• No results found

Bis(N,N di­methyl­ethyl­enedi­amine κ2N,N′)­bis­­(perchlorato κO)copper(II)

N/A
N/A
Protected

Academic year: 2020

Share "Bis(N,N di­methyl­ethyl­enedi­amine κ2N,N′)­bis­­(perchlorato κO)copper(II)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m234

Akitsu and Einaga [Cu(ClO4)2(C4H12N2)2] DOI: 10.1107/S1600536804001461 Acta Cryst.(2004). E60, m234±m236 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(

N,N

-dimethylethylenediamine-

j

2

N,N

000

)-bis(perchlorato-

j

O

)copper(II)

Takashiro Akitsu* and Yasuaki Einaga

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail: akitsu@chem.keio.ac.jp

Key indicators

Single-crystal X-ray study

T= 297 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.031

wRfactor = 0.113

Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, [Cu(ClO4)2(C4H12N2)2], the Cu atom is

located at a center of symmetry. It adopts an elongated octahedraltrans-[CuN4O2] coordination geometry, which is a

typical feature of the pseudo-Jahn±Teller effect. The axial CuÐO bond length is 2.605 (4) AÊ, while the in-plane CuÐN bond lengths are 1.987 (2) and 2.098 (2) AÊ.

Comment

Because of the bright prospect of developing photo-control-ling materials, copper(II) complexes having ethylenediamine derivatives are important not only as candidates for these materials but also as their building blocks. Indeed, intercalated hybrid materials (Choy et al., 2002), thermochromism (Narayanan & Bhadbhade, 1998), and photochromism (Takahashiet al., 2002) have been reported so far. The char-acteristic stereochemistry of copper(II) complexes, for example, ¯exible distortion (Simmons, 1993) or semi-coord-ination (Hathaway, 1984), may be explained by the Jahn± Teller effect (Murphy & Hathaway, 2003). The pseudo-Jahn± Teller effect predicts that only appropriately elongated axial bonds may be effective for thermally accessible distortion, and these systems may be very important for designing photo-controlling materials. The structures of semi-coordinated copper(II) complexes having N-substituted ethylenediamine ligands have been systematically investigated,viz. ethylene-diamine (en; Maxcy & Turnbull, 1999),N -methylethylenedi-amine (N-Meen; Akitsu & Einaga, 2003), and N -ethylethylenediamine (N-Eten; Grentheet al., 1979). We have determined the crystal structure of bis(N,N -dimethylethyl-enediamine-2N,N0)bis(perchlorato-O)copper(II), (I), and discuss here its structural features.

Complex (I) is centrosymmetric, with atom Cu1 located at a center of inversion (Fig. 1 and Table 1). Complex (I) adopts a tetragonally distorted (i.e.elongated)trans-[CuN4O2]

coordi-nation environment. The axial Cu1ÐO1 semi-coordicoordi-nation bond distance is 2.605 (4) AÊ. The corresponding CuÐO bond lengths are 2.579 (4), 2.569 (2) and 2.594 (3) AÊ for the en,

N-Meen andN-Eten complexes, respectively. The axial bond length of (I) is comparable to the largest value in the analo-gous complexes. The geometric parameters in the axial perchlorate ions are unremarkable. Intramolecular hydrogen

(2)

bonds (Table 2) are observed between amino H atoms and perchlorate O atoms. These hydrogen bonds also contribute to the stabilization of the axial semi-coordination. Moreover, the complexes are linked by NÐH O hydrogen bonds to form a three-dimensional network in the crystal structure.

The Cu1ÐN1 (NH2) and Cu1ÐN2 (NMe2) bond distances

in (I) are 1.987 (2) and 2.098 (2) AÊ, respectively. Apparently, a characteristic structural feature of (I),viz.the difference in the CuÐN bond distances, may be attributed to the steric hindrance of the methyl groups. The corresponding CuÐN (NH2) bond distances are 2.012 (2) and 2.019 (2) AÊ for the en,

2.004 (2) AÊ for theN-Meen and 2.013 (3) AÊ for the N-Eten complex. The CuÐN (NHR) bond distances are 2.057 (2) and 2.031 (3) AÊ for the N-Meen and N-Eten complexes, respec-tively. The number of substituent groups (R) at N is more effective in elongating the CuÐN bond than the length of the group. The N1ÐCu1ÐN2 bond angle of the chelate ligands is 85.40 (8), which is slightly larger than that of the N-Meen complex [84.58 (7)]. The N1ÐC1ÐC2ÐN2 torsion angle [50.5 (3)] is similar to that of related complexes involving mixed ligands (Akitsu & Komorita, 2002).

