• No results found

PUBLICATION DATA ( ) / PUBLIKÁCIÓS MUTATÓK

N/A
N/A
Protected

Academic year: 2021

Share "PUBLICATION DATA ( ) / PUBLIKÁCIÓS MUTATÓK"

Copied!
25
0
0

Loading.... (view fulltext now)

Full text

(1)

PUBLICATION DATA (30.09.2015.) / PUBLIKÁCIÓS MUTATÓK

Accepted and published peer-reviewed papers with impact factor:

34

Peer-reviewed papers without impact factor:

8

Popular science articles and book reviews:

7

Book parts/chapters:

7

International conference abstracts:

99

Talks delivered at major international conferences:

15

Cumulative impact factor:

113,19

Number of independent citations (SCI is in bold): 440/

397

H-index:

17

(Google Scholar),

15

(Scopus),

14

(Researcher ID)

List of publications in national and international peer-reviewed journals and book parts /

Publikációk hazai és nemzetközi referált folyóiratokban és könyrészletekben:

1/ Kovács I.

, Bali, E., Kóthay, K., Szabó, Cs., Nédli, Zs. (2003): A bazaltos kőzetekben található

kvarc és földpát xenokristályok kőzettani jelentősége.

Földtani Közlöny, 133, 394-420. (in

Hungarian with English abstract / magyarul angol absztrakttal/).

2/ Kovács, I.,

Zajacz, Z., Szabó, Cs. (2004): Type-II xenoliths and related metasomatism from the

Nógrád-Gömör Volcanic Field (

northern Hungary–southern Slovakia

). Tectonophysics,

393, 139-161.

3/

Szabó, Cs., Falus, Gy., Zajacz, Z.,

Kovács, I.,

Bali, E. (2004): Composition and evolution of

the lithosphere beneath the Carpathian-Pannonian Region: a review. Tectonophysics, 393,

119-137.

4/ Kovács, I.

& Szabó, Cs. (2005): Petrology and geochemistry of granulite xenoliths beneath the

Nógrád-Gömör Volcanic Field, Carpathian-Pannonian Region (N-Hungary/S-Slovakia).

Mineralogy and Petrology, 85 (3-4), 269-290.

5/

Falus, Gy., Szabó, Cs.,

Kovács, I.,

Zajacz, Z. (2007): Symplectite in spinel lherzolite xenoliths

from the Little Hungarian Plain, Western Hungary: a principle key for understanding basin

evolution. Lithos, 90 (1-4), 230-247.

6/ Kovács, I.,

Csontos, L., Szabó Cs., Falus, Gy.,

Bali, E., Benedek, K., Zajacz, Z. (2007):

Paleogene-Early Miocene volcanic rocks and geodynamics of the

Alpine-Carpathian-Pannonian-Dinaric region: an integrated approach, in Beccaluva, L., Bianchini, G., and Wilson,

M., eds., Cenozoic Volcanism in the Mediterranean Area.

Geological Society of America

Special Paper, 418, 93-112.

7/

Hidas,

K., Falus, Gy., Szabó, Cs., Szabó, J. P.,

Kovács, I.,

Földes, T. (2007): Geodynamic

implications of flattened tabular equigranular textured peridotites from the Bakony-Balaton

Highland Volcanic Field (western Hungary). Journal of Geodynamics, 43, 484-503.

8/

Zajacz, Z.,

Kovács, I.,

Szabó, Cs., Werner, H., Pettke,

T. (2007): Insights into the evolution of

mafic alkaline melts crystallized in the uppermost lithospheric mantle of the Nógrád-Gömör

Volcanic Field (Northern Hungary): a melt inclusion study. Journal of Petrology, 48 (5),

853-883.

9/ Kovács, I.,

Hidas,

K., Hermann, J., Ntaflos,

T., Sharygin, V., Szabó Cs.

(2007): Fluid induced

incipient melting in mantle xenoliths from the Minusinsk Region (Siberia, Russia) and some

implications for the subcontinental lithospheric mantle.

Geologica Carpathica, 58 (3),

211-228.

10/ Kovács. I.

& Szabó, Cs. (2008): Middle Miocene volcanism in the vicinity of the Middle

Hungarian Line: evidence for an inherited enriched mantle source: a review.

Journal of

Geodynamics, 45, 1-17.

11/

Bali, E., Zajacz, Z.,

Kovács, I.,

Halter, W., Szabó, Cs., Vaselli, O., Török, K., Bodnar, R. J.

(2008): A quartz-bearing orthopyroxene-rich websterite xenolith from the Pannonian Basin,

(2)

western Hungary: Evidence for release of quartz-saturated melts from a subducted slab.

Journal of Petrology, 49, 421-439.

12/

Aizawa, Y., Barnhoorn, A., Faul, U. H., Fitz Gerald, D. J., Jackson, I.,

Kovács, I.

(2008):

Seismic properties of Anita Bay dunite: An exploratory study of the influence of water.

Journal of Petrology, 49, 841-855.

13/

Sambridge, M., FitzGerald, J.,

Kovács, I.,

O’Neill, H. St. C., Hermann, J. (2008): Quantitative

absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical

development. American Mineralogist, 93, 751-764.

14/ Kovács, I.,

Hermann, J., O’Neill, H. St. C., FitzGerald, J., Sambridge, M., Horváth, G.

(2008): Quantitative absorbance spectroscopy with unpolarized light, Part II: Experimental

evaluation and development of a protocol for quantitative analysis of mineral IR spectra.

American Mineralogist, 93, 765-778.

15/

Guzmics, T., Kodolányi, J.,

Kovács, I.,

Szabó, Cs., Bali, E., Ntaflos, T. (2008): Primary

carbonatite melt inclusions in apatite and in K-feldspar of clinopyroxene-rich mantle xenoliths

hosted in lamprophyre dikes (Hungary). Mineralogy and Petrology, 94, 225-242.

16/

Szabó, Cs., Hidas, K., Bali, E., Zajacz, Z.,

Kovács, I.,

Yang, K., Guzmics, T., Török, K.

(2009): Melt-wall rock interaction in mantle as shown by silicate melt inclusions in peridotite

xenoliths from the central Pannonian Basin (western Hungary). Island Arc, 18, 375-400.

17/ Kovács,

I.,

O’Neill

H. St. C., Hermann

J., Hauri, E. (2010): Site-specific infrared O-H

absorption coefficients for water substitution into olivine.

American Mineralogist, 95,

292-299.

18/

Hidas, K., Guzmics, T., Szabó, Cs.,

Kovács, I.,

Zajacz, Z., Bodnar, R. J., Nédli, Zs., Vaccari,

L., Perucchi, A. (2009): Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid

inclusions in mantle peridotite xenoliths from the Carpathian-Pannonian region (central

Hungary). Chemical Geology, 274, 1-18.

19/

Green D.H., Hibberson, W.O.,

Kovács, I.,

Rosenthal, A. (2010): Water and its influence on

the lithosphere – asthenosphere boundary. Nature, 467, 448-451.

20/

Yang, K., Hidas, K., Falus, G., Szabó, Cs., Nam, B.,

Kovács, I.,

Hwang, B. (2010): Relation

between mantle shear zone deformation and metasomatism in spinel peridotite xenoliths of Jeju

Island (South Korea): Evidence from olivine CPO and trace elements.

Journal of

Geodynamics, 50, 424-440.

21/

Balan, E., Ingrin, J., Delattre, S.,

Kovács, I.,

Blanchard, M. (2011): Theoretical infrared

spectrum of OH-defects in forsterite. European Journal of Mineralogy, 23; 285-292.

22/

Janik, T., Grad, M., Guterch, A., Vozár, J., Bielik, M., Vozárova, A., Hegedűs, E., Kovács,

Csaba Attila;

Kovács, I.,

Keller, G.R. (2011): Crustal structure of the Western Carpathians and

Pannonian Basin: seismic models from CELEBRATION 2000 data and geological

implications. Journal of Geodynamics, 52, 97-113.

23/

Oeberseder, T., Behm, M.,

Kovács, I.,

Falus, G. (2011): A seismic discontinuity in the upper

mantle between the Eastern Alps and the Western Carpathians: Constraints from wide angle

reflections and geological implications. Tectonophysics, 504, 122-134.

