• No results found

N (1 Ferrocenyleth­yl) N (1 phenyl­ethyl)methyl­amine

N/A
N/A
Protected

Academic year: 2020

Share "N (1 Ferrocenyleth­yl) N (1 phenyl­ethyl)methyl­amine"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2006). E62, m511–m512 doi:10.1107/S1600536806004740 Yinet al. [Fe(C

5H5)(C16H20N)]

m511

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

N

-(1-Ferrocenylethyl)-

N

-(1-phenylethyl)-methylamine

Zhi-Gang Yin,* Heng-Yu Qian, Jia Jia and Chun-Xia Zhang

School of Materials & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People’s Republic of China

Correspondence e-mail: hengyuqian@yahoo.com

Key indicators

Single-crystal X-ray study

T= 291 K

Mean(C–C) = 0.008 A˚

Rfactor = 0.056

wRfactor = 0.130

Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 4 January 2006 Accepted 8 February 2006

#2006 International Union of Crystallography All rights reserved

The title compound, [Fe(C5H5)(C16H20N)], was synthesized by

reductive methylation of the corresponding secondary amine. In the crystal structure, C—H interactions are observed between neighboring molecules.

Comment

Ferrocenylalkylamine derivatives have been used in asym-metric catalytic hydrogenation (Hayashi et al., 1986), allylic substitution (Sawamura & Ito, 1992) and aldol reactions (Togni et al., 1996). The structure of 1-ferrocenyl-N -(1-phenylethyl)ethylamine (Qianet al., 2005) has been reported by our group. As part of our study of the cyclopalladation of tertiary amines, the crystal structure of the title compound, (I), is presented here.

The molecular structure of (I) is shown in Fig.1, and selected bond lengths and angles are given in Table 1. The cyclopentadienyl rings of the ferrocene moiety are parallel to each other, with a dihedral angle of 2.7 (3). Atom N1 is

coplanar with the C11/C12/C13 plane, the deviation being 0.022 (4) A˚ . Atoms C11 and N1 are displaced from the benzene plane by 1.308 (5) and 1.261 (4) A˚ , respectively.

In the crystal structure of (I), molecules are linked by C— H interactions [H7A Cg1i = 3.10 A˚ and C7— H7A Cg1i = 153, and H8A Cg2ii

= 3.14 A˚ and C8— H8A Cg2ii= 126, whereCg1 andCg2 are the centroids of

the C1-containing and C13-containing rings, respectively; symmetry codes: (i) 1x,1

2+y, 1z; (ii) 1x, 1

2+y,z].

Experimental

(2)

2983, 1615, 1484, 1446, 1120, 1000, 822;1H NMR (CDCl3):7.25–7.39

(m, 5H), 4.10–4.11 (m, 4H), 4.02 (s, 5H), 3.79 (dd, 1H,J= 6.8 Hz andJ= 12.9 Hz), 3.49 (dd, 1H,J= 6.4 Hz andJ= 12.6 Hz), 1.92 (s, 3H) 1.37 (d, 3H,J= 6.8 Hz), 1.24 (d, 3H, J= 6.4 Hz); Elemental analysis calculated for C21H25FeN: C 72.62, H 7.20, N 4.03%; found: C

72.38, H 7.49, N 4.13%.

Crystal data

[Fe(C5H5)(C16H20N)]

Mr= 347.27 Monoclinic,P21

a= 5.8833 (12) A˚

b= 10.748 (2) A˚

c= 14.191 (3) A˚ = 97.82 (3)

V= 889.0 (3) A˚3

Z= 2

Dx= 1.297 Mg m

3

MoKradiation Cell parameters from 714

reflections = 2.1–12.4

= 0.85 mm1

T= 291 (2) K Block, orange 0.200.180.16 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer ’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.849,Tmax= 0.876

5026 measured reflections

3239 independent reflections 2928 reflections withI> 2(I)

Rint= 0.060 max= 26.0

h=7!7

k=13!13

l=17!17

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.056

wR(F2) = 0.130

S= 1.07 3239 reflections 208 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0644P)2

+ 0.55P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.33 e A˚

3 min=0.45 e A˚

3

Absolute structure: Flack (1983), 1394 Friedel Pairs

Flack parameter: 0.06 (3)

Table 1

Selected geometric parameters (A˚ ,).

