 171.1 (2). Symmetry codes: (i) 1 ÿ x; y; 12 ÿ z; (ii) x; y ÿ 1; z.. Acta Cryst. (2004). E60, m1627±m1629.

(4) metal-organic papers Developmental Plan of Hangzhou City (No. 2003131E04), and the National High Technology Research Development Plan (No. 2003AA302760).. Table 2. Ê ,  ). Hydrogen-bonding geometry (A DÐH  A. DÐH. H  A. D  A. DÐH  A. O3ÐH17  O2 O6ÐH18  O5. 0.98 0.95. 1.71 1.74. 2.566 (4) 2.560 (4). 144 142. The hydroxy H atoms were located in difference Fourier maps, while the C-bound H atoms were placed in calculated positions, with Ê , and re®ned as riding, with Uiso(H) = CÐH = 0.96 or 0.97 A 1.2Ueq(carrier atom). Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell re®nement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to re®ne structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.. The authors thank the Science Planning Project of Zhejiang Province (No. 2003G10006), the Science and Technology. Acta Cryst. (2004). E60, m1627±m1629. References Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115±119. An, B. L., Gong, M. L., Cheah, K. W., Wong, W. K. & Zhang, J. M. (2004). J. Alloys Compd, 368, 326±332. Brito, H. F., Malta, O. L., Felinto, M. C. F. C., Teotonio, E. E. S., Menezes, J. F. S., Silva, C.. S., Tomiyama, C. S. & Carvalho, C. A. A. (2002). J. Alloys Compd, 344, 293±297. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Niu, S. Y. & Jin, J. (1999). Chin. J. Struct. Chem. 18, 245±248. Panigrahi, B. S. (2002). J. Alloys Compd, 334, 228±231. Panigrahi, B. S., Peter, S. & Viswanathan, K. S. (1997). Spectrochim. Acta Part A, 53, 2579±2585. Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX, USA 77381±5209, USA. Watkin, D. J., Prout, C. K. Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.. Xu, Yang, Xie and Guo. . [NaSm(C7H5O3)4(C12H8N2)2]. m1629.

(5) supporting information. supporting information Acta Cryst. (2004). E60, m1627–m1629. [https://doi.org/10.1107/S1600536804025346]. catena-Poly[[bis(1,10-phenanthroline)samarium]-di-µ-2-hydroxybenzoatosodium-di-µ-2-hydroxybenzoato] Cun-Jin Xu, Hui Yang, Fei Xie and Xing-Zhong Guo catena-Poly[[bis(1,10-phenanthroline)samarium]-di-µ- 2-hydroxybenzoato-sodium-di-µ-2-hydroxybenzoato] Crystal data [NaSm(C7H5O3)4(C12H8N2)2] Mr = 1082.27 Monoclinic, C2/c Hall symbol: -C 2yc a = 28.4989 (7) Å b = 9.3347 (2) Å c = 22.7954 (5) Å β = 132.4010 (8)° V = 4478.1 (2) Å3 Z=4. F(000) = 2180.00 Dx = 1.605 Mg m−3 Melting point = 524–529 K Mo Kα radiation, λ = 0.7107 Å Cell parameters from 17110 reflections θ = 2.4–27.5° µ = 1.40 mm−1 T = 295 K Chunk, colorless 0.21 × 0.20 × 0.15 mm. Data collection Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.00 pixels mm-1 ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.687, Tmax = 0.811 20367 measured reflections. 5126 independent reflections 3612 reflections with F2 > 2σ(F2) Rint = 0.037 θmax = 27.5° h = −36→36 k = −12→12 l = −29→29. Refinement Refinement on F2 R[F2 > 2σ(F2)] = 0.021 wR(F2) = 0.045 S = 1.01 3612 reflections 317 parameters. H-atom parameters constrained w = 1/[0.0002Fo2 + σ(Fo2)]/(4Fo2) (Δ/σ)max < 0.001 Δρmax = 0.42 e Å−3 Δρmin = −0.32 e Å−3. Special details Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). Sm1. x. y. z. Uiso*/Ueq. 0.5000. 0.66665 (2). 0.2500. 0.02974 (4). Acta Cryst. (2004). E60, m1627–m1629. sup-1.