24/

Kovács, I.,

Falus, Gy., Stuart, G., Hidas, K., Szabó, Cs., Flower, M., Hegedűs, E., Posgay,

K., Zilahi-Sebess, L. & Fancsik, T. (2011): Asthenospheric flow as a driving force for Tertiary

extrusion and extension. Magyar Geofizika, 52, 79-87. (in Hungarian with English abstract)

25/

Posgay, K., Bodoky, T., Falus, G.,

Kovács, I.,

Madarasi, A., Gúthy, T., Hegedűs, E., Kovács,

A. C. (2011): Structural formation of Tisza and Száva–Bükk units in the Lower Cretaceous

period. Magyar Geofizika, 52, 135-150. (in Hungarian with English abstract)

(3)

26/

Kovács, I.,

Falus, Gy., Stuart, G., Hidas, K., Szabó, Cs., Flower, M., Hegedűs, E., Posgay, K.

& Zilahi-Sebess, L. (2012): Seismic anisotropy and deformation patterns in upper mantle

xenoliths from the central Carpathian-Pannonian region: asthenospheric flow as a driving force

for Cenozoic extension and extrusion? Tectonophysics, 514–517, 168–179.

27/

Tóth, J., Udvardi, B.,

Kovács, I.,

Falus, G., Szabó, C., Troskot-Čorbić, T., R. Slavković

(2012): Analytical development in FTIR analysis of clay minerals. MOL Scientific Magazine,

2012/1, 52-60.

28/

Kovács, I.,

Green, D., Rosenthal, A., Hermann, J., O’Neill, H. St. C., Hibberson, W.O.,

Udvardi, B. (2012): An experimental study of water in nominally anhydrous minerals in the

upper mantle near the water saturated solidus. Journal of Petrology, 53 (10), 2067-2093.

29/

Green, D., Rosenthal, A.,

Kovács, I.,

(2012): Comment on "The beginnings of hydrous

mantle wedge melting", CB Till, TL Grove, AC Withers, Contributions to Mineralogy and

Petrology, DOI 10.1007/s00410-011- 0692-6. Contributions to Mineralogy and Petrology, 164

(6), 1077-1081.

30/

Xia, Q., Liu, J., Liu,

S.C.,

Kovács, I.,

Feng,

M., Dang, L. (2013): High water content in

Mesozoic primitive basalts of the North China Craton and implications for the destruction of

cratonic mantle lithosphere. Earth and Planetary Science Letters, 361, 85-97.

31/

Magyari, E.K., Demény, A., Buczkó, K., Kern, Z., Venneman, T., Fórizs, I., Vincze, I.,

Braun, M.,

Kovács, I.,

Udvardi, B., Veres, D. (2012): A 13,600-year diatom oxygen isotope

record from the South Carpathians (Romania): Reflection of winter conditions and possible

links with North Atlantic circulation changes. Quaternary International, 293, 136-149.

32/

V. Starostenko, T. Janik, K. Kolomiyets

,W. Czuba, P. Środa, M. Grad, I. Kovács, R.

Stephenson, D. Lysynchuk, H. Thybo, I.M. Artemieva, V. Omelchenko, O. Gintov, R. Kutas, D.

Gryn, A. Guterch, E. Hegedűs, K. Komminaho, O. Legostaeva, T. Tiira, A. Tolkunov (2013)

Seismic velocity model of the crust and upper mantle along profile PANCAKE across the

Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 608,

1049-1072.

33/

Udvardi, B.,

Kovács, I. J.,

Kónya, P., Földvári, M., Füri, J., Budai, F., Falus, Gy., Fancsik, T.,

Szabó, Cs., Szalai, Z., Mihály, J. (2014) Application of attenuated total reflectance Fourier

transform infrared spectroscopy in the mineralogical study of a landslide area, Hungary.

Sedimentary Geology, 313, 1-14.

34/

Rosenthal, A., Yaxley G.M., Green, H. D., Hermann, J.,

Kovács, I.,

Spandler, C. (2014)

Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle.

Nature Scientific Reports. 4 (6099; doi:10.1038/srep06099)

35/

Green, H. D., Hibberson, W. O., Rosenthal, A.,

Kovács, I.,

Yaxley, G., Fallon, T., Brink, F.,

(2014) Experimental Study of the Influence of Water on Melting and Phase Assemblages in the

Upper Mantle. Journal of Petrology. 55(10), 2067-2096. doi:10.1093/petrology/egu050

36/

Ingrin

,

J.,

Kovács, I.,

Deloule, E., Balan

,

E., Blanchard

,

M., Kohn

, S.C.,

Hermann, J. (2014)

Identification of hydrogen defects linked to boron substitution in synthetic forsterite and

natural olivine.

American Mineralogist. 99, 2138-2141.

doi:

http://dx.doi.org/10.2138/am-2014-5049

37/

Udvardi, B.,

Kovács, I.,

Kónya, P., Vatai, J., Koloszár, L., Fedor, F., Ács, P., Mihályi, J.,

Németh, Cs., Deák, Zs.V., Füsi, B., Szalai, Z., Szabó, Cs., Falus, Gy. & Fancsik, T. (2014)

Physical properties and mineral composition of sediments from sliding zone at Kulcs area.

Magyar Geofizika (in Hungarian with English abstract), 55, 121-133.

38/

Andrássy, L., Maros, Gy.,

Kovács, I.,

Horváth, Á., Gulyás, K., Bertalan, É., Besnyi A., Füri,

J., Fancsik, T., Szekanecz, Z., Bhattoa H.P. (2014) Lézeralapú geológiai technikák

felhasználhatósága a csontkutatásban: kalcium-oxid-eloszlás vizsgálata állati csont

vékonycsiszolatain. Orvosi Hetilap, 155(45), 1783–1793.

39/

Klébesz, R., Gráczer, Z., Szanyi, Gy., Liptai, N.,

Kovács, I.,

Patkó, L., Pintér, Zs., Falus, Gy.,

Wesztergom, V., Szabó, Cs. (2015) Constraints on the thickness and seismic properties of the

lithosphere in an extensional setting (Nógrád-Gömör Volcanic Field, Northern Pannonian

Basin). Acta Geodetica et Geophysica, 50(2), 133-149.

(4)

40/

Németh, B., Török, K.,

Kovács, I.,

Szabó, Cs., Abart, R., Dégi, J., Mihály, J., Németh, Cs.

(2015) Melting, fluid migration and fluid-rock interactions in the lower crust beneath the

Bakony-Balaton Highland volcanic field: a silicate melt and fluid inclusion study.

Mineralogy

and Petrology, 109, 217-234.

41/

Pintér, Z., Patkó, L., Djoukam, J. F. T.,

Kovács, I.

, Tchouankoue, J. P., Falus, G…. & Jeffries,

T. (2015). Characterization of the sub-continental lithospheric mantle beneath the Cameroon

volcanic line inferred from alkaline basalt hosted peridotite xenoliths from Barombi Mbo and

Nyos Lakes. Journal of African Earth Sciences, 111, 170-193.

42/

Kovács, I.,

Udvardi, B., Falus, Gy., Földvári, M., Fancsik, T., Kónya, P., Bodor, E.R., Mihály,

J., Németh, Cs., Czirják, G., Ősi, A., Vargáné Barna, Zs., Bhattoa, H.P., Szekanecz, Z., Turza, S.

(2015) AZ ATR FTIR spektrometria gyakorlati alkalmazási néhány - elsősorban földtani -

esettanulmány bemutatásával. Földtani Közlöny 142(2), 173-192.

Popular science, book reviews (in Hungarian if it is not indicated otherwise) /

Ismeretterjesztő cikkek, könyvismertetők:

1/ Kovács, I

. & Szabó, Cs. (2003): Miért éppen Vietnám? Természet Világa, 134, 218-221.

2/ Kovács, I.

&

Szabó Cs.

(2004): Keresztül-kasul Dél-Koreán. Természet Világa, 135, 551-554

3/ Kovács, I.

(2005): Kozmikus találkozások emlékei Ausztráliában. Természet Világa, 136,

419-422.

4/ Kovács, I.