TheTvalue, which is de®ned as the ratio of (in-plane) CuÐ N to (axial) CuÐO bond lengths, is the usual criterion for the degree of tetragonal distortion caused by the Jahn±Teller effect (Hathaway & Billing, 1970). The values ofT are 0.78, 0.78, 0.78 and 0.79 for the N-Eten, en, (I), and N-Meen complexes, respectively. On the other hand, individual T

values CuÐN (NH2)/CuÐO are 0.78, 0.78, 0.76 and 0.78, and

CuÐN (NR2)/CuÐO are 0.78, none, 0.81 and 0.80 for theN

-Eten, en, (I) and N-Meen complexes, respectively. The maximumT value of Cu1ÐN2/Cu1ÐO1 in (I) suggests that the steric effect of the present N,N-dimethyl substitution results in no elongation of speci®c bonds but elongation of both types of coordination bonds. Thermal and photo-response, and soft X-ray absorption spectroscopic studies of the series of related complexes are now in progress to

eluci-date detailed correlations between the structures and the electronic states.

Experimental

Crystals of (I) were prepared from a methanol solution (10 ml) of Cu(ClO4)2 (1.01 mmol) and N,N-dimethylethylenediamine

(2.00 mmol) at room temperature. Blue prismatic crystals were obtained after a few days.

Crystal data

[Cu(ClO4)2(C4H12N2)2]

Mr= 438.76

Triclinic,P1

a= 7.978 (4) AÊ

b= 8.593 (4) AÊ

c= 7.797 (8) AÊ

= 111.01 (6) = 104.91 (6) = 61.65 (3) V= 436.7 (6) AÊ3

Z= 1

Dx= 1.668 Mg mÿ3

MoKradiation Cell parameters from 17

re¯ections

= 11.2±12.4 = 1.60 mmÿ1

T= 297.2 K Prism, blue

0.300.300.20 mm

Data collection

Rigaku AFC-7Rdiffractometer

!±2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.625,Tmax= 0.726

2269 measured re¯ections 2007 independent re¯ections 1894 re¯ections withI> 2(I)

Rint= 0.061 max= 27.5

h=ÿ10!10

k=ÿ11!10

l=ÿ4!10 3 standard re¯ections

every 150 re¯ections intensity decay: 2.5%

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.031

wR(F2) = 0.113

S= 0.91 1894 re¯ections 107 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0348P)2

+ 0.3309P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.41 e AÊÿ3

min=ÿ0.48 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0234

Table 1

Selected geometric parameters (AÊ,).

Cu1ÐO1 2.605 (4) Cu1ÐN1 1.987 (2) Cu1ÐN2 2.098 (2) Cl1ÐO1 1.433 (4) Cl1ÐO2 1.404 (4) Cl1ÐO3 1.416 (3)

Cl1ÐO4 1.421 (3) N1ÐC1 1.482 (3) N2ÐC2 1.487 (4) N2ÐC3 1.480 (4) N2ÐC4 1.485 (4) C1ÐC2 1.501 (4) O1ÐCu1ÐN1 90.9 (1)

O1ÐCu1ÐN2 85.65 (9) N1ÐCu1ÐN2 85.40 (8)

Cu1ÐN2ÐC3 115.3 (1) Cu1ÐN2ÐC4 111.7 (2) N1ÐC1ÐC2ÐN2 50.5 (3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N1ÐH1 O2i 0.96 2.26 3.057 (5) 140 Symmetry code: (i) 1‡x;y;z.