(6) supporting information Na1 O1 O2 O3 O4 O5 O6 N1 N2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9) H(10) H(11) H(12) H(13). 0.5000 0.46775 (7) 0.41453 (9) 0.30188 (9) 0.52592 (8) 0.5418 (1) 0.5729 (1) 0.60585 (8) 0.61138 (8) 0.6059 (1) 0.6593 (1) 0.7152 (1) 0.7185 (1) 0.7764 (1) 0.7790 (1) 0.7240 (1) 0.7258 (1) 0.6731 (1) 0.6164 (1) 0.66537 (9) 0.6626 (1) 0.4221 (1) 0.3759 (1) 0.3892 (1) 0.3461 (2) 0.2875 (2) 0.2725 (1) 0.3172 (1) 0.5414 (1) 0.5584 (1) 0.5595 (1) 0.5744 (2) 0.5874 (2) 0.5868 (1) 0.5731 (1) 0.5654 0.6567 0.7533 0.8147 0.8192 0.7654 0.6743 0.5784 0.4304 0.3569 0.2561 0.2305 0.5490. Acta Cryst. (2004). E60, m1627–m1629. 0.1896 (1) 0.4943 (2) 0.2915 (2) 0.2739 (2) 0.8342 (2) 1.0662 (2) 1.1596 (2) 0.5509 (2) 0.7673 (2) 0.4520 (3) 0.3757 (3) 0.3998 (3) 0.5030 (3) 0.5362 (3) 0.6411 (3) 0.7242 (3) 0.8401 (3) 0.9195 (3) 0.8798 (3) 0.6920 (2) 0.5783 (2) 0.4100 (3) 0.4567 (2) 0.5706 (3) 0.6170 (3) 0.5526 (3) 0.4398 (3) 0.3880 (3) 0.9397 (3) 0.9107 (2) 0.7713 (3) 0.7431 (4) 0.8549 (4) 0.9927 (4) 1.0221 (3) 0.4319 0.3067 0.3447 0.4804 0.6614 0.8640 1.0033 0.9380 0.6190 0.6946 0.5887 0.3947 0.6922. 0.2500 0.2897 (1) 0.2323 (1) 0.1799 (1) 0.3399 (1) 0.3663 (1) 0.4941 (1) 0.3844 (1) 0.3084 (1) 0.4262 (1) 0.4890 (2) 0.5079 (1) 0.4665 (1) 0.4854 (2) 0.4481 (2) 0.3878 (1) 0.3504 (1) 0.2972 (2) 0.2774 (1) 0.3653 (1) 0.4055 (1) 0.2633 (1) 0.2698 (1) 0.3185 (1) 0.3233 (2) 0.2765 (2) 0.2283 (2) 0.2256 (2) 0.3840 (1) 0.4608 (1) 0.4830 (2) 0.5532 (2) 0.6014 (2) 0.5819 (1) 0.5116 (1) 0.4118 0.5192 0.5503 0.5263 0.4618 0.3632 0.2724 0.2386 0.3501 0.3595 0.2782 0.1959 0.4476. 0.0479 (4) 0.0549 (5) 0.0596 (6) 0.0667 (6) 0.0550 (5) 0.0637 (6) 0.0771 (7) 0.0384 (5) 0.0374 (5) 0.0510 (7) 0.0626 (8) 0.0592 (8) 0.0483 (7) 0.0615 (8) 0.0607 (8) 0.0455 (7) 0.0533 (8) 0.0527 (8) 0.0476 (7) 0.0354 (6) 0.0373 (6) 0.0416 (7) 0.0383 (6) 0.0510 (8) 0.072 (1) 0.081 (1) 0.071 (1) 0.0488 (7) 0.0422 (7) 0.0385 (6) 0.0556 (8) 0.079 (1) 0.079 (1) 0.0679 (9) 0.0502 (7) 0.059* 0.068* 0.059* 0.063* 0.068* 0.066* 0.065* 0.056* 0.067* 0.107* 0.124* 0.093* 0.066*. sup-2.