N1—C12 1.489 (6)

N1—C11 1.497 (6)

C11—C19 1.522 (7)

C12—C13 1.517 (7)

C12—C21 1.532 (7)

C17—C18 1.390 (8)

C20—N1—C12 110.3 (4) C20—N1—C11 111.6 (4) C12—N1—C11 113.3 (4) N1—C11—C19 115.2 (4)

N1—C11—C10 107.4 (4) N1—C12—C13 110.1 (4) N1—C12—C21 111.3 (4)

Methyl H atoms were placed in calculated positions, with C—H = 0.96 A˚ , and refined withUiso(H)= 1.5Ueq(C). Other H atoms were

placed in calculated positions, with C—H = 0.93–0.98 A˚ , and refined as riding, withUiso(H)=1.2Ueq(C).

Data collection:SMART(Bruker, 2000); cell refinement:SAINT (Bruker, 2000); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

The work was supported by the Startup Foundations for Natural Science of Zhengzhou University of Light Industry (Nos. 2005001 and 000455).

References

Bruker (2000).SMART,SAINT,SADABSandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Hayashi, T., Konishi, M., Okamoto, K., Katsumura, K. & Kumada. M. (1986).

J. Org. Chem.51, 3772–3781.

Qian, H.-Y., Cui, X.-L. & Yin, Z.-G. (2005).Acta Cryst.E61, m2641–2642. Sawamura, M. & Ito, Y. (1992).Chem. Rev.92, 857–871.

Togni, A., Burckhardt, U., Gramlich, V., Pergosin, P. S. & Salzmann, R. (1996).

[image:2.610.315.565.71.189.2]

J. Am. Chem. Soc.118, 1031–1037. Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2006). E62, m511–m512

supporting information

Acta Cryst. (2006). E62, m511–m512 [https://doi.org/10.1107/S1600536806004740]

N

-(1-Ferrocenylethyl)-

N

-(1-phenylethyl)methylamine

Zhi-Gang Yin, Heng-Yu Qian, Jia Jia and Chun-Xia Zhang

N-(1-Ferrocenylethyl)-N-(1-phenylethyl)methylamine

Crystal data

[Fe(C5H5)(C16H20N)]

Mr = 347.27

Monoclinic, P21 Hall symbol: P 2yb

a = 5.8833 (12) Å

b = 10.748 (2) Å

c = 14.191 (3) Å

β = 97.82 (3)°

V = 889.0 (3) Å3

Z = 2

F(000) = 368

Dx = 1.297 Mg m−3 Melting point: 198 K

Mo radiation, λ = 0.71073 Å Cell parameters from 714 reflections

θ = 2.1–12.4°

µ = 0.85 mm−1

T = 291 K Block, orange

0.20 × 0.18 × 0.16 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.849, Tmax = 0.876

5026 measured reflections 3239 independent reflections 2928 reflections with I > 2σ(I)

Rint = 0.060

θmax = 26.0°, θmin = 1.4°

h = −7→7

k = −13→13

l = −17→17

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.056

wR(F2) = 0.130

S = 1.07 3239 reflections 208 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0644P)2 + 0.55P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.33 e Å−3 Δρmin = −0.45 e Å−3

Absolute structure: Flack (1983), 1394 Friedel Pairs

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Fe1 0.51940 (10) 0.85961 (7) 0.36379 (4) 0.02886 (18)

N1 0.2664 (7) 0.8054 (4) 0.0590 (3) 0.0275 (8)

C1 0.5643 (8) 0.6780 (5) 0.4086 (4) 0.0347 (11)

H1A 0.5067 0.6045 0.3720 0.042*

C2 0.7782 (8) 0.7338 (5) 0.4062 (4) 0.0346 (11)

H2A 0.8963 0.7060 0.3684 0.041*

C3 0.7931 (8) 0.8328 (4) 0.4657 (3) 0.0353 (13)

H3A 0.9256 0.8885 0.4786 0.042*

C4 0.5879 (8) 0.8430 (5) 0.5065 (3) 0.0339 (12)

H4A 0.5544 0.9044 0.5537 0.041*

C5 0.4451 (8) 0.7451 (5) 0.4694 (4) 0.0324 (11)

H5A 0.2919 0.7259 0.4853 0.039*

C6 0.2194 (9) 0.9202 (5) 0.2888 (3) 0.0367 (11)

H6A 0.0651 0.8931 0.2984 0.044*

C7 0.3422 (9) 1.0221 (5) 0.3355 (4) 0.0377 (12)

H7A 0.2880 1.0781 0.3822 0.045*

C8 0.5540 (8) 1.0272 (5) 0.3020 (4) 0.0363 (12)