(2007): A víz jelentősége a Földköpenyben. Élet és Tudomány, 27, 838-841.

5/ Kovács I.

(2011) Review on M. Coltorti, H. Downes, M. Gregorie, S.Y. O'Reilly (eds):

Petrological evolution of the European lithospheric mantle.

Bulletin of Volcanology,

doi:10.1007/s00445-011-0488-6. (in English)

6/ Udvardi, B.

, Pintér, Zs., Kovács, I. (2012) Ásványok ujjlenyomata.

Élet és Tudomány, 38,

1200-1202.

7/ Kovács, I.

, - Bánsághy, N., (2013) Kőből történelem.

Élet és Tudomány, 5, 140-141.

(interjú/interview in Hungarian)

Book parts, reports and field guides / Könyvrészletek, jelentések és kirándulásvezetők:

1/ Kovács, I.

(2003): A nógrád-gömöri granulit xenolitok petrogenetikai és geodinamikai

jelentősége. A Pro Scientia aranyérmesek társaságának a kiadványa.

ISBN 963 216 837 2

,

Miskolc, 204-211. (in Hungarian)

2/ Kovács, I.,

Falus, Gy., Bali, E., Benedek, K., Csontos, L., Zajacz, Z., Szabó, Cs. (2004): A

Kárpát-Pannon régió paleogén geodinamikája az új adatok tükrében.

A Pro Scientia

aranyérmesek társaságának a kiadványa,

ISBN 963 229 540 4

, Budapest, 136-140. (in

Hungarian)

3/

Posgay K., Falus Gy.,

Kovács I.,

Kovács A. Cs., Bodoky T., Hegedűs E. (2009) A Tisza

nagyszerkezeti egység takaróinak litoszféra méretű vázlata. In M.Tóth, T. (ed.) Igneous and

Metamorphic Formations in the Tisza Unit, GeoLitera,

ISBN

978-963-482-978-2,

Szeged

,

11-27. (in Hungarian)

4/

Szabó, Cs.,

Kovács, I.,

Dégi, J., Kóthay, K., Török, K., Hidas, K.

,

Kónya, P. & Berkesi, M.

(2010) From maars to lava lakes: Ultramafic and granulite xenoliths associated with the

alkaline basaltic volcanism of the Pannonian Basin. In: Szabo, Cs. (ed.) IMA2010 Field Trip

Guide HU5,

Acta Mineralogica-Petrographica Field Guide Series 13, Department of

Mineralogy, Geochemistry and Petrology, University of Szeged, pp. 32.

5/

Benkó, Zs.,

Kovács, I.,

Prohászka, A., Kázmér, M. (2011) A Sárrét (Fejér megye)

negyedidőszaki süllyedéstörténete folyóvízi üledékek ásvány-kőzettani vizsgálata és

korrekciója alapján. In Csapó, T., Kocsis, Zs., Puskás, J., Tóth, G., Zentai, Z. (2011) A

Bakonytól Madagaszkárig:

Tanulmánykötet a 65 éves Veress Márton tiszteletére,

Szombathely.

ISBN:978-963-9871-47-2. (

in Hungarian

)

(5)

Domonkos, M., (2013) Az egri Líceum építése (1765-1785) során részben elbontott Árpád-kori

település környezeti rekonstrukciója földtani, talajtani, paleobotanikai és régészeti adatok

alapján. In Dobos, E., Beróti, R. D., Szabóné, K. G., (2013) Talajvédelem.

Talajvédelmi

Alapítvány és a Magyar Talajtani Társaság kiadványa, Miskolc, ISBN 978-963-08-6322-3,

251-260.

7/

Udvardi, B.,

Kovács, I.,

Szabó, Cs., Mihály, J., Németh, Cs., (2013) Felszínmozgásos üledékek

ásványos összetétele Kulcs területéről Mineral composition of slipped sediments from Kulcs.

In Török, Á., Görög, P., Vásárhelyi, B., (2013) Mérnökgeológia-Kőzetmechanika, Hantken

Kiadó, Budapest, ISBN 978-615-5086-06-9, 77-82.

Edited and translated books and publications/Szerkesztett vagy fordított kiadványok:

1/

Aikman, A., Lilly, K., Célérier, J.,

Kovács, I.

, Estermann, G. (in ed.) (2005): An excursion

guide to the Flinders Ranges, South Australia.

Journal of the Virtual Explorer. Volume 20,

ISSN 1441-8142.

2/

Kaponya, Z. &

Kovács, I.

(in ed.) (2005):

ADSUMUS III. Az Eötvös József Collegium

kiadványa. p 205. (in Hungarian) ISBN 963-463-745-0.

3/

Mikes, T., Kovács, I., Siklósy, Z. (in trans.) (2002):

Császár, G.

, Urgon formations in Hungary

with special reference to the Eastern Alps, the Western Carpathians and the Apuseni

Mountains. Geologica Hungarica, Series Geologica,

25

:1-209, Budapest

(6)

(ALL CITATIONS/SCI CITATIONS, NON SCI CITATIONS ARE WITH ITALICS)

(ÖSSZES FÜGGETLEN HIVATKOZÁS/CSAK SCI FÜGGETLEN HIVATKOZÁS)

KOVÁCS, I., Bali, E., Kóthay, K. Szabó, Cs. & Nédli, Zs. (2003): Bazaltos kőzetekben előforduló kvarc és földpát

xenokristályok petrogenetikai jelentősége. Földtani Közlöny, 133, 397-420.

Impakt factor/Impakt faktor-; Független hivatkozások száma/Independent citacions:

2/1

2) Péterdi et al. (2011) Petrographical and geochemical investigation of polished stone tools made of basalt from the site (Balatonöszöd – Temető Dűlő (Hungary) Archeometriai Műhely, 8: pp. 33-68. (2011)

1) Dégi et al. (2009) Evidence for xenolith – host basalt interaction from chemical patterns in Fe–Ti-oxides from mafic granulite xenoliths of the Bakony–Balaton Volcanic field (W-Hungary). Mineralogy and Petrology, 95, 219-234.

KOVÁCS, I., Zajacz, Z., Szabó, Cs. (2004): Type-II xenoliths and related metasomatism beneath the

Nógrád-Gömör Volcanic Field (N-Hungary/S-Slovakia). Tectonophysics, 393, 139-161.

Impakt faktor/Impact factor: 1.838; Független hivatkozások száma/Independent citations:

13/13

13) Harris et al. (2013) Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu–Au–Te mineralizing magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 366, 122-136.

12) Yang et al. (2012) Gabbroic xenoliths and megacrysts in the Pleisto-Holocene alkali basalts from Jeju Island, South Korea: The implications for metasomatism of the lower continental crust. Lithos, 142-143, 201-215.

11) Choi & Khim (2012) Petrogenesis of anhydrous clinopyroxenite xenoliths and clinopyroxene megacrysts in alkali basalts from the Ganseong area of South Korea. Island Arc, 21 (2), 101-117.

10) Ashchepkov et al. (2011) Pyroxenites and megacrysts from Vitim picrite-basalts (Russia): Polybaric fractionation of rising melts in the mantle?Journal of Asian Earth Sciences, 42, 14-37.

9) Spisak et al. (2011) Petrology and palaeotectonic setting of Cretaceous alkaline basaltic volcanismin the Pieniny Klippen Belt (Western Carpathians, Slovakia). Geological Quarterly, 55 (1), 27-48.

8) Kiss et al. (2010) Geochemistry of Sarmatian volcanic rocks in the Tokaj Mts (NE Hungary) and their relationship to hydrothermal mineralization. Central European Geology, 53, 377-403.

7) Lexa et al. (2010) Neogene-Quaternary Volcanic forms in the Carpathian-Pannonian Region: a review. Central European Journal of Geosciences, 2 (3), 207-270.

6) Gruender et al. (2010) Xenoliths from the sub-volcanic lithosphere of Mt Taranaki, New Zealand. Journal of Volcanology and Geothermal Research, 190 (1-2), 192-202.

5) Tasarova et al. (2009) The lithospheric structure of the Western Carpathian–Pannonian Basin region based on the CELEBRATION 2000 seismic experiment and gravity modeling. Tectonophysics, 475, 454-469.