(7) supporting information H(14) H(15) H(16) H(17) H(18). 0.5769 0.5967 0.5956 0.3374 0.5642. 0.6443 0.8354 1.0715 0.2498 1.1670. 0.5697 0.6506 0.6165 0.1839 0.4459. 0.098* 0.096* 0.082* 0.075* 0.103*. Atomic displacement parameters (Å2). Sm1 Na1 O1 O2 O3 O4 O5 O6 N1 N2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26. U11. U22. U33. U12. U13. U23. 0.02849 (9) 0.0547 (8) 0.0399 (9) 0.075 (1) 0.061 (1) 0.050 (1) 0.088 (1) 0.126 (2) 0.037 (1) 0.035 (1) 0.050 (1) 0.063 (2) 0.049 (2) 0.042 (1) 0.032 (1) 0.033 (1) 0.034 (1) 0.043 (1) 0.053 (2) 0.043 (1) 0.031 (1) 0.033 (1) 0.040 (1) 0.041 (1) 0.065 (2) 0.113 (3) 0.107 (3) 0.060 (2) 0.047 (1) 0.032 (1) 0.032 (1) 0.058 (2) 0.105 (2) 0.094 (2) 0.076 (2) 0.052 (1). 0.03119 (9) 0.0462 (8) 0.069 (1) 0.047 (1) 0.052 (1) 0.066 (1) 0.053 (1) 0.047 (1) 0.037 (1) 0.037 (1) 0.049 (1) 0.056 (2) 0.054 (2) 0.044 (1) 0.065 (2) 0.069 (2) 0.049 (1) 0.061 (2) 0.051 (2) 0.044 (1) 0.035 (1) 0.036 (1) 0.046 (1) 0.034 (1) 0.042 (1) 0.047 (2) 0.050 (2) 0.055 (2) 0.036 (1) 0.051 (2) 0.042 (1) 0.050 (1) 0.062 (2) 0.091 (3) 0.081 (2) 0.052 (2). 0.03276 (9) 0.0505 (7) 0.058 (1) 0.078 (1) 0.076 (1) 0.0473 (9) 0.056 (1) 0.083 (1) 0.039 (1) 0.040 (1) 0.049 (1) 0.050 (2) 0.044 (1) 0.043 (1) 0.059 (2) 0.068 (2) 0.050 (1) 0.062 (2) 0.058 (2) 0.052 (1) 0.036 (1) 0.035 (1) 0.042 (1) 0.047 (1) 0.061 (2) 0.109 (3) 0.154 (3) 0.119 (3) 0.064 (2) 0.039 (1) 0.037 (1) 0.058 (2) 0.078 (2) 0.053 (2) 0.048 (2) 0.047 (1). 0.0000 0.0000 0.0005 (9) 0.0065 (9) −0.019 (1) −0.0045 (9) −0.004 (1) −0.027 (1) −0.0005 (8) −0.0014 (8) −0.003 (1) −0.001 (1) 0.010 (1) 0.004 (1) 0.010 (1) −0.000 (1) −0.006 (1) −0.014 (1) −0.012 (1) −0.002 (1) −0.0013 (9) 0.0002 (9) 0.002 (1) −0.0019 (9) −0.012 (1) −0.003 (2) 0.003 (2) −0.005 (1) −0.005 (1) −0.001 (1) −0.004 (1) −0.001 (1) −0.000 (2) −0.013 (2) −0.023 (2) −0.015 (1). 0.02195 (7) 0.0386 (7) 0.0337 (8) 0.060 (1) 0.041 (1) 0.0320 (8) 0.050 (1) 0.080 (1) 0.0251 (9) 0.0252 (9) 0.032 (1) 0.030 (1) 0.019 (1) 0.022 (1) 0.019 (1) 0.029 (1) 0.027 (1) 0.037 (1) 0.039 (1) 0.030 (1) 0.021 (1) 0.020 (1) 0.029 (1) 0.033 (1) 0.049 (1) 0.095 (2) 0.115 (3) 0.069 (2) 0.038 (1) 0.022 (1) 0.021 (1) 0.039 (1) 0.065 (2) 0.051 (2) 0.043 (2) 0.033 (1). 0.0000 0.0000 0.0146 (9) −0.0003 (9) −0.020 (1) −0.0193 (9) 0.0060 (9) −0.020 (1) 0.0027 (8) 0.0013 (9) 0.006 (1) 0.016 (1) 0.012 (1) 0.001 (1) 0.008 (1) 0.000 (1) −0.008 (1) −0.006 (1) 0.002 (1) 0.005 (1) −0.0054 (9) −0.0027 (9) 0.012 (1) 0.004 (1) −0.006 (1) −0.005 (2) 0.004 (2) 0.008 (2) 0.001 (1) −0.004 (1) −0.003 (1) −0.000 (1) 0.018 (2) 0.002 (2) −0.018 (2) −0.010 (1). Acta Cryst. (2004). E60, m1627–m1629. sup-3.