H8A 0.6756 1.0878 0.3215 0.044*

C9 0.5625 (11) 0.9327 (6) 0.2342 (4) 0.0436 (13)

H9A 0.6925 0.9159 0.1995 0.052*

C10 0.3585 (7) 0.8649 (7) 0.2256 (3) 0.0358 (10)

C11 0.3029 (9) 0.7548 (4) 0.1581 (4) 0.0332 (11)

H11A 0.4410 0.7029 0.1633 0.040*

C12 0.2412 (10) 0.7068 (5) −0.0155 (4) 0.0393 (12)

H12A 0.1013 0.6593 −0.0101 0.047*

C13 0.2191 (10) 0.7653 (4) −0.1136 (4) 0.0377 (12)

C14 0.3994 (10) 0.8343 (5) −0.1411 (4) 0.0423 (14)

H14A 0.5363 0.8423 −0.1003 0.051*

C15 0.3729 (9) 0.8921 (4) −0.2313 (4) 0.0359 (12)

H15A 0.4892 0.9429 −0.2479 0.043*

C16 0.1785 (9) 0.8744 (7) −0.2943 (4) 0.0438 (13)

H16A 0.1635 0.9111 −0.3542 0.053*

C17 0.0063 (9) 0.8021 (5) −0.2684 (4) 0.0378 (12)

H17A −0.1245 0.7875 −0.3117 0.045*

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, m511–m512

H18A −0.0968 0.7040 −0.1608 0.053*

C19 0.1104 (9) 0.6728 (6) 0.1846 (4) 0.0401 (12)

H19A 0.0832 0.6058 0.1397 0.060*

H19B −0.0269 0.7214 0.1834 0.060*

H19C 0.1533 0.6395 0.2472 0.060*

C20 0.0696 (8) 0.8911 (4) 0.0445 (4) 0.0340 (12)

H20A 0.0516 0.9223 −0.0194 0.051*

H20B 0.0959 0.9593 0.0883 0.051*

H20C −0.0671 0.8476 0.0553 0.051*

C21 0.4457 (10) 0.6173 (6) −0.0029 (5) 0.0480 (16)

H21A 0.4610 0.5814 0.0596 0.072*

H21B 0.5832 0.6620 −0.0107 0.072*

H21C 0.4211 0.5525 −0.0497 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Fe1 0.0291 (3) 0.0301 (3) 0.0258 (3) 0.0066 (4) −0.0020 (2) 0.0019 (3)

N1 0.027 (2) 0.0238 (18) 0.030 (2) 0.0010 (15) −0.0032 (16) −0.0030 (16)

C1 0.032 (3) 0.040 (3) 0.030 (2) 0.016 (2) −0.0055 (19) 0.012 (2)

C2 0.028 (2) 0.041 (3) 0.034 (3) 0.012 (2) −0.0011 (19) 0.012 (2)

C3 0.030 (2) 0.033 (3) 0.037 (2) 0.0006 (19) −0.0142 (18) 0.013 (2)

C4 0.041 (2) 0.027 (3) 0.032 (2) 0.019 (2) −0.0020 (17) 0.003 (2)

C5 0.032 (3) 0.033 (3) 0.035 (3) 0.016 (2) 0.015 (2) 0.014 (2)

C6 0.039 (3) 0.041 (3) 0.029 (2) 0.013 (2) 0.001 (2) 0.000 (2)

C7 0.034 (3) 0.045 (3) 0.029 (3) 0.016 (2) −0.012 (2) −0.011 (2)

C8 0.027 (2) 0.045 (3) 0.035 (3) −0.012 (2) −0.004 (2) 0.006 (2)

C9 0.056 (3) 0.049 (3) 0.024 (2) −0.010 (3) −0.001 (2) 0.007 (2)

C10 0.034 (2) 0.044 (3) 0.027 (2) −0.003 (3) −0.0022 (16) −0.012 (3)

C11 0.044 (3) 0.020 (2) 0.035 (3) −0.0041 (19) 0.000 (2) 0.0043 (19)

C12 0.048 (3) 0.034 (3) 0.035 (3) 0.002 (2) 0.004 (2) 0.002 (2)

C13 0.054 (3) 0.019 (2) 0.038 (3) 0.003 (2) −0.001 (2) −0.0070 (19)

C14 0.054 (3) 0.039 (4) 0.031 (2) −0.007 (2) −0.004 (2) −0.003 (2)

C15 0.045 (3) 0.026 (3) 0.042 (3) −0.0106 (19) 0.024 (2) 0.0038 (19)

