• No results found

1 [2,6 Di­chloro 4 (tri­fluoro­meth­yl)phen­yl] 5 [(2 fur­yl)methyl­ene­amino] 1H pyrazole 3 carbo­nitrile

N/A
N/A
Protected

Academic year: 2020

Share "1 [2,6 Di­chloro 4 (tri­fluoro­meth­yl)phen­yl] 5 [(2 fur­yl)methyl­ene­amino] 1H pyrazole 3 carbo­nitrile"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2972

Zhonget al. C

16H7Cl2F3N4O doi:10.1107/S1600536805025699 Acta Cryst.(2005). E61, o2972–o2973 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-[(2-furyl)methyleneamino]-1

H

-pyrazole-3-carbonitrile

Ping Zhong,* Zhiping Yang,‡ Qian Shi, Maolin Hu, Shuyan Li and Riyuan Tang

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People’s Republic of China

‡ Present address: Zhangzhou Vocational and Technical College, 363000 Zhangzhou, People’s Republic of China

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.069 wRfactor = 0.204

Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C16H7Cl2F3N4O, is a tricyclic imide with

an overall U-shape. There are –interactions between the pyrazole and furyl rings.

Comment

The title compound, (I), is an important starting material for the synthesis of cyano-1-[2,6-dichloro-4-(trifluoro-methyl)phenyl]- 4-(trifluoromethyl)thiopyrazole, 5-amino-3-

cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoro-methylsulfenyl)pyrazole and

5-amino-3-cyano-1-[2,6- dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfon-yl)pyrazole, which are all good insecticides (Hatton et al., 1993).

The structure of (I) is shown in Fig. 1, with the atom-numbering scheme. The molecule contains three planar moieties, forming an overall U-shape. The dihedral angles between the pyrazole and the furyl and benzene rings are

[image:1.610.281.382.336.448.2] [image:1.610.227.434.538.711.2]

Received 28 February 2005 Accepted 11 August 2005 Online 17 August 2005

Figure 1

(2)

19.8 (2) and 67.9 (1), respectively. The plane-to-plane

separation of 3.8411 (1) A˚ between the furyl and pyrazole rings indicates the presence of a weak–interaction. In the crystal structure, the molecules are stacked along thebaxis, as shown in Fig. 2.

Experimental

Following the method of Hattonet al.(1993), reaction of 2,6-dichloro-4-(trifluoromethyl)amine with a suspension of nitrosyl sulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluorometh-yl)phenyl]pyrazole, which was then reacted with 2-furanal to give (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (m.p. 449–451 K). IR (KBr,

cm1): 3129, 2240, 1611, 1558, 1395, 1310, 1133, 873, 818;1H NMR (CDCl3):8.81 (s, 1H), 8.12 (s, 2H), 7.83 (s, 1H), 7.24 (m, 2H), 6.69

(m, 1H);13C NMR (CDCl3): 154.2 (1C), 153.3 (1C), 152.1 (1C), 149.2

(1C), 136.6 (1C), 134.4 (q, J= 34.3 Hz, 1C), 128.2 (1C), 127.05 (1C), 127.01 (1C), 126.95 (1C), 126.91 (1C), 123.3 (q, J= 271.6 Hz, 1C), 122.0 (1C), 114.2 (1C), 114.0 (1C), 98.4 (1C).

Crystal data

C16H7Cl2F3N4O

Mr= 399.16 Monoclinic,P21=n

a= 11.8828 (9) A˚

b= 6.7072 (5) A˚

c= 21.1191 (16) A˚ = 92.084 (1) V= 1682.1 (2) A˚3

Z= 4

Dx= 1.576 Mg m

3 MoKradiation Cell parameters from 3298

reflections = 3.2–25.0

= 0.43 mm1

T= 298 (2) K Block, colorless 0.380.310.29 mm

Data collection

Bruker APEX area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.854,Tmax= 0.885 8571 measured reflections

3013 independent reflections 2571 reflections withI> 2(I)

Rint= 0.019

max= 25.2

h=13!14

k=8!6

l=24!25

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.069

wR(F2) = 0.204

S= 1.05 3013 reflections 235 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.1164P)2 + 2.0094P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 1.12 e A˚

3

min=0.64 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Cl1—C4 1.724 (4) F1—C1 1.271 (9) O1—C16 1.352 (4) O1—C13 1.362 (4) N1—N2 1.348 (4) N1—C11 1.374 (4) N2—C9 1.337 (5) N3—C8 1.147 (5)

N4—C12 1.273 (4) N4—C11 1.382 (4) C9—C10 1.389 (5) C10—C11 1.374 (5) C13—C14 1.350 (5) C14—C15 1.403 (5) C15—C16 1.340 (6)