4) Treiman (2008) Rhonite in Luna 24 pyroxenes: First find from the Moon, and implications for volatiles in planetary magmas. Amrican Mineralogist, 93 (2-3), 488-491.

3) Beard et al. (2007) Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula (Russia): Evidence from spinel lherzolite and wehrlite xenoliths. Lithos, 94, 1-24.

2) Coltorti et al. (2007) Slab melt and intraplate metasomatism in Kapfenstein mantle xenoliths (Styrian Basin, Austria). Lithos, 94, 66-89. 1) Marchev et al. (2006) Cumulate xenoliths in Oligocene alkaline basaltic and lamprophyric dikes from the eastern Rhodopes, Bulgaria:

Evidence for the existence of layered plutons under the methamorphic core complexes. Geological Society of America Special Paper, 409, 237–258.

Szabó, Cs., Falus, Gy., Zajacz, Z., KOVÁCS, I., Bali, E. (2004): Composition and evolution of the lithosphere

beneath the Carpathian-Pannonian Region: a review. Tectonophysics, 393, 119-137.

Impakt faktor/Impact factor: 1.838; Független hivatkozások száma/Independent citations:

37/33

37) Woo et al. (2014) Silica- and LREE-enriched spinel peridotite xenoliths from the Quaternary intraplate alkali basalt, Jeju Island, South Korea: Old subarc fragments?Lihos, 208-209, 312-323.

36) Török et al. (2014) Evolution of the middle crust beneath the western Pannonian Basin: a xenolith study. Mineralogy and Petrology, 108, 33-47.

35) Harangi et al. (2014) Origin and geodynamic relationships of the Late Miocene to Quaternary alkaline basalt volcanism in the Pannonian basin, eastern–central Europe. International Journal of Earth Sciences,http://dx.doi.org/10.1007/s00531-014-1105-7 34) Richards (2014) The oxidation state, and sulfur and Cu contentsof arc magmas: implications for metallogeny, Lithos,

http://dx.doi.org/10.1016/j.lithos.2014.12.011.

33) Jankovics et al. (2013) Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin, Bulletin of Volcanology, 75:749.

32) Harris et al. (2013) Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu–Au–Te mineralizing magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 366, 122-136.

31) Neijbert et al. (2012) Potassium-rich magmatism in the Western Outer Carpathians: magmagenesis in the transitional zone between the European Plate and Carpathian-Pannonian region. Lithos, 146-147, 34-47.

30) Keresztúri et al. (2011) Shallow-seated controls on the evolution of the Upper Pliocene Kopasz-hegy nested monogenetic

volcanic

chain in the Western Pannonian Basin (Hungary). Geologica Carpathica, 62 (2), 535-546.

29) Cloetingh et al. (2011) TOPO-EUROPE: From Iberia to the Carpathians and analogues. Tectonophysics, 502 (1-2), 1-27.

28) Plotkin et al. (2011) Non-local electromagnetic response: Implications in the regional sounding. Izvestiya-Physics of the Solid Earth, 47 (1), 23-32.

27) Németh (2010) Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation. Central European Journal of Geosciences, 2, 399-419.

26) Lexa et al. (2010) Neogene-Quaternary Volcanic forms in the Carpathian-Pannonian Region: a review. Central European Journal of Geosciences, 2, 207-270.

25) Bielik et al. (2010) Improved geophysical image of the Carpathian-Pannonian Basin region. Acta Geodetica et Geophysica Hungarica, 45 (3), 284-298.

24) Plotkin et al. (2010) Lateral lithospheric conductivity patterns, from European synchronous observatory data. Russian Geology and Geophysics, 51 (7), 808-813.

(7)

172-182.

22) Grad et al. (2009) Variations in lithospheric structure across the margin of Baltica in Central Europe and the role of the Variscan and Carpathian orogenies. Geological Society of America, Memoir, 4-D framewrok of continental crust, 200, 341-356.

21) Krysinski et al. (2009) Searching for Regional Crustal Velocity-Density Relations with the Use of 2-D Gravity Modelling-Central Europe Case. Pure and Applied Geophysics, 166 (12), 1913-1936.

20) Pospisil et al. (2009) GEODETIC AND GEOPHYSICAL ANALYSES OF DIENDORF–ČEBÍN TECTONIC ZONE. Acta Geodynamica et Geomaterialia, 6 (3), 309-321.

19) Nédli et al. (2009) Crystal chemistry of clinopyroxenes from upper-mantle xenolith series in the Balaton–Bakony volcanic area (Carpathian–Pannonian region, Hungary). European Journal of Mineralogy, 21, 433-442.

18) Krysinski (2009) Systematic Methodology for Velocity-dependent Gravity Modelling of Density Crustal Cross-Sections, using an Optimization Procedure. Pure and Applied Geophysics, 166 (3), 375-408.

17) Ismail-Zadeh et al. (2008) Thermal evolution and geometry of the descending lithosphere beneath the SE-Carpathians: An insight from the past. Earth and Planetary Science Letters, 273 (1-2), 68-79.

16) Tasarova et al. (2008) Stripped image of the gravity field of the Carpathian-Pannonian region based on the combined interpretation of the CELEBRATION 2000 data. Geologica Carpathica, 59 (3), 199-209.

15) Ishimaru & Arai (2008) Nickel enrichment in mantle olivine beneath a volcanic front. Contributions to Mineralogy and Petrology, 156 (1), 119-131.

14) Baziotis et al. (2008) Petrogenesis of ultramafic rocks from the ultrahigh-pressure metamorphic Kimi Complex in Eastern Rhodope (NE Greece). Journal of Petrology, 49 (5), 885-909.

13) Arai & Ishimaru (2008) Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. Journal of Petrology, 49 (4), 665-695.

12) Coltorti et al. (2007) Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99 (1-2), 68-84.

11) Ionov (2007) Compositional variations and heterogeneity in fertile lithospheric mantle: peridotite xenoliths in basalts from Tariat, Mongolia. Contributios to Mineralogy and Petrology, 154 (4), 455-477.

10) Lustrino & Wilson. (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Science Reviews, 81 (1-2), 1-65. 9) Coban (2007) Basalt magma genesis and fractionation in collision-and extension-related provinces: A comparison between eastern,

central and western Anatolia. Earth Science Reviews, 80 (3-4), 219-238.

8) Harangi & Lenkey (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: Role of subduction, extension, and mantle plume. Geological Society of America Special Paper, 418, 67-92.

7) Sroda et al. (2006) Crustal and upper mantle structure of the Western Carpathians from CELEBRATION 2000 profiles CEL01 and CEL04: seismic models and geological implications. Geophysical Journal International, 167 (2), 737-760.

6) Krézsek & Bally (2006) The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: Insights in gravitational salt tectonics. Marine and Petroleum Geology, 23 (4), 405-442.

5) Grad et al. (2006) Lithospheric structure beneath trans‐ Carpathian transect from Precambrian platform to Pannonian basin: CELEBRATION 2000 seismic profile CEL05. Journal of Geophyscial Research-Solid Earth, 111, B3, Article Number: B03301 4) Kereszturi, G and Németh, K. (2012): Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and

Degradation. – In: Németh, K. (ed.): Updates in Volcanology - New Advances in Understanding Volcanic Systems, ISBN: 978-953-51-0915-0, InTech. pp. 3-88. http://dx.doi.org/10.5772/51387

3) Liptai et al. Acta Mineralogica-Petrographica, Abstract Series, Szeged, Vol. 7, 2012 79

2) Berkesi, M. (2011) The role of fluids in the lithospheric mantle (Central Pannonian Basin, western Hungary): detailed fluid inclusion study in mantle xenoliths. Ph.D. Thesis, Department of Petrology and Geochemistry, Eötvös University, Budapest (Hungary), pp. 168.

1) Hidas, K. (2009) Deformation and metasomatism in the sub-continental lithospheric mantle of the Carpthian-Pannonian region (Hungary) and Jeju Island (South Korea). Ph.D. thesis, Department of Petrology and Geochemistry, Eotvos University, Budapest (Hungary), pp: 172.

KOVÁCS, I. & Szabó, Cs. (2005): Petrology and geochemistry of granulite xenoliths beneath the Nógrád-Gömör

Volcanic Field, Carpathian-Pannonian Region (N-Hungary/S-Slovakia). Mineralogy and Petrology, 85 (3-4),

269-290.