C16 0.043 (3) 0.045 (4) 0.043 (3) 0.009 (3) 0.004 (2) 0.012 (3)

C17 0.036 (3) 0.034 (3) 0.037 (3) 0.011 (2) −0.017 (2) −0.003 (2)

C18 0.045 (3) 0.049 (3) 0.036 (3) −0.005 (3) −0.008 (2) −0.002 (2)

C19 0.035 (3) 0.049 (3) 0.036 (3) −0.008 (2) 0.003 (2) 0.007 (2)

C20 0.031 (2) 0.032 (3) 0.035 (2) 0.0161 (18) −0.0075 (18) 0.0015 (18)

C21 0.055 (5) 0.047 (3) 0.038 (3) 0.024 (3) −0.007 (3) −0.017 (2)

Geometric parameters (Å, º)

Fe1—C4 2.018 (5) C8—H8A 0.9800

Fe1—C8 2.026 (5) C9—C10 1.396 (8)

Fe1—C5 2.032 (5) C9—H9A 0.9800

Fe1—C3 2.033 (4) C10—C11 1.529 (8)

(6)

Fe1—C7 2.046 (5) C11—H11A 0.9800

Fe1—C9 2.048 (5) C12—C13 1.517 (7)

Fe1—C1 2.058 (5) C12—C21 1.532 (7)

Fe1—C10 2.059 (4) C12—H12A 0.9800

Fe1—C2 2.064 (5) C13—C18 1.372 (8)

N1—C20 1.472 (6) C13—C14 1.393 (8)

N1—C12 1.489 (6) C14—C15 1.412 (7)

N1—C11 1.497 (6) C14—H14A 0.9300

C1—C5 1.386 (7) C15—C16 1.367 (8)

C1—C2 1.398 (8) C15—H15A 0.9300

C1—H1A 0.9800 C16—C17 1.366 (8)

C2—C3 1.355 (8) C16—H16A 0.9300

C2—H2A 0.9800 C17—C18 1.390 (8)

C3—C4 1.412 (7) C17—H17A 0.9300

C3—H3A 0.9800 C18—H18A 0.9300

C4—C5 1.404 (8) C19—H19A 0.9600

C4—H4A 0.9800 C19—H19B 0.9600

C5—H5A 0.9800 C19—H19C 0.9600

C6—C10 1.424 (7) C20—H20A 0.9600

C6—C7 1.425 (8) C20—H20B 0.9600

C6—H6A 0.9800 C20—H20C 0.9600

C7—C8 1.394 (8) C21—H21A 0.9600

C7—H7A 0.9800 C21—H21B 0.9600

C8—C9 1.404 (8) C21—H21C 0.9600

C4—Fe1—C8 119.7 (2) C10—C6—C7 108.4 (5)

C4—Fe1—C5 40.6 (2) C10—C6—Fe1 70.4 (3)

C8—Fe1—C5 154.5 (2) C7—C6—Fe1 69.8 (3)

C4—Fe1—C3 40.8 (2) C10—C6—H6A 125.8

C8—Fe1—C3 108.51 (19) C7—C6—H6A 125.8

C5—Fe1—C3 67.6 (2) Fe1—C6—H6A 125.8

C4—Fe1—C6 126.3 (2) C8—C7—C6 107.0 (5)

C8—Fe1—C6 67.7 (2) C8—C7—Fe1 69.2 (3)

C5—Fe1—C6 108.7 (2) C6—C7—Fe1 69.3 (3)

C3—Fe1—C6 164.1 (2) C8—C7—H7A 126.5

C4—Fe1—C7 107.4 (2) C6—C7—H7A 126.5

C8—Fe1—C7 40.0 (2) Fe1—C7—H7A 126.5

C5—Fe1—C7 120.5 (2) C7—C8—C9 108.8 (5)

C3—Fe1—C7 126.4 (2) C7—C8—Fe1 70.8 (3)

C6—Fe1—C7 40.8 (2) C9—C8—Fe1 70.7 (3)

C4—Fe1—C9 154.6 (2) C7—C8—H8A 125.6

C8—Fe1—C9 40.3 (2) C9—C8—H8A 125.6

C5—Fe1—C9 163.8 (2) Fe1—C8—H8A 125.6

C3—Fe1—C9 120.7 (2) C10—C9—C8 109.1 (5)

C6—Fe1—C9 67.3 (2) C10—C9—Fe1 70.6 (3)

C7—Fe1—C9 67.5 (2) C8—C9—Fe1 69.0 (3)