Since the intensity of diffraction was considerably weak, not all of the independent re¯ections were used for re®nement. All H atoms were positioned geometrically (NÐH = 0.95, CÐH = 0.95±0.96 AÊ) and re®ned as riding, withUiso(H) = 1.2Ueq(parent atom).

Acta Cryst.(2004). E60, m234±m236 Akitsu and Einaga [Cu(ClO4)2(C4H12N2)2]

m235

metal-organic papers

Figure 1

(3)

metal-organic papers

m236

Akitsu and Einaga [Cu(ClO4)2(C4H12N2)2] Acta Cryst.(2004). E60, m234±m236

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corpor-ation, 2001); program(s) used to solve structure:SIR92 (Altomareet al., 1994); program(s) used to re®ne structure: SHELXL97 (Shel-drick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:TEXSAN.

This work was supported by Grant-in-Aid for the 21st Century COE program `KEIO Life Conjugate Chemistry' from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

Akitsu, T. & Einaga, Y. (2003).Acta Cryst.E59, m991±m993. Akitsu, T. & Komorita, S. (2002).Bull. Chem. Soc. Jpn,75, 767±768.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Choy, J.-H., Yoon, J.-B. & Jung, H. (2002).J. Phys. Chem. B,106, 11120±11126. Grenthe, I., Paoletti, P., Sandstorm, M. & Glilberg, S. (1979).Inorg. Chem.18,

2687±2692.

Hathaway, B. J. (1984).Struct. Bonding,57, 55±118.

Hathaway, B. J. & Billing, D. E. (1970).Coord. Chem. Rev.5, 143±207. Johnson, C. K. (1976).ORTEPII. Oak Ridge National Laboratory, Tennessee,

USA.

Maxcy, K. R. & Turnbull, M. M. (1999).Acta Cryst.C55, 1986±1988. Molecular Structure Corporation (2001).TEXSAN.Version 1.11. MSC, 9009

New Trails Drive Drive, The Woodlands, TX 77381, USA. Murphy, B. & Hathaway, B. (2003).Coord. Chem. Rev.243, 237±262. Narayanan, B. & Bhadbhade, M. M. (1998).J. Coord. Chem.46, 1115±123. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351±

359.

Rigaku (1999).WinAFC Diffractometer Control Software. Rigaku Corpora-tion, Tokyo, Japan.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Simmons, C. J. (1993).New J. Chem.17, 77±95.

(4)

supporting information

sup-1 Acta Cryst. (2004). E60, m234–m236

supporting information

Acta Cryst. (2004). E60, m234–m236 [https://doi.org/10.1107/S1600536804001461]

Bis(

N,N

-dimethylethylenediamine-

κ

2

N,N

)bis(perchlorato-

κ

O

)copper(II)

Takashiro Akitsu and Yasuaki Einaga

(I)

Crystal data

[Cu(ClO4)2(C4H12N2)2]

Mr = 438.76 Triclinic, P1 Hall symbol: -P 1

a = 7.978 (4) Å

b = 8.593 (4) Å

c = 7.797 (8) Å

α = 111.01 (6)°

β = 104.91 (6)°

γ = 61.65 (3)°

V = 436.7 (6) Å3

Z = 1

F(000) = 227.0

Dx = 1.668 Mg m−3

Mo radiation, λ = 0.7107 Å Cell parameters from 17 reflections

θ = 11.2–12.4°

µ = 1.60 mm−1

T = 297 K Prismatic, blue 0.30 × 0.30 × 0.20 mm

Data collection

Rigaku AFC-7R diffractometer

ω–2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.625, Tmax = 0.726 2269 measured reflections 2007 independent reflections

1894 reflections with I > 2σ(I)

Rint = 0.061

θmax = 27.5°

h = −10→10

k = −11→10

l = −4→10

3 standard reflections every 150 reflections intensity decay: 2.5%

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.031

wR(F2) = 0.113

S = 0.91 1894 reflections 107 parameters

H-atom parameters not refined

w = 1/[σ2(F

o2) + (0.0348P)2 + 0.3309P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.41 e Å−3 Δρmin = −0.48 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0234

Special details

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, m234–m236

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 1.0000 0.0000 1.0000 0.0299 (2)