Impakt faktor/Impact factor: 0.831; Független hivatkozások száma/Independent citations:

4/4

4) Touret & Nijland (2013) Prograde, peak and retrograde metamorphic fluids and associated metasomatism in upper amphibolite to granulite facies transition zones. Lecture Notes in Earth System Sciences, 415-469, DOI: 10.1007/978-3-642-28394-9_13 3) Jankovics, et al. (2010) A mineral-scale investigation of the origin of the 2.6 Ma Füzes-tó basalt, Bakony-Balaton Highland Volcanic

Field (Pannonian Basin, Hungary). Central European Geology, 52, 97-124.

2) Gruender et al. (2010) Xenoliths from the sub-volcanic lithosphere of Mt Taranaki, New Zealand. Journal of Volcanology and Geothermal Research, 190 (1-2), 192-202.

1) Krysinski et al. (2009) Searching for Regional Crustal Velocity-Density Relations with the Use of 2-D Gravity Modelling-Central Europe Case. Pure and Applied Geophysics, 166 (12), 1913-1936.

Falus, Gy., Szabó, Cs., KOVÁCS, I., Zajacz, Z. (2007): Symplectite in spinel lherzolite xenoliths from the Little

Hungarian Plain, Western Hungary: a principle key for understanding basin evolution. Lithos, 90 (1-4), 230-247.

Impakt faktor/Impact factor: 2.937; Független hivatkozások száma/Independent citations:

8/8

8) Bojar et al. (2013) K/Ar geochronology of igneous amphibole phenocrysts in Miocene to Pliocene volcaniclastics, Styrian Basin, Austria. Geological Quaterly, 57, 405-416.

7) Harris et al. (2013) Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu–Au–Te mineralizing magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 366, 122-136.

6) Ghosh et al. (2013) Significance of chromian spinels from the mantle sequence of the Andaman Ophiolite, India: Paleogeodynamic implications. Lithos, 164-167, 86-96-

5) Li et al. (2011) The origins of Baer ophiolitic peridotite and its implication in the Yarlung Zangbo sotare zone, southern Tibet. Acta Geologica Sinica, 27, 3239-3247.

4) Nédli et al. (2011) Petrology and geodynamical interpretation of mantle xenoliths from Late Cretaceous lamprophyres, Villány Mts (S Hungary). Tectonophysics, 489 (1-4), 43-54.

3) Matusiak-Małek et al. (2010) Metasomatic effects in the lithospheric mantle beneath the NE Bohemian Massif: A case study of Lutynia (SW Poland) peridotite xenoliths. Lithos, 117 (1-4), 49-60.

(8)

Andaman-Java subduction complex . Current Science, 97 (7), 1081-1088.

1) Nédli et al. (2008) Crystal chemistry of clinopyroxene and spinel from mantle xenoliths hosted in Late Mesozoic lamprophyres (Villány Mts, S Hungary). Neues Jahrbuch fur Mineralogie-Abhandlungen, 185 (1), 1-10.

KOVÁCS, I., Hidas,

K., Hermann, J., Ntaflos,

T., Sharygin, V., Szabó Cs.

(2007): Fluid induced incipient melting

in mantle xenoliths from the Minusinsk Region (Siberia, Russia) and some implications for the subcontinental

lithospheric mantle. Geologica Carpathica, 58 (3), 211-228.

Impakt faktor/Impact factor: 0.517; Független hivatkozások száma/Independent citations:

1/1

1) Su et al. (2012) Breakdown of orthopyroxene contributing to melt pockets in mantle peridotite xenoliths from the Western Qinling, central China: constraints from in situ LA-ICP-MS mineral analyses. Mineralogy and Petrology, 104 (3-4), 225-247.

KOVÁCS, I., Csontos, L., Szabó Cs., Falus, Gy.,

Bali, E., Benedek, K., Zajacz, Z. (2007): Paleogene-Early Miocene

igneous rocks and geodynamics of the Alpine-Carpathian-Pannonian-Dinaric region: an integrated approach, in

Beccaluva, L., Bianchini, G., and Wilson, M., eds., Cenozoic Volcanism in the Mediterranean Area. Geological

Society of America Special Paper, 418, 93-112.

Könyvrészlet, Független hivatkozások száma/Independent citations:

30/25

30) Horváth et al. (2014) Evolution of the Pannonian basin and its geothermal resources. Geothermics, 53, 328-352.

29) Benkó et al. (2014) Triassic fluid mobilization and epigenetic lead-zinc sulphide mineralization in the Transdanubian Shear Zone (Pannonian Basin, Hungary) Geologica Carpathica. Volume 65, Issue 3, Pages 177–196

28) Szederkényi et al. (2013) Geology and history of evolution of the ALCAPA mega-unit. In “Geology of Hungary”, edited by J. Haas. pp. 1-102. ISBN: 978-3-642-21909-2

27) Jurje et al. (2013) Geochemistry of Neogene quartz andesites from the Oaş and Gutâi Mountains, Eastern Carpathians Romania): a complex magma genesis. Mineralogy and Petrology, First Online: DOI 10.1007/s00710-013-0282-6

26) Harris et al. (2013) Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu–Au–Te mineralizing magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 366, 122-136.

25) Lesic et al. (2013) Magnetic anisotropy of Cenozoic igneous rocks from the Vardar zone (Kopaonik area, Serbia). Geophyscial Journal International, First online: doi: 10.1093/gji/ggt062

24) Haas et al. (2013) Stratigraphy, facies and geodynamic settings of Jurassic formations in the Bükk Mountains, North Hungary: its relations with the other areas of the Neotethyan realm. Geological Magazine, 150 (1), 18-49.

23) Ren et al. (2012) Upper mantle structures beneath the Carpathian–Pannonian region: Implications for the geodynamics of continental collision, Earth and Planetary Science Letters, 349-350, 139-152.

22) Carminati et al. (2012) Geodynamic evolution of the central and western Mediterranean: Tectonics vs. igneous petrology constraints. Tectonophysics, 579, 173-192.

21) Chiari et al. (2011) The geology of zje Zlatibor-Maljen area (Western Serbia): A geotraverse across the ophiolites of the Dinaric-Hellenic collisional belt. Ofioliti, 36 (2), 137-164.

20) Kovács & Haas (2011) Displaced South Alpine and Dinaridic elements in the mid-Hungarian zone. Central European Geology, (53) 2, 153-164.

19) Mandic et al. (2011) Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of Northern Croatia. International Journal of Earth Sciences, 101 (4), 1033-1046.

18) Seghedi & Downes (2011) Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondwana Research, 20 (4), 655-672.

17) Dobosi & Harangi (2011) Hungarian national report on IAVCEI 2007–2010. Acta Geodaetica et Gephysica Hungarica, 46 (2), 464-482.

16) Dando et al. (2011) Teleseismic tomography of the mantle in the Carpathian-Pannonian region of central Europe. Geophysical Journal International, 186 (1), 11-31.

15) Kiss et al. (2010) Geochemistry of Sarmatian volcanic rocks in the Tokaj Mts (NE Hungary) and their relationship to hydrothermal mineralization. Central European Geology, 53, 377-403.

14) Zelic et al. (2010) Geological and geochemical features of the Kopaonik intrusive complex (Vardar Zone, Serbia). Ofioliti, 35 (1), 33-47.

13) Schefer et al. (2010) Cenozoic granitoids in the Dinarides of southern Serbia: age of intrusion, isotope geochemistry, exhumation history and significance for the geodynamic evolution of the Balkan Peninsula. International Journal of Earth Sciences, 100 (5), 1181-1206)

12) Vörös & Arntzen(2010) Weak population structuring in the Danube crested newt, Triturus dobrogicus, inferred from allozymes. Amphibia-Reptilia, 31 (3), 339-346.

11) Hetényi et al. (2009) Anomalously deep mantle transition zone below Central Europe: Evidence of lithospheric instability. Geophysical Research Letters, 36 (21), L21307, doi:10.1029/2009GL040171.

10) Conticelli et al. (2009) Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos, 107 (1-2), 68-92.