(8) supporting information Geometric parameters (Å, º) Sm1—O1 Sm1—O1i Sm1—O4 Sm1—O4i Sm1—N1 Sm1—N1i Sm1—N2 Sm1—N2i Na1—O2 Na1—O2i Na1—O5ii Na1—O5iii O1—C13 O2—C13 O3—C19 O4—C20 O5—Na1iv O5—C20 O6—C26 N1—C1 N1—C12 N2—C10 N2—C11 C1—C2 C2—C3 C3—C4 C4—C5 C4—C12 C5—C6 C6—C7 C7—C8 C7—C11 C8—C9 C9—C10. 2.318 (2) 2.318 (2) 2.270 (2) 2.270 (2) 2.681 (1) 2.681 (1) 2.652 (2) 2.652 (2) 2.383 (3) 2.383 (3) 2.348 (2) 2.348 (2) 1.272 (3) 1.250 (3) 1.341 (4) 1.255 (3) 2.348 (2) 1.250 (3) 1.343 (3) 1.327 (4) 1.364 (4) 1.326 (4) 1.361 (2) 1.391 (3) 1.360 (6) 1.396 (5) 1.431 (5) 1.406 (3) 1.331 (5) 1.429 (3) 1.399 (5) 1.411 (4) 1.350 (3) 1.402 (5). C11—C12 C13—C14 C14—C15 C14—C19 C15—C16 C16—C17 C17—C18 C18—C19 C20—C21 C21—C22 C21—C26 C22—C23 C23—C24 C24—C25 C25—C26 O3—H(17) O6—H(18) C1—H(1) C2—H(2) C3—H(3) C5—H(4) C6—H(5) C8—H(6) C9—H(7) C10—H(8) C15—H(9) C16—H(10) C17—H(11) C18—H(12) C22—H(13) C23—H(14) C24—H(15) C25—H(16). 1.439 (4) 1.488 (5) 1.391 (4) 1.395 (3) 1.374 (7) 1.373 (5) 1.366 (5) 1.404 (6) 1.493 (4) 1.389 (4) 1.394 (4) 1.376 (6) 1.374 (6) 1.357 (5) 1.396 (5) 0.9782 0.9527 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800. O1i—Sm1—O1 O4—Sm1—O1 O4i—Sm1—O1 N1—Sm1—O1 N1i—Sm1—O1 N2—Sm1—O1 N2i—Sm1—O1 Sm1—O1—C13 O4—Sm1—O1i O4i—Sm1—O1i N1—Sm1—O1i. 92.05 (8) 95.70 (8) 149.04 (6) 73.22 (6) 74.28 (6) 134.86 (5) 77.69 (7) 142.5 (2) 149.04 (6) 95.70 (8) 74.28 (6). C11—N2—C10 N2—C10—C9 N2—C11—C12 N2—C11—C7 C1—C2—C3 C2—C3—C4 C3—C4—C12 C3—C4—C5 C12—C4—C5 C4—C5—C6 C4—C12—C11. 117.2 (2) 123.6 (2) 118.4 (2) 122.5 (2) 118.5 (3) 119.9 (2) 117.7 (3) 122.4 (2) 119.8 (3) 121.1 (2) 119.1 (3). Acta Cryst. (2004). E60, m1627–m1629. sup-4.