C16—O1—C13 106.2 (3) N2—N1—C11 113.0 (3) C9—N2—N1 103.2 (3) F3—C1—F2 111.0 (7) N3—C8—C9 179.1 (5) N2—C9—C10 113.1 (3)

C11—C10—C9 104.9 (3) C10—C11—N1 105.7 (3) C14—C13—O1 109.3 (3) C13—C14—C15 107.6 (3) C16—C15—C14 105.6 (3) C15—C16—O1 111.4 (3)

All H atom were initially observed in a difference Fourier map and were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 A˚ andUiso(H) =

1.22eq(C). The low Ueqvalue of atom C1 compared with its

neigh-bours may be attributed to the three possibly disordered F atoms. The highest peak is located 1.27 A˚ from atoms C1 and F.

Data collection:SMART(Bruker, 2002); cell refinement:SAINT (Bruker, 2002); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the National Nature Science Foundation of China (No. 20272043) and the Nature Science Foundation of Zhejiang Province (No. M203001).

References

Bruker (2002).SMART,SAINT,SADABS,SHELXLandXP. Bruker AXS Inc., Madison, Wisconsin, USA.

Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. & Roberts, D. A. (1993).US Patent No.5232940.

[image:2.610.44.291.69.307.2]

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Figure 2

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o2972–o2973

supporting information

Acta Cryst. (2005). E61, o2972–o2973 [https://doi.org/10.1107/S1600536805025699]

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-[(2-furyl)methyleneamino]-1

H

-pyrazole-3-carbonitrile

Ping Zhong, Zhiping Yang, Qian Shi, Maolin Hu, Shuyan Li and Riyuan Tang

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-[(2-furyl)methyleneamino]- 1H-pyrazole-3-carbonitrile

Crystal data

C16H7Cl2F3N4O

Mr = 399.16 Monoclinic, P21/n

Hall symbol: -P 2yn

a = 11.8828 (9) Å

b = 6.7072 (5) Å

c = 21.1191 (16) Å

β = 92.084 (1)°

V = 1682.1 (2) Å3

Z = 4

F(000) = 800

Dx = 1.576 Mg m−3

Melting point: 450(1) K Mo radiation, λ = 0.71073 Å Cell parameters from 3298 reflections

θ = 3.2–25.0°

µ = 0.43 mm−1

T = 298 K Block, colorless 0.38 × 0.31 × 0.29 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin = 0.854, Tmax = 0.885

8571 measured reflections 3013 independent reflections 2571 reflections with I > 2σ(I)

Rint = 0.019

θmax = 25.2°, θmin = 1.9°

h = −13→14

k = −8→6

l = −24→25

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.069

wR(F2) = 0.204

S = 1.05 3013 reflections 235 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.1164P)2 + 2.0094P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 1.12 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.58604 (10) 0.09721 (15) 0.17137 (5) 0.0678 (4)

Cl2 0.60827 (9) 0.75002 (15) 0.02417 (5) 0.0637 (4)

F1 0.2558 (5) 0.7800 (15) 0.1718 (6) 0.293 (6)

F2 0.1880 (3) 0.6094 (13) 0.1130 (2) 0.206 (3)

F3 0.2255 (5) 0.5229 (17) 0.2002 (4) 0.308 (7)

O1 0.8328 (2) 0.9534 (4) 0.21212 (12) 0.0528 (6)

N1 0.6953 (2) 0.3706 (4) 0.08051 (14) 0.0438 (7)

N2 0.7008 (2) 0.2090 (4) 0.04282 (14) 0.0485 (7)

N3 0.8761 (4) −0.1086 (6) −0.0323 (2) 0.0843 (13)

N4 0.8054 (2) 0.6190 (4) 0.13362 (14) 0.0450 (7)

C1 0.2601 (4) 0.5992 (10) 0.1540 (3) 0.0871 (16)

C2 0.3750 (3) 0.5423 (7) 0.13571 (18) 0.0580 (10)

C3 0.4202 (3) 0.3669 (6) 0.15846 (19) 0.0561 (9)

H3 0.3797 0.2856 0.1851 0.067*

C4 0.5269 (3) 0.3135 (5) 0.14114 (17) 0.0466 (8)

C5 0.5876 (3) 0.4327 (5) 0.10036 (16) 0.0412 (7)

C6 0.5386 (3) 0.6063 (5) 0.07742 (17) 0.0455 (8)

C7 0.4320 (3) 0.6633 (6) 0.09581 (19) 0.0560 (9)

H7 0.3999 0.7819 0.0811 0.067*

C8 0.8478 (3) 0.0251 (6) −0.0030 (2) 0.0597 (10)