9) Palotai & Csontos (2009) Strike-slip reactivation of a Paleogene to Miocene fold and thrust belt along the central part of the Mid-Hungarian Shear Zone. Geologica Carpathica, 61 (6), 483-493.

8) Ustaszewski et al.. (2008) A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene. Swiss Journal of Geosciences, 101 (1), 373-294.

7) Yanev et al. (2008) Late Miocene to Pleistocene potassic volcanism in the Republic of Macedonia. Mineralogy and Petrology, 94, 45– 60.

6) Houseman & Gemmer. (2007)Intra-orogenic extension driven by gravitational instability: Carpathian-Pannonian orogeny. Geology, 35 (12), 1135-1138.

5) Nédli & M. Tóth (2007) Origin and geodynamic significance of Upper Cretaceous lamprophyres from the Villány Mts (S Hungary). Mineralogy and Petrology, 90 (1-2), 93-107.

4) Berkesi, M. (2011) The role of fluids in the lithospheric mantle (Central Pannonian Basin, western Hungary): detailed fluid inclusion study in mantle xenoliths. Ph.D. Thesis, Department of Petrology and Geochemistry, Eötvös University, Budapest (Hungary), pp. 168.

3) Cvetkov, Vesna, Vesna Lesić, and Nada Vasković. "New paleomagnetic results for Tertiary magmatic rocks of Fruška Gora, Serbia." Geoloski anali Balkanskoga poluostrva 73 (2012): 99-108.

(9)

Pannonian Basin Scientific Report to the NERC Geophysical Equipment Facility January 19, 2011. SEIS-UK loan: 795

1) Haas, J., Kovács, S., Karamata, S., & Sudar, M. (2010). Displaced South Alpine and Dinaridic elements in the Mid-Hungarian zone. Bulletin: Classe des sciences mathématiques et natturalles-Sciences natturalles, 140(46), 81-103.

Zajacz, Z., KOVÁCS, I., Szabó, Cs., Werner, H., Pettke,

T. (2007): Evolution of Mafic Alkaline Melts Crystallized

in the Uppermost Lithospheric Mantle: a Melt Inclusion Study of Olivine-Clinopyroxenite Xenoliths, Northern

Hungary. Journal of Petrology, 48 (5), 853-883.

Impakt faktor/Impact factor: 3.806; Független hivatkozások száma/Independent citations:

10/9

10) Cai et al. (2015) Silicate melt inclusions in clinopyroxene phenocrysts from mafic dikes in the eastern North China Craton: Constraints on melt evolution. Journal of Asian Earth Sciences, 97, 150-168.

9) Grant et al. (2014) Experimental reactions between olivine and orthopyroxene with phonolite melt: implications for the origins of hydrous amphibole + phlogopite + diopside bearing metasomatic veins Contributions to Mineralogy and Petrology, 168 (5), 1-18. 8) Bybee et al. (2014) Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic

processes at the Moho. Earth and Planetary Science Letters, 389, 75-84.

7) Harris et al. (2013) Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu–Au–Te mineralizing magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 366, 122-136.

6) Ali et al. (2013) Experimental study of the partitioning of Cu during partial melting of Earth's mantle. Lithos, 337-338, 99-113.

5) Fellows & Canil (2012) Petrogenesis and mantle source characteristics of Quaternary alkaline mafic lavas in the western Carpathian– Pannonian Region, Styria, Austria. Earth and Planetary Science Letters, 337-338, 133-143.

4) Perinelli et al. (2011) Thermal Evolution of the Lithosphere in a Rift Environment as Inferred from the Geochemistry of Mantle Cumulates, Northern Victoria Land, Antarctica. Journal of Petrology, 52 (4), 665-690.

3) Upton et al. (2009) Megacrysts and salic xenoliths in Scottish alkali basalts: derivatives of deep crustal intrusions and small-melt fractions from the upper mantle. Mineralogical Magazine, 73 (6), 943-956.

2) Sylvester (2008) LA-(MC)-ICP-MS trends in 2006 and 2007 with particular emphasis on measurement uncertainties. Geostandards and Geoanalytical Research, 32 (4), 469-488.

1) Mason, P. R., Nikogosian, I. K., & van Bergen, M. J. (2008). Major and trace element analysis of melt inclusions by laser ablation ICP– MS. Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues (P. Sylvester, ed.). Mineral. Assoc. Can. Short Course Series, 40, 219-239.

KOVÁCS. I., Szabó, Cs. (2008): Middle Miocene volcanism in the vicinity of the Middle Hungarian Line: evidence

for an inherited enriched mantle source: a review. Journal of Geodynamics, 45, 1-17.

Impakt faktor/Impact factor: 1.321; Független hivatkozások száma/Independent citations:

19/16

19) Horváth et al. (2014) Evolution of the Pannonian basin and its geothermal resources. Geothermics, 53, 328-352.

18)Andreucci et al. (2014) Interplay between the thermal evolution of an orogenic wedge and its retro-wedge basin: An example from the Ukrainian Carpathians. Geological Society of America Bulletin, B31067-1.

17) Andreucci (2013) THERMOCHRONOLOGY OF THE POLISH AND UKRAINIAN CARPATHIANS. PhD Thesis. pp. 145.

16) Jurje et al. (2013) Geochemistry of Neogene quartz andesites from the Oaş and Gutâi Mountains, Eastern Carpathians Romania): a complex magma genesis. Mineralogy and Petrology, First Online: DOI 10.1007/s00710-013-0282-6

15) Harris et al. (2013) Tethyan mantle metasomatism creates subduction geochemical signatures in non-arc Cu–Au–Te mineralizing magmas, Apuseni Mountains (Romania). Earth and Planetary Science Letters, 366, 122-136.

14) Trifionov et al. (2012) Recent mountain building of the central Alpine-Himalayan Belt. Geotectonics, 46 (5) 315-332.

13) Ren et al. (2012) Upper mantle structures beneath the Carpathian–Pannonian region: Implications for the geodynamics of continental collision. Earth and Planetary Science Letters, 349-350, 139-152.

12) Szalay et al. (2012) The turning ray tomographical processing of the 1965–67th annual KM–65/67 Transdanubian crust research profi le) Magyar Geofizika, 52 (4), 193-209.

11) Trifonov et al. (2012) Evolution of the central Alpine-Himalayan belt in the Late Cenozoic. Russian Geology and Geophysics 53 (3), 221-233

10) Seghedi & Downes (2011) Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region. Gondwana Research, 20 (4), 655-672.

9) Dobosi and Harangi (2011) Hungarian national report on IAVCEI 2007–2010. Acta Geodaetica et Gephysica Hungarica 46 (2), 464-482.

8) Dando et al. (2011) Teleseismic tomography of the mantle in the Carpathian-Pannonian region of central Europe. Geophysical Journal International, 186 (1), 11-31.

7) Lustrino et al. (2011) The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting. Earth Science Reviews, 104 (1-3), 1-40.

6) Palotai & Csontos (2010) Strike-slip reactivation of a Paleogene to Miocene fold and thrust belt along the central part of the Mid-Hungarian Shear Zone. Geologica Carpathica, 61 (6), 483-493.

5) Edwards & Grasemann (2009) Mediterranean snapshots of accelerated slab retreat: subduction instability in stalled continental collision. Geological Society Special Publication, 311, 155-192.

4) Till et al. (2009) Perils of petrotectonic modeling: A view from southern Sonora, Mexico. Journal of Volcanology and Geothermal Research, 186, 160-168.

3) Lister et al. (2008) Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush. Nature Geoscience, 1 (3), 196-201

2) Berkesi, M. (2011) The role of fluids in the lithospheric mantle (Central Pannonian Basin, western Hungary): detailed fluid inclusion study in mantle xenoliths. Ph.D. Thesis, Department of Petrology and Geochemistry, Eötvös University, Budapest (Hungary), pp. 168.

1) Buck, A. (2008) The Mt. Marcella volcanics : middle Triassic convergent margin volcanism in Southeast Queensland. MSc Thesis, Queensland University of Technology, Brisbane, Australia, pp. 135.

Aizawa, Y., Barnhoorn, A., Faul, U. H., Fitz Gerald, D. J., Jackson, I., KOVÁCS, I., (2007): Seismic

properties of Anita Bay dunite: An exploratory study of the influence of water. Journal of Petrology,

49, 841-855.