Cl1 0.69554 (8) −0.03463 (9) 1.28417 (8) 0.0424 (2)

O1 0.7340 (4) −0.0038 (4) 1.1324 (3) 0.0659 (6)

O2 0.6051 (5) −0.1540 (5) 1.2124 (5) 0.095 (1)

O3 0.5763 (4) 0.1339 (4) 1.3993 (4) 0.0830 (8)

O4 0.8734 (4) −0.1147 (5) 1.3878 (4) 0.097 (1)

N1 1.1934 (3) −0.0955 (3) 1.1993 (3) 0.0373 (4)

N2 1.0633 (3) −0.2773 (3) 0.8601 (3) 0.0371 (4)

C1 1.2861 (4) −0.2994 (4) 1.1424 (4) 0.0486 (6)

C2 1.1470 (4) −0.3695 (3) 1.0107 (4) 0.0442 (6)

C3 0.8964 (5) −0.3159 (4) 0.7599 (4) 0.0555 (7)

C4 1.2046 (5) −0.3542 (4) 0.7260 (4) 0.0546 (7)

H1 1.2883 −0.0499 1.2257 0.0442*

H2 1.1323 −0.0530 1.3075 0.0442*

H3 1.3973 −0.3415 1.0838 0.0566*

H4 1.3246 −0.3431 1.2493 0.0566*

H5 1.0477 −0.3452 1.0767 0.0522*

H6 1.2121 −0.4993 0.9596 0.0522*

H7 0.8030 −0.2693 0.8444 0.0656*

H8 0.8381 −0.2571 0.6639 0.0656*

H9 0.9347 −0.4446 0.7096 0.0656*

H10 1.2456 −0.4834 0.6779 0.0649*

H11 1.1498 −0.2984 0.6273 0.0649*

H12 1.3141 −0.3297 0.7870 0.0649*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.0295 (2) 0.0287 (2) 0.0301 (2) −0.0130 (2) −0.0008 (1) 0.0085 (1)

Cl1 0.0358 (3) 0.0563 (4) 0.0394 (4) −0.0226 (3) 0.0034 (3) 0.0142 (3)

O1 0.073 (1) 0.079 (2) 0.061 (1) −0.035 (1) 0.020 (1) 0.023 (1)

O2 0.103 (2) 0.096 (2) 0.118 (3) −0.072 (2) 0.017 (2) 0.020 (2)

O3 0.076 (2) 0.077 (2) 0.070 (2) −0.009 (1) 0.030 (1) 0.011 (1)

O4 0.052 (1) 0.149 (3) 0.055 (1) −0.011 (2) −0.003 (1) 0.042 (2)

N1 0.0350 (10) 0.0375 (10) 0.0340 (9) −0.0143 (8) −0.0031 (8) 0.0102 (8)

N2 0.041 (1) 0.0328 (9) 0.0372 (10) −0.0176 (8) 0.0011 (8) 0.0084 (8)

C1 0.047 (1) 0.037 (1) 0.051 (2) −0.011 (1) −0.005 (1) 0.018 (1)

C2 0.050 (1) 0.034 (1) 0.050 (1) −0.017 (1) 0.001 (1) 0.016 (1)

C3 0.061 (2) 0.049 (1) 0.057 (2) −0.035 (1) −0.008 (1) 0.009 (1)

C4 0.066 (2) 0.045 (1) 0.050 (2) −0.019 (1) 0.021 (1) 0.005 (1)

Geometric parameters (Å, º)

Cu1—O1 2.605 (4) N2—C4 1.485 (4)