C9 0.8111 (3) 0.1898 (6) 0.03400 (17) 0.0499 (8)

C10 0.8752 (3) 0.3377 (6) 0.06397 (18) 0.0513 (9)

H10 0.9529 0.3542 0.0636 0.062*

C11 0.7988 (3) 0.4543 (5) 0.09428 (16) 0.0430 (7)

C12 0.8959 (3) 0.7205 (5) 0.13453 (16) 0.0456 (8)

H12 0.9534 0.6794 0.1088 0.055*

C13 0.9146 (3) 0.8937 (5) 0.17273 (16) 0.0437 (8)

C14 1.0007 (3) 1.0250 (6) 0.17631 (19) 0.0568 (10)

H14 1.0670 1.0174 0.1544 0.068*

C15 0.9719 (3) 1.1751 (6) 0.21907 (18) 0.0545 (9)

H15 1.0145 1.2862 0.2309 0.065*

C16 0.8701 (3) 1.1248 (6) 0.23926 (19) 0.0551 (9)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o2972–o2973

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0748 (7) 0.0525 (6) 0.0762 (7) 0.0074 (5) 0.0035 (5) 0.0156 (5)

Cl2 0.0673 (7) 0.0498 (6) 0.0738 (7) −0.0100 (4) −0.0003 (5) 0.0125 (4)

F1 0.102 (4) 0.302 (9) 0.480 (15) 0.047 (5) 0.068 (6) −0.226 (11)

F2 0.0508 (19) 0.412 (10) 0.155 (4) 0.073 (4) −0.001 (2) −0.024 (5)

F3 0.159 (5) 0.473 (14) 0.304 (8) 0.202 (7) 0.174 (6) 0.256 (10)

O1 0.0416 (13) 0.0535 (15) 0.0642 (15) 0.0001 (11) 0.0142 (11) −0.0077 (12)

N1 0.0393 (15) 0.0376 (15) 0.0547 (16) 0.0007 (11) 0.0041 (12) −0.0068 (12)

N2 0.0458 (16) 0.0419 (16) 0.0579 (17) 0.0016 (12) 0.0053 (13) −0.0091 (13)

N3 0.080 (3) 0.074 (3) 0.102 (3) 0.000 (2) 0.034 (2) −0.034 (2)

N4 0.0385 (14) 0.0428 (16) 0.0538 (16) 0.0012 (12) 0.0023 (12) −0.0051 (13)

C1 0.056 (3) 0.124 (5) 0.082 (3) 0.034 (3) 0.017 (3) −0.004 (3)

C2 0.0409 (19) 0.079 (3) 0.054 (2) 0.0093 (18) 0.0019 (16) −0.009 (2)

C3 0.046 (2) 0.066 (2) 0.056 (2) −0.0039 (17) 0.0063 (16) −0.0006 (18)

C4 0.0426 (18) 0.0459 (19) 0.0511 (19) 0.0003 (15) −0.0008 (14) −0.0011 (15)

C5 0.0346 (16) 0.0391 (17) 0.0497 (18) 0.0000 (13) 0.0009 (13) −0.0075 (14)

C6 0.0439 (18) 0.0389 (18) 0.0536 (19) −0.0037 (14) −0.0027 (15) −0.0060 (15)

C7 0.051 (2) 0.050 (2) 0.066 (2) 0.0145 (17) −0.0075 (17) −0.0089 (18)

C8 0.055 (2) 0.056 (2) 0.069 (2) 0.0019 (18) 0.0138 (18) −0.010 (2)

C9 0.0489 (19) 0.047 (2) 0.054 (2) 0.0075 (16) 0.0067 (15) −0.0052 (16)

C10 0.0387 (17) 0.055 (2) 0.061 (2) 0.0033 (16) 0.0083 (15) −0.0065 (17)

C11 0.0367 (16) 0.0439 (18) 0.0487 (18) 0.0017 (13) 0.0036 (13) −0.0011 (14)

C12 0.0354 (16) 0.051 (2) 0.0507 (19) 0.0041 (14) 0.0065 (14) −0.0046 (15)

C13 0.0349 (16) 0.0479 (19) 0.0486 (18) 0.0029 (13) 0.0051 (13) −0.0006 (15)

C14 0.0438 (19) 0.062 (2) 0.066 (2) −0.0085 (17) 0.0127 (16) −0.0113 (19)

C15 0.054 (2) 0.051 (2) 0.058 (2) −0.0050 (17) 0.0017 (16) −0.0067 (17)

C16 0.056 (2) 0.051 (2) 0.059 (2) 0.0043 (17) 0.0096 (17) −0.0107 (17)