C4—Fe1—C1 66.8 (2) C10—C9—H9A 125.5

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, m511–m512

C5—Fe1—C1 39.6 (2) Fe1—C9—H9A 125.5

C3—Fe1—C1 65.8 (2) C9—C10—C6 106.8 (6)

C6—Fe1—C1 122.0 (2) C9—C10—C11 124.6 (5)

C7—Fe1—C1 155.6 (2) C6—C10—C11 128.7 (5)

C9—Fe1—C1 127.9 (2) C9—C10—Fe1 69.7 (3)

C4—Fe1—C10 164.00 (19) C6—C10—Fe1 68.9 (3)

C8—Fe1—C10 67.9 (3) C11—C10—Fe1 127.3 (5)

C5—Fe1—C10 127.0 (3) N1—C11—C19 115.2 (4)

C3—Fe1—C10 153.9 (2) N1—C11—C10 107.4 (4)

C6—Fe1—C10 40.7 (2) C19—C11—C10 113.4 (4)

C7—Fe1—C10 68.5 (2) N1—C11—H11A 106.8

C9—Fe1—C10 39.7 (2) C19—C11—H11A 106.8

C1—Fe1—C10 110.1 (3) C10—C11—H11A 106.8

C4—Fe1—C2 67.1 (2) N1—C12—C13 110.1 (4)

C8—Fe1—C2 126.5 (2) N1—C12—C21 111.3 (4)

C5—Fe1—C2 67.19 (19) C13—C12—C21 109.6 (5)

C3—Fe1—C2 38.6 (2) N1—C12—H12A 108.6

C6—Fe1—C2 155.9 (2) C13—C12—H12A 108.6

C7—Fe1—C2 162.3 (2) C21—C12—H12A 108.6

C9—Fe1—C2 109.7 (2) C18—C13—C14 118.3 (5)

C1—Fe1—C2 39.6 (2) C18—C13—C12 121.4 (5)

C10—Fe1—C2 121.4 (2) C14—C13—C12 120.3 (5)

C20—N1—C12 110.3 (4) C13—C14—C15 119.6 (5)

C20—N1—C11 111.6 (4) C13—C14—H14A 120.2

C12—N1—C11 113.3 (4) C15—C14—H14A 120.2

C5—C1—C2 109.0 (5) C16—C15—C14 120.7 (5)

C5—C1—Fe1 69.2 (3) C16—C15—H15A 119.6

C2—C1—Fe1 70.4 (3) C14—C15—H15A 119.6

C5—C1—H1A 125.5 C17—C16—C15 119.2 (5)

C2—C1—H1A 125.5 C17—C16—H16A 120.4

Fe1—C1—H1A 125.5 C15—C16—H16A 120.4

C3—C2—C1 107.7 (5) C16—C17—C18 120.6 (5)

C3—C2—Fe1 69.5 (3) C16—C17—H17A 119.7

C1—C2—Fe1 70.0 (3) C18—C17—H17A 119.7

C3—C2—H2A 126.2 C13—C18—C17 121.4 (6)

C1—C2—H2A 126.2 C13—C18—H18A 119.3

Fe1—C2—H2A 126.2 C17—C18—H18A 119.3

C2—C3—C4 109.2 (5) C11—C19—H19A 109.5

C2—C3—Fe1 71.9 (3) C11—C19—H19B 109.5

C4—C3—Fe1 69.0 (3) H19A—C19—H19B 109.5

C2—C3—H3A 125.4 C11—C19—H19C 109.5

C4—C3—H3A 125.4 H19A—C19—H19C 109.5

Fe1—C3—H3A 125.4 H19B—C19—H19C 109.5

C5—C4—C3 106.9 (4) N1—C20—H20A 109.5

C5—C4—Fe1 70.3 (3) N1—C20—H20B 109.5

C3—C4—Fe1 70.2 (3) H20A—C20—H20B 109.5

C5—C4—H4A 126.5 N1—C20—H20C 109.5

(8)

Fe1—C4—H4A 126.5 H20B—C20—H20C 109.5

C1—C5—C4 107.2 (4) C12—C21—H21A 109.5

C1—C5—Fe1 71.2 (3) C12—C21—H21B 109.5

C4—C5—Fe1 69.2 (3) H21A—C21—H21B 109.5

C1—C5—H5A 126.4 C12—C21—H21C 109.5

C4—C5—H5A 126.4 H21A—C21—H21C 109.5

Fe1—C5—H5A 126.4 H21B—C21—H21C 109.5

C4—Fe1—C1—C5 38.8 (3) C5—Fe1—C7—C8 158.0 (3)