Impakt faktor/Impact factor: 3.806; Független hivatkozások száma/Independent citations:

27/27

(10)

initial approach. Journal of Geophysical Research: Solid Earth.DOI: 10.1002/2013JB010831

26) Liu et al. (2014). Seismic attenuation tomography of the Northeast Japan arc: Insight into the 2011 Tohoku earthquake (Mw 9.0) and subduction dynamics. Journal of Geophysical Research: Solid Earth, 119(2), 1094-1118.

25) Padron-Navarta et al. (2014). Site-specific hydrogen diffusion rates in forsterite. Earth and Planetary Science Letters, 392, 100-112. 24) Eberhat-Philips et a. (2014). Imaging P and S attenuation in the termination region of the Hikurangi subduction zone, New Zealand.

Geophysical Journal International, ggu151.

23) Abers et al. (2014). Reconciling mantle attenuation‐temperature relationships from seismology, petrology, and laboratory measurements. Geochemistry, Geophysics, Geosystems, 15(9), 3521-3542.

22) Shen et al. (2014). FTIR spectroscopy of Ti-chondrodite, Ti-clinohumite, and olivine in deeply subducted serpentinites and implications for the deep water cycle. Contributions to Mineralogy and Petrology, 167(4), 1-15.

21) Olugboji et al. (2013) Structures of the oceanic lithosphere-asthenosphere boundary: Mineral-physics modeling and seismological signatures. Geochemistry, Geophysics, Geosystems, 14/4, 880–901.

20) Nakajima et al. (2013) Seismic attenuation beneath northeastern Japan: Constraints on mantle dynamics and arc magmatism. Journal of Geophysical Research: Solid Earth, 118/11, 5838–5855.

19) Karato (2013) Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon. Earth and Planetary Science Letters, 384, 144-153.

18) Rychert et al. (2012) The Pacific lithosphere-asthenosphere boundary: Seismic imaging and anisotropic constraints from SS waveforms. Geochemistry Geophysics Geosystems, VOL. 13, Q0AK10, DOI: 10.1029/2012GC004194

17) Unswoth & Rondenay (2013) Mapping the Distribution of Fluids in the Crust and Lithospheric Mantle Utilizing Geophysical Methods. Lecture Notes in Earth System Sciences, 535-598, DOI: 10.1007/978-3-642-28394-9_13

16) Demouchy et al. (2012) Deformation of olivine in torsion under hydrous conditions. Physics of Earth and Planetary Interiors, 202-203, 56-70.

15) Mancilla et al. (2012) QP and QS in the upper mantle beneath the Iberian peninsula from recordings of the very deep Granada earthquake of April 11, 2010. Geophysical Research Letter, 39, L09303.

14) Karato (2012) On the origin of the asthenosphere. Earth and Planetary Science Letters, 321, 95-103.

13) Mao et al. (2011) Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa. American Mineralogist, 96, 1606-1612.

12) Van Keken et al. (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. Journal of Geophysical

Research B: Solid Earth, 116 (1), art. No. B01401

11) Karato (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth and Planetary Science Letters, 301 (3-4), 413-423.

10) Fischer et al. (2010) The lithosphere-asthenosphere boundary. Annual Review of Earth and Planetary Sciences, 38 (38), 551-575. 9) Mao et al. (2010) Velocity crossover between hydrous and anhydrous forsterite at high pressures. Earth and Planetary Science Letters,

293 (3-4), 250-258.

8) Gavrilenko et al. (2010) The effect of Al and water on the compressibility of diopside. American Mineralogist, 95 (4), 608-616. 7) Rawlinson et al. (2010) Seismic tomography: A window into deep Earth. Physics of Earth and Planetary Interiors, 178 (3-4), 101–135. 6) Cammarano et al. (2009) Inferring the thermochemical structure of the upper mantle from seismic data. Journal of Geophysical

Research, 179, 1169-1185.

5) Angel et al. (2009) Elasticity measurements on minerals: a review. European Journal of Mineralogy, 21, 525-550.

4) Pozgay et al. (2009) Seismic attenuation tomography of the Mariana subduction system: Implications for thermal structure, volatile distribution, and slow spreading dynamics. Geochemistry, Geophysics, Geosystems. 10 (4), DOI: 10.1029/2008GC002313 3) Behn et al. (2009) Implications of grain size evolution on the seismic structure of the oceanic upper mantle. Earth and Planetary

Science Letters, 282 (1-4), 178-189

2) Cammarano & Romanowicz (2008) Radial profiles of seismic attenuation in the upper mantle based on physical models. Geophysical Journal International, 175 (1), 116-134.

1) Rychert et al. (2008) Strong along-arc variations in attenuation in the mantle wedge beneath Costa Rica and Nicaragua. Geoschemistry Geophysics Geosystems, 9, Q10S10.

Sambridge, M., FitzGerald, J., KOVÁCS, I.,

O’Neill, H. St. C., Hermann, J. (2008): Quantitative absorbance

spectroscopy with unpolarized light: Part I. Physical and mathematical development. American Mineralogist, 93,

751-764.

Impakt faktor/Impact factor: 2.203; Független hivatkozások száma/Independent citations:

20/20

20) Smyth et al. (2014). Tetrahedral ferric iron in oxidized hydrous wadsleyite. American Mineralogist, 99(2-3), 458-466.

19) Chen et al. (2014) (2014). Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts, NE China: New constraints from water content. Tectonophysics. doi:10.1016/j.tecto.2014.07.022

18) Evans et al. (2014). Variation in XANES in biotite as a function of orientation, crystal composition, and metamorphic history. American Mineralogist, 99(2-3), 443-457.

17) Thomas and Watson (2014). Diffusion and partitioning of magnesium in quartz grain boundaries. Contributions to Mineralogy and Petrology, 168(4), 1-12.

16) Li et al. (2014). Temporal variation of H2O content in the lithospheric mantle beneath the eastern North China Craton: Implications for

the destruction of cratons. Gondwana Research. doi:10.1016/j.gr.2014.03.012

15) Hidas et al. (2013) Strain Localization in Pyroxenite by Reaction-Enhanced Softening in the Shallow Subcontinental Lithospheric Mantle. Journal of Petrology, 54 (10), 1997-2031.

14) Xu et al. (2013) The hydrous properties of subcontinental lithospheric mantle: constraints from water content and hyd rogen isotope composition of phenocrysts from Cenozoic continental basalt in North China, Geochimica et Cosmochimica Acta, doi: http://dx.doi.org/10.1016/j.gca.

13) Wang et al. (2013) Water contents and electrical conductivity of peridotite xenoliths from the North China Craton: Implications for water distribution in the upper mantle. Lithos (2013), http://dx.doi.org/10.1016/j.lithos.2013.08.005

12) Withers (2013) On the use of unpolarized infrared spectroscopy for quantitative analysis of absorbing species in birefringent crystals. American Mineralogist, 98 (4), 689-697.

11) Xia et al. (2013) Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China Craton: Peridotite xenolith constraints. Gondwana Research, 23 (1), 108-118.

10) Sokol et al. (2012) Melting experiments on the Udachnaya kimberlite at 6.3-7.5 GPa: Implications for the role of H2O in

magma

generation and formation of hydrous olivine.

Geochemica and Cosmichimica Acta,

101, 133-155.

(11)

Crystals, 559, 1, 179-185.

8) Yang et al. (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contributions to Mineralogy and Petrology, 163, 33-48.

7) Okumura (2011) The H2O content of andesitic magmas from three volcanoes in Japan, inferred from the infrared analysis of

clinopyroxene. European Journal of Mineralogy, 23, 771-778

6) Withers et al. (2011) The effect of Fe on olivine H2O storage capacity: Consequences for H2O in the martian mantle. American

Mineralogist, 96 (7), 1039-1053.

5) Yang et al. (2011) Effect of water on the electrical conductivity of lower crustal clinopyroxene. Journal of Geophysical Research-Solid Earth 116, B04208.

4) Peslier (2010) A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. Journal of Volcanology and Geothermal Research, 197 (1-4), 239-258.