(9) supporting information N1i—Sm1—O1i N2—Sm1—O1i N2i—Sm1—O1i Sm1—O1i—C13i O4i—Sm1—O4 N1—Sm1—O4 N1i—Sm1—O4 N2—Sm1—O4 N2i—Sm1—O4 Sm1—O4—C20 N1—Sm1—O4i N1i—Sm1—O4i N2—Sm1—O4i N2i—Sm1—O4i Sm1—O4i—C20i N1i—Sm1—N1 N2—Sm1—N1 N2i—Sm1—N1 Sm1—N1—C1 Sm1—N1—C12 N2—Sm1—N1i N2i—Sm1—N1i Sm1—N1i—C1i Sm1—N1i—C12i N2i—Sm1—N2 Sm1—N2—C10 Sm1—N2—C11 Sm1—N2i—C10i Sm1—N2i—C11i Na1—O2—C13 O2i—Na1—O2 O5ii—Na1—O2 O5iii—Na1—O2 Na1—O2i—C13i O5ii—Na1—O2i O5iii—Na1—O2i O5iii—Na1—O5ii Na1—O5ii—C20ii Na1—O5iii—C20iii O1—C13—O2 O1—C13—C14 O2—C13—C14 O3—C19—C14 O3—C19—C18 O4—C20—O5 O4—C20—C21 C20—O5—Na1iv O5—Na1iv—O2iv. Acta Cryst. (2004). E60, m1627–m1629. 73.22 (6) 77.69 (7) 134.86 (5) 142.5 (2) 92.88 (7) 79.39 (6) 137.70 (7) 75.63 (8) 76.09 (6) 171.1 (2) 137.70 (7) 79.39 (6) 76.09 (6) 75.63 (8) 171.1 (2) 132.46 (5) 61.67 (7) 139.49 (8) 123.8 (2) 118.7 (2) 139.49 (8) 61.67 (7) 123.8 (2) 118.7 (2) 138.48 (6) 122.4 (1) 119.8 (2) 122.4 (1) 119.8 (2) 119.3 (2) 132.90 (9) 94.0 (1) 108.81 (8) 119.3 (2) 108.81 (8) 94.0 (1) 121.27 (9) 136.0 (2) 136.0 (2) 123.1 (3) 117.7 (2) 119.2 (3) 122.1 (3) 118.5 (2) 123.9 (3) 117.2 (2) 136.0 (2) 94.0 (1). C5—C6—C7 C6—C7—C11 C6—C7—C8 C11—C7—C8 C7—C8—C9 C7—C11—C12 C8—C9—C10 C13—C14—C15 C13—C14—C19 C19—C14—C15 C14—C15—C16 C14—C19—C18 C15—C16—C17 C16—C17—C18 C17—C18—C19 C20—C21—C22 C20—C21—C26 C26—C21—C22 C21—C22—C23 C21—C26—C25 C22—C23—C24 C23—C24—C25 C24—C25—C26 H(17)—O3—C19 H(18)—O6—C26 N1—C1—H(1) N2—C10—H(8) H(1)—C1—C2 C1—C2—H(2) H(2)—C2—C3 C2—C3—H(3) H(3)—C3—C4 C4—C5—H(4) H(4)—C5—C6 C5—C6—H(5) H(5)—C6—C7 C7—C8—H(6) H(6)—C8—C9 C8—C9—H(7) C9—C10—H(8) H(7)—C9—C10 C14—C15—H(9) H(9)—C15—C16 C15—C16—H(10) H(10)—C16—C17 C16—C17—H(11) C17—C18—H(12) H(11)—C18—C18. 121.1 (3) 119.7 (3) 122.6 (3) 117.7 (2) 119.7 (3) 119.1 (2) 119.1 (3) 121.2 (2) 120.2 (2) 118.6 (3) 121.6 (3) 119.4 (3) 119.1 (4) 121.2 (5) 120.0 (3) 120.4 (3) 121.2 (2) 118.4 (3) 121.1 (3) 120.1 (3) 119.4 (3) 121.4 (4) 119.6 (3) 109.5597 111.0010 117.4796 117.8832 118.0856 120.6900 120.8132 120.4447 119.6707 119.3456 119.5366 119.6640 119.2290 120.0951 120.1908 120.2810 118.5311 120.5726 119.1220 119.2397 120.6795 120.2617 118.9731 119.8621 119.7792. sup-5.