C8—Fe1—C1—C5 156.1 (7) C3—Fe1—C7—C8 74.7 (4)

C3—Fe1—C1—C5 83.5 (3) C6—Fe1—C7—C8 −118.5 (4)

C6—Fe1—C1—C5 −80.7 (4) C9—Fe1—C7—C8 −37.8 (3)

C7—Fe1—C1—C5 −42.3 (6) C1—Fe1—C7—C8 −172.1 (5)

C9—Fe1—C1—C5 −165.4 (3) C10—Fe1—C7—C8 −80.7 (3)

C10—Fe1—C1—C5 −124.3 (3) C2—Fe1—C7—C8 46.7 (8)

C2—Fe1—C1—C5 120.4 (5) C4—Fe1—C7—C6 −125.9 (3)

C4—Fe1—C1—C2 −81.5 (3) C8—Fe1—C7—C6 118.5 (4)

C8—Fe1—C1—C2 35.7 (9) C5—Fe1—C7—C6 −83.5 (3)

C5—Fe1—C1—C2 −120.4 (5) C3—Fe1—C7—C6 −166.9 (3)

C3—Fe1—C1—C2 −36.8 (3) C9—Fe1—C7—C6 80.7 (3)

C6—Fe1—C1—C2 159.0 (3) C1—Fe1—C7—C6 −53.7 (6)

C7—Fe1—C1—C2 −162.6 (4) C10—Fe1—C7—C6 37.7 (3)

C9—Fe1—C1—C2 74.2 (4) C2—Fe1—C7—C6 165.1 (6)

C10—Fe1—C1—C2 115.4 (3) C6—C7—C8—C9 1.4 (6)

C5—C1—C2—C3 0.9 (5) Fe1—C7—C8—C9 60.7 (4)

Fe1—C1—C2—C3 59.5 (3) C6—C7—C8—Fe1 −59.3 (4)

C5—C1—C2—Fe1 −58.6 (3) C4—Fe1—C8—C7 −81.8 (3)

C4—Fe1—C2—C3 −38.0 (3) C5—Fe1—C8—C7 −48.5 (6)

C8—Fe1—C2—C3 72.9 (4) C3—Fe1—C8—C7 −125.1 (3)

C5—Fe1—C2—C3 −82.2 (4) C6—Fe1—C8—C7 38.4 (3)

C6—Fe1—C2—C3 −167.0 (5) C9—Fe1—C8—C7 119.0 (4)

C7—Fe1—C2—C3 37.2 (8) C1—Fe1—C8—C7 168.3 (7)

C9—Fe1—C2—C3 114.9 (3) C10—Fe1—C8—C7 82.5 (3)

C1—Fe1—C2—C3 −118.8 (5) C2—Fe1—C8—C7 −164.0 (3)

C10—Fe1—C2—C3 157.3 (3) C4—Fe1—C8—C9 159.2 (3)

C4—Fe1—C2—C1 80.8 (3) C5—Fe1—C8—C9 −167.5 (5)

C8—Fe1—C2—C1 −168.3 (3) C3—Fe1—C8—C9 115.9 (4)

C5—Fe1—C2—C1 36.6 (3) C6—Fe1—C8—C9 −80.6 (4)

C3—Fe1—C2—C1 118.8 (5) C7—Fe1—C8—C9 −119.0 (4)

C6—Fe1—C2—C1 −48.2 (6) C1—Fe1—C8—C9 49.3 (9)

C7—Fe1—C2—C1 156.1 (6) C10—Fe1—C8—C9 −36.5 (3)

C9—Fe1—C2—C1 −126.3 (3) C2—Fe1—C8—C9 77.0 (4)

C10—Fe1—C2—C1 −83.9 (4) C7—C8—C9—C10 −1.4 (6)

C1—C2—C3—C4 −0.6 (5) Fe1—C8—C9—C10 59.4 (4)

Fe1—C2—C3—C4 59.2 (3) C7—C8—C9—Fe1 −60.8 (4)

C1—C2—C3—Fe1 −59.8 (3) C4—Fe1—C9—C10 −166.4 (5)

C4—Fe1—C3—C2 119.8 (5) C8—Fe1—C9—C10 −120.4 (5)

(9)

supporting information

sup-7

Acta Cryst. (2006). E62, m511–m512

C5—Fe1—C3—C2 81.0 (3) C3—Fe1—C9—C10 157.0 (4)