Geometric parameters (Å, º)

Cl1—C4 1.724 (4) C3—H3 0.9300

Cl2—C6 1.716 (4) C4—C5 1.395 (5)

F1—C1 1.271 (9) C5—C6 1.382 (5)

F2—C1 1.198 (7) C6—C7 1.393 (5)

F3—C1 1.188 (7) C7—H7 0.9300

O1—C16 1.352 (4) C8—C9 1.430 (5)

O1—C13 1.362 (4) C9—C10 1.389 (5)

N1—N2 1.348 (4) C10—C11 1.374 (5)

N1—C11 1.374 (4) C10—H10 0.9300

N1—C5 1.423 (4) C12—C13 1.427 (5)

N2—C9 1.337 (5) C12—H12 0.9300

N3—C8 1.147 (5) C13—C14 1.350 (5)

N4—C12 1.273 (4) C14—C15 1.403 (5)

N4—C11 1.382 (4) C14—H14 0.9300

C1—C2 1.483 (6) C15—C16 1.340 (6)

(6)

C2—C3 1.373 (6) C16—H16 0.9300

C3—C4 1.380 (5)

C16—O1—C13 106.2 (3) C2—C7—H7 120.5

N2—N1—C11 113.0 (3) C6—C7—H7 120.5

N2—N1—C5 118.2 (3) N3—C8—C9 179.1 (5)

C11—N1—C5 128.7 (3) N2—C9—C10 113.1 (3)

C9—N2—N1 103.2 (3) N2—C9—C8 118.1 (3)

C12—N4—C11 117.7 (3) C10—C9—C8 128.8 (3)

F3—C1—F2 111.0 (7) C11—C10—C9 104.9 (3)

F3—C1—F1 98.6 (8) C11—C10—H10 127.5

F2—C1—F1 97.1 (7) C9—C10—H10 127.5

F3—C1—C2 116.9 (5) C10—C11—N1 105.7 (3)

F2—C1—C2 117.8 (5) C10—C11—N4 135.3 (3)

F1—C1—C2 111.8 (6) N1—C11—N4 118.9 (3)

C7—C2—C3 121.9 (3) N4—C12—C13 123.9 (3)

C7—C2—C1 119.3 (4) N4—C12—H12 118.0

C3—C2—C1 118.8 (4) C13—C12—H12 118.0

C2—C3—C4 118.8 (4) C14—C13—O1 109.3 (3)

C2—C3—H3 120.6 C14—C13—C12 131.6 (3)

C4—C3—H3 120.6 O1—C13—C12 119.0 (3)

C3—C4—C5 121.0 (3) C13—C14—C15 107.6 (3)

C3—C4—Cl1 119.1 (3) C13—C14—H14 126.2

C5—C4—Cl1 119.9 (3) C15—C14—H14 126.2

C6—C5—C4 118.6 (3) C16—C15—C14 105.6 (3)

C6—C5—N1 121.0 (3) C16—C15—H15 127.2

C4—C5—N1 120.3 (3) C14—C15—H15 127.2

C5—C6—C7 120.6 (3) C15—C16—O1 111.4 (3)

C5—C6—Cl2 119.7 (3) C15—C16—H16 124.3

C7—C6—Cl2 119.6 (3) O1—C16—H16 124.3

Figure

Figure 1The structure of (I), showing the atomic numbering scheme anddisplacement ellipsoids drawn at the 50% probability level.
Figure 2The packing of (I), viewed down the b axis.

References

Related documents

CDUS should be used as a first modality in evaluation of patients of PAD especially where low grade stenosis is anticipated, patients prone for significant vascular calcification

Long-term sustainability of human and non-human life can be achieved only by creating an entirely new economy that eschews the current economy’s pursuit of continuous growth and

long-term debt and short-term debt and four structured capital flow types: equity, debt, long term and short term.. Extending earlier papers and systematically testing the

Cross-correlations analysis is one of the methods used to determine the re- lationship between the referent country cycle (usually cycle in GDP series of the European Union) and

The aim of this study was to evaluate HER-3 mRNA expression level as a prognostic marker for breast cancer and to correlate its level with other established prognostic parameters

One key advantage of this staged design is that through grounding partially the utterance to some entities and predicates in the KB, we make the search far more efficient by focusing

In both simultaneous-move and private leadership models, if α = 0, then the equilibrium price is equal to the public firm’s marginal cost z.. However, in the simultaneous-move

l’attuale stato delle politiche industriali in Europa; nella sezione 5 sono descritte le misure di politica indu- striale introdotte in Italia negli ultimi anni; infine, la sezione