(6)

supporting information

sup-3 Acta Cryst. (2004). E60, m234–m236

Cu1—N2 2.098 (2) C1—H3 0.955

Cl1—O1 1.433 (4) C1—H4 0.955

Cl1—O2 1.404 (4) C2—H5 0.955

Cl1—O3 1.416 (3) C2—H6 0.954

Cl1—O4 1.421 (3) C3—H7 0.964

N1—C1 1.482 (3) C3—H8 0.950

N1—H1 0.955 C3—H9 0.948

N1—H2 0.951 C4—H10 0.948

N2—C2 1.487 (4) C4—H11 0.952

N2—C3 1.480 (4) C4—H12 0.961

O1—Cu1—N1 90.9 (1) N1—C1—H3 109.4

O1—Cu1—N2 85.65 (9) N1—C1—H4 109.3

N1—Cu1—N2 85.40 (8) C2—C1—H3 109.9

O1—Cl1—O2 108.2 (2) C2—C1—H4 110.4

O1—Cl1—O3 110.5 (2) H3—C1—H4 108.6

O1—Cl1—O4 107.8 (2) N2—C2—C1 110.2 (3)

O2—Cl1—O3 110.1 (2) N2—C2—H5 109.9

O2—Cl1—O4 110.9 (2) N2—C2—H6 109.8

O3—Cl1—O4 109.2 (2) C1—C2—H5 109.0

Cu1—O1—Cl1 143.3 (1) C1—C2—H6 109.2

Cu1—N1—C1 110.8 (1) H5—C2—H6 108.7

Cu1—N1—H1 109.0 N2—C3—H7 109.4

Cu1—N1—H2 109.2 N2—C3—H8 110.6

C1—N1—H1 109.5 N2—C3—H9 110.4

C1—N1—H2 109.4 H7—C3—H8 108.3

H1—N1—H2 109.0 H7—C3—H9 108.4

Cu1—N2—C2 103.5 (1) H8—C3—H9 109.7

Cu1—N2—C3 115.3 (1) N2—C4—H10 110.3

Cu1—N2—C4 111.7 (2) N2—C4—H11 110.4

C2—N2—C3 108.4 (3) N2—C4—H12 109.5

C2—N2—C4 110.3 (2) H10—C4—H11 109.4

C3—N2—C4 107.6 (2) H10—C4—H12 108.7

N1—C1—C2 109.2 (2) H11—C4—H12 108.4

Cu1—O1—Cl1—O2 −131.5 (3) O1—Cu1—N2—C3 48.6 (2)

Cu1—O1—Cl1—O3 107.9 (3) O1—Cu1—N2—C4 171.8 (2)

Cu1—O1—Cl1—O4 −11.4 (3) N1—Cu1—N2—C2 21.6 (2)

Cu1—N1—C1—C2 −29.8 (3) N1—Cu1—N2—C3 139.8 (2)

Cu1—N2—C2—C1 −44.0 (2) N1—Cu1—N2—C4 −96.9 (2)

Cl1—O1—Cu1—N1 6.1 (3) N1—C1—C2—N2 50.5 (3)

Cl1—O1—Cu1—N2 91.4 (3) N2—Cu1—N1—C1 4.2 (2)

O1—Cu1—N1—C1 89.8 (2) C1—C2—N2—C3 −166.9 (2)

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, m234–m236

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H2···O1 0.95 3.01 3.300 (4) 99

N1—H2···O4 0.95 2.62 3.348 (5) 133

N1—H1···O2i 0.96 2.26 3.057 (5) 140

References

Related documents

The comparison of autoregressive ADF model with linear trend model (Table 1) demonstrates similarity of results for most of the economies: Australia and Sweden

In this work, we further extend this line of exploration and propose a novel but simple approach, which utilizes a ranking model based on word or- der precedence in the target

Setting n = 10 , for each source sentence we re-rank the ten best sentences as scored by the decoder according to the Leven- shtein Distance (or edit distance) measure (Leven-

In general, Result 3 provides contradictory evidence to the conventional wisdom that market competition will divert decision rights to individuals who are better able to utilise

companies with low investment opportunities experience a stronger market reaction. FCF : Free cash flow per share. DIVINC : A binary variable taking the value of 1 if on the date

The reduction of the rank of a LCFRS , called binarization, is a process very similar to the reduction of a context-free grammar into Chomsky normal form.. While in the special case

For elsewhere he states (1978b: 356), “The socialist essential, it must always be remembered, is not the plan; it is the democratic power of the people over the plan and the

In Clark and Curran (2004a) we described a novel approach to integrating the supertagger and parser: start with a very restrictive supertagger set- ting, so that only a small number