C6—Fe1—C3—C2 160.5 (7) C6—Fe1—C9—C10 −38.5 (4)

C7—Fe1—C3—C2 −166.8 (3) C7—Fe1—C9—C10 −82.9 (4)

C9—Fe1—C3—C2 −83.3 (4) C1—Fe1—C9—C10 75.1 (5)

C1—Fe1—C3—C2 37.8 (3) C2—Fe1—C9—C10 115.8 (4)

C10—Fe1—C3—C2 −48.6 (7) C4—Fe1—C9—C8 −45.9 (7)

C8—Fe1—C3—C4 114.3 (3) C5—Fe1—C9—C8 160.4 (7)

C5—Fe1—C3—C4 −38.7 (3) C3—Fe1—C9—C8 −82.6 (4)

C6—Fe1—C3—C4 40.7 (9) C6—Fe1—C9—C8 81.9 (4)

C7—Fe1—C3—C4 73.4 (4) C7—Fe1—C9—C8 37.5 (3)

C9—Fe1—C3—C4 156.9 (3) C1—Fe1—C9—C8 −164.5 (3)

C1—Fe1—C3—C4 −82.0 (3) C10—Fe1—C9—C8 120.4 (5)

C10—Fe1—C3—C4 −168.4 (6) C2—Fe1—C9—C8 −123.8 (3)

C2—Fe1—C3—C4 −119.8 (5) C8—C9—C10—C6 0.8 (7)

C2—C3—C4—C5 0.1 (5) Fe1—C9—C10—C6 59.2 (4)

Fe1—C3—C4—C5 61.0 (3) C8—C9—C10—C11 179.6 (5)

C2—C3—C4—Fe1 −60.9 (3) Fe1—C9—C10—C11 −122.0 (6)

C8—Fe1—C4—C5 158.6 (3) C8—C9—C10—Fe1 −58.4 (4)

C3—Fe1—C4—C5 −117.2 (4) C7—C6—C10—C9 0.0 (6)

C6—Fe1—C4—C5 75.7 (4) Fe1—C6—C10—C9 −59.7 (4)

C7—Fe1—C4—C5 116.8 (3) C7—C6—C10—C11 −178.7 (5)

C9—Fe1—C4—C5 −169.0 (5) Fe1—C6—C10—C11 121.6 (7)

C1—Fe1—C4—C5 −37.9 (3) C7—C6—C10—Fe1 59.7 (4)

C10—Fe1—C4—C5 44.1 (12) C4—Fe1—C10—C9 158.5 (9)

C2—Fe1—C4—C5 −81.2 (3) C8—Fe1—C10—C9 37.0 (4)

C8—Fe1—C4—C3 −84.2 (3) C5—Fe1—C10—C9 −167.0 (4)

C5—Fe1—C4—C3 117.2 (4) C3—Fe1—C10—C9 −50.0 (8)

C6—Fe1—C4—C3 −167.2 (3) C6—Fe1—C10—C9 118.2 (6)

C7—Fe1—C4—C3 −126.1 (3) C7—Fe1—C10—C9 80.3 (4)

C9—Fe1—C4—C3 −51.8 (7) C1—Fe1—C10—C9 −125.8 (4)

C1—Fe1—C4—C3 79.3 (3) C2—Fe1—C10—C9 −83.3 (5)

C10—Fe1—C4—C3 161.3 (10) C4—Fe1—C10—C6 40.3 (13)

C2—Fe1—C4—C3 36.0 (3) C8—Fe1—C10—C6 −81.1 (4)

C2—C1—C5—C4 −0.8 (5) C5—Fe1—C10—C6 74.8 (5)

Fe1—C1—C5—C4 −60.1 (3) C3—Fe1—C10—C6 −168.2 (4)

C2—C1—C5—Fe1 59.3 (3) C7—Fe1—C10—C6 −37.9 (4)

C3—C4—C5—C1 0.5 (5) C9—Fe1—C10—C6 −118.2 (6)

Fe1—C4—C5—C1 61.4 (3) C1—Fe1—C10—C6 116.1 (4)

C3—C4—C5—Fe1 −61.0 (3) C2—Fe1—C10—C6 158.6 (3)

C4—Fe1—C5—C1 −117.6 (4) C4—Fe1—C10—C11 −83.0 (11)

C8—Fe1—C5—C1 −164.8 (4) C8—Fe1—C10—C11 155.6 (5)