(10) supporting information O5—Na1iv—O2v O5—Na1iv—O5i O5—C20—C21 O6—C26—C21 O6—C26—C25 C12—N1—C1 N1—C1—C2 N1—C12—C11 N1—C12—C4. 108.81 (8) 121.27 (9) 118.9 (2) 121.8 (3) 118.1 (3) 116.8 (2) 124.4 (3) 118.3 (2) 122.6 (3). H(12)—C18—C19 C21—C22—H(13) H(13)—C22—C23 C22—C23—H(14) H(14)—C23—C24 C23—C24—H(15) C24—C25—H(16) H(15)—C24—C25 H(16)—C25—C26. 120.1727 119.0956 119.8051 120.7796 119.8516 119.5326 120.4757 119.0881 119.8892. Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, y−1, z; (iii) −x+1, y−1, −z+1/2; (iv) x, y+1, z; (v) −x+1, y+1, −z+1/2.. Hydrogen-bond geometry (Å, º) D—H···A. D—H. H···A. D···A. D—H···A. O3—H17···O2 O6—H18···O5. 0.98 0.95. 1.71 1.74. 2.566 (4) 2.560 (4). 144 142. Acta Cryst. (2004). E60, m1627–m1629. sup-6.

(11)

New documents

Human Right Ending We used the human- written “right ending” in SCT as the ground truth.. Two candidates in SCT are written by a person that did not write the original story

The first stage planning maps the input facts encoded as a directed, labeled graph, where nodes represent entities and edges represent relations to text plans, while the second stage

There had been improvements in the overall governance and management of the centre since the previous inspection and a number of systems had been put in place to ensure that the service

In conclusion, we demonstrated in this study for the first time that the newly discovered cyto- kine IL-34 is expressed by the periprosthetic membranes of patients with aseptic

While automatic output quality estimation QE is an established field of research in other areas of NLP, such as machine translation MT Specia et al., 2010, 2018, research on QE in

There had been continued improvements in the overall governance and management of the centre since the previous inspection and a number of systems had been put in place to ensure that

Eligible studies should provide the number of patients with a short and long RFI 24-months as a cutoff usu- ally and their corresponding 5-year PRS.. The pooled relative risk RR with

Human evaluation of natural language generation systems can be done using intrinsic and extrinsic methods Sparck Jones and Galliers, 1996; Belz and Reiter, 2006.. Intrinsic approaches

Outcome 01: Statement of Purpose Outcome 02: Contract for the Provision of Services Outcome 03: Suitable Person in Charge Outcome 04: Records and documentation to be kept at a

Goodman and Kruskal’s Gamma was measured with the GoodmanKruskalGamma function sup- plied by the R software.14 In order to interpret the values obtained in the analysis, we use the