C3—Fe1—C5—C1 −78.6 (3) C5—Fe1—C10—C11 −48.4 (5)

C6—Fe1—C5—C1 117.9 (3) C3—Fe1—C10—C11 68.6 (7)

C7—Fe1—C5—C1 161.2 (3) C6—Fe1—C10—C11 −123.3 (6)

C9—Fe1—C5—C1 45.4 (9) C7—Fe1—C10—C11 −161.1 (5)

C10—Fe1—C5—C1 76.3 (4) C9—Fe1—C10—C11 118.6 (6)

C2—Fe1—C5—C1 −36.7 (3) C1—Fe1—C10—C11 −7.2 (4)

(10)

C3—Fe1—C5—C4 39.0 (3) C20—N1—C11—C19 64.9 (5)

C6—Fe1—C5—C4 −124.5 (3) C12—N1—C11—C19 −60.3 (6)

C7—Fe1—C5—C4 −81.2 (3) C20—N1—C11—C10 −62.5 (5)

C9—Fe1—C5—C4 162.9 (8) C12—N1—C11—C10 172.3 (4)

C1—Fe1—C5—C4 117.6 (4) C9—C10—C11—N1 −70.3 (7)

C10—Fe1—C5—C4 −166.1 (3) C6—C10—C11—N1 108.2 (7)

C2—Fe1—C5—C4 80.9 (3) Fe1—C10—C11—N1 −160.0 (3)

C4—Fe1—C6—C10 −167.2 (4) C9—C10—C11—C19 161.3 (6)

C8—Fe1—C6—C10 81.5 (4) C6—C10—C11—C19 −20.2 (8)

C5—Fe1—C6—C10 −125.6 (4) Fe1—C10—C11—C19 71.6 (5)

C3—Fe1—C6—C10 160.8 (7) C20—N1—C12—C13 57.5 (5)

C7—Fe1—C6—C10 119.1 (5) C11—N1—C12—C13 −176.6 (4)

C9—Fe1—C6—C10 37.7 (4) C20—N1—C12—C21 179.2 (5)

C1—Fe1—C6—C10 −83.9 (4) C11—N1—C12—C21 −54.9 (6)

C2—Fe1—C6—C10 −49.9 (7) N1—C12—C13—C18 −117.6 (6)

C4—Fe1—C6—C7 73.6 (4) C21—C12—C13—C18 119.6 (6)

C8—Fe1—C6—C7 −37.7 (3) N1—C12—C13—C14 63.7 (6)

C5—Fe1—C6—C7 115.3 (3) C21—C12—C13—C14 −59.1 (6)

C3—Fe1—C6—C7 41.7 (9) C18—C13—C14—C15 3.6 (8)

C9—Fe1—C6—C7 −81.5 (4) C12—C13—C14—C15 −177.6 (5)

C1—Fe1—C6—C7 156.9 (3) C13—C14—C15—C16 −4.4 (8)

C10—Fe1—C6—C7 −119.1 (5) C14—C15—C16—C17 1.5 (9)

C2—Fe1—C6—C7 −169.0 (5) C15—C16—C17—C18 2.0 (9)

C10—C6—C7—C8 −0.9 (6) C14—C13—C18—C17 −0.2 (8)

Fe1—C6—C7—C8 59.2 (4) C12—C13—C18—C17 −178.9 (5)

C10—C6—C7—Fe1 −60.1 (4) C16—C17—C18—C13 −2.7 (9)

Figure

Figure 1

References

Related documents

Quantitative data were collected from 3 coffee trees selected randomly from each accession on number of primary branches, number of internodes per branch, number of leaves per

This table reports OLS results from the estimation of equation (9) with management practices and additional controls for firm performance in the fiscal year prior to the

Fractional frequency flexible fourier form to approximate smooth breaks in unit root testing.. Teukosky

Given a task language and a set of candidate transfer languages, the model is trained to rank the transfer languages according to the performance achieved when they are used in

An advanced MRI technique such as Diffusion- Weighted Imaging (DWI) with quantitative absolute and normalised Apparent Diffusion Coefficient (ADC) measurements is employed

Personal income, corporate income, and sales taxes all have been found have no economic effects, positive effects or negative effects, relative to other taxes and expenditures.

Conclusion : Significant association was found between p53 positive cases and cases diagnosed as SHGUC and High Grade Urothelial Carcinoma (HGUC) in cytology as reported

nology (Chatterjee et al., 2017) and domain in- formation (Kobus et al., 2016). In this work, we designed a data preparation strategy for domain- specific translation systems to