3) Yang et al. (2008) Water in minerals of the continental lithospheric mantle and overlying lower crust: A comparative study of peridotite and granulite xenoliths from the North China Craton. Chemical Geology, 256 (1-2), 33-45.

2) Yang et al. (2008) Water contrast between Precambrian and Phanerozoic continental lower crust in eastern China. Journal of Geophysical Research-Solid Earth, 113, (B8), B08207.

1) Bureau et al. (2009) Determination of hydrogen content in geological samples using elastic recoil detection analysis (ERDA). Geochimica et Cosmochimica Acta, 73, 3311-3322.

KOVÁCS, I., Hermann, J., O’Neill, H. St. C., FitzGerald, J., Sambridge, M., Horváth, G., (2008): Quantitative

absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol

for quantitative analysis of mineral IR spectra. American Mineralogist, 93, 765-778.

Impakt faktor/Impact factor: 2.203; Független hivatkozások száma/Independent citations:

41/39

41) Lee and Jung (2015). Lattice-preferred orientation of olivine found in diamond-bearing garnet peridotites in Finsch, South Africa and implications for seismic anisotropy. Journal of Structural Geology. 70, 12-22.

40) Liu and Xia (2014). Water content in the early Cretaceous lithospheric mantle beneath the south-central Taihang Mountains: implications for the destruction of the North China Craton. Chinese Science Bulletin, 59(13), 1362-1365.

39) Smyth et al. (2014). Tetrahedral ferric iron in oxidized hydrous wadsleyite. American Mineralogist, 99(2-3), 458-466.

38) Chen et al. (2014) (2014). Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts, NE China: New constraints from water content. Tectonophysics. doi:10.1016/j.tecto.2014.07.022

37) Thomas and Watson (2014). Diffusion and partitioning of magnesium in quartz grain boundaries. Contributions to Mineralogy and Petrology, 168(4), 1-12.

36) Hao et al. (2014). Partial melting control of water contents in the Cenozoic lithospheric mantle of the Cathaysia block of South China. Chemical Geology, 380, 7-19.

35) Li et al. (2014). Temporal variation of H2O content in the lithospheric mantle beneath the eastern North China Craton: Implications for

the destruction of cratons. Gondwana Research. doi:10.1016/j.gr.2014.03.012

34) Douchet et al. (2014). High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths. Geochimica et Cosmochimica Acta, 137, 159-187.

33) Bolfan-Casanova et al. (2014) Measurement of water contents in olivine using Raman spectroscopy. American Mineralogist, 99, 449-156.

32) Balan et al. (2013) Contribution of interstitial OH groups to the incorporation of water in forsterite. Physics and Chemistry of Minerals, DOI 10.1007/s00269-013-0628-y

31) Mosenfelder et al. (2013) Analysis of hydrogen and fluorine in pyroxenes: II. Clinopyroxene. American Mineralogist, 98, 1042-1054. 30) Schmadicke et al. (2013) Olivine from spinel peridotite xenoliths: Hydroxyl incorporation and mineral composition. American

Mineralogist, 98, 1870-1880.

29) Grey (2013) Deformation of Earth’s Upper Mantle : Insights from Naturally Occurring Fabric Types. PhD Thesis, Curtin University, Department of Applied Geology.

28) Hidas et al. (2013) Strain Localization in Pyroxenite by Reaction-Enhanced Softening in the Shallow Subcontinental Lithospheric Mantle. Journal of Petrology, 54 (10), 1997-2031.

27) Xu et al. (2013) The hydrous properties of subcontinental lithospheric mantle: constraints from water content and hyd rogen isotope composition of phenocrysts from Cenozoic continental basalt in North China, Geochimica et Cosmochimica Acta, doi: http://dx.doi.org/10.1016/j.gca.

26) Wang et al. (2013) Water contents and electrical conductivity of peridotite xenoliths from the North China Craton: Implications for water distribution in the upper mantle. Lithos (2013), http://dx.doi.org/10.1016/j.lithos.2013.08.005

25) Withers (2013) On the use of unpolarized infrared spectroscopy for quantitative analysis of absorbing species in birefringent crystals. American Mineralogist, 98 (4), 689-697.

24) Xia et al. (2013) Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China Craton: Peridotite xenolith constraints. Gondwana Research, 23 (1), 108-118.

23) Wang et al. (2013) Pressure‐and stress‐induced fabric transition in olivine from peridotites in the Western Gneiss Region (Norway): implications for mantle seismic anisotropy. Journal of Metamorphic Geology, 31 (1), 93-111.

22) Sokol et al. (2012) Melting experiments on the Udachnaya kimberlite at 6.3-7.5 GPa: Implications for the role of H2O in magma generation and formation of hydrous olivine. Geochemica and Cosmichimica Acta, 101, 133-155.

21) Bolfan-Casanova et al. (2012) Ferric iron and water incorporation in wadsleyite under hydrous and oxidizing conditions: A XANES, Mössbauer, and SIMS study. American Mineralogist, 97, 1483-1493.

20) Ferot and Bolfan-Casanova (2012) Water storage capacity in olivine and pyroxene to 14GPa: Implications for the water content of the Earth's upper mantle and nature of seismic discontinuities. Earth and Planetary Science Letters, 349–350, 218–230

19) Murauski et al. (2012) Investigation of Volume Absorption Anisotropy of Complex Anisotropic Structures. Molecular Crystals and Liquid Crystals, 559, 1, 179-185.

18) Hao et al. (2012) Recognizing juvenile and relict lithospheric mantle beneath the North China Craton: Combined analysis of H2O,

major and trace elements and Sr–Nd isotope compositions of clinopyroxenes. Lithos, 149, 136-145.

17) Yang et al. (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contributions to Mineralogy and Petrology, 163, 33-48.

16) Okumura (2011) The H2O content of andesitic magmas from three volcanoes in Japan, inferred from the infrared analysis of

clinopyroxene. European Journal of Mineralogy, 23, 771-778

15) Mosenfelder et al. (2011) Analysis of hydrogen in olivine by SIMS: Evaluation of standards and protocol. American Mineralogist, 96(11-12): 1725 - 1741.

14) Wang & Zhang (2011) Water in peridotite xenoliths from South China. Science China Earth Sciences, 54 (10), 1511-1522.

(12)

Geosciences, 36 (4), 635-642.

12) Yu et al. (2011) H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China. Lithos, 126 (3-4), 182-197.

11) Yang et al. (2011) Effect of water on the electrical conductivity of lower crustal clinopyroxene. Journal of Geophysical Research-Solid Earth 116, B04208.

10) Xia et al. (2010) Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. Journal of Geophysical Research-Solid Earth, 115, B07207.

9) Peslier (2010) A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. Journal of Volcanology and Geothermal Research, 197 (1-4), 239-258.

8) Gose et al. (2010) OH point defects in olivine from Pakistan. Mineralogy and Petrology, 99 (1-2), 105-111.

7) Lei et al. (2009) Water Contents in Peridotite Xenoliths from Subei Basin,Eastern China. Earth Science - Journal of China University of Geosciences, 34 (1), 75-88.

6) Bonadiman et al. (2009) Water contents of pyroxenes in intraplate lithospheric mantle. European Journal of Mineralogy, 21 (3), 637-647.

5) Bureau et al. (2009) Determination of hydrogen content in geological samples using elastic recoil detection analysis (ERDA). Geochimica et Cosmochimica Acta, 73, 3311-3322.

4) Yang et al. (2008) Water in minerals of the continental lithospheric mantle and overlying lower crust: A comparative study of peridotite and granulite xenoliths from the North China Craton. Chemical Geology, 256 (1-2), 33-45.

3) Yang et al. (2008) Water contrast between Precambrian and Phanerozoic continental lower crust in eastern China. Journal of Geophysical Research-Solid Earth, 113, (B8), B08207.

2) Bali et al. (2008) Pressure and temperature dependence of H solubility in forsterite: An implication to water activity in the Earth interior. Earth and Planetary Science Letters, 268 (3-4), 354-363.

1) Hidas, K. (2009) Deformation and metasomatism in the sub-continental lithospheric mantle of the Carpthian-Pannonian region (Hungary) and Jeju Island (South Korea). Ph.D. thesis, Department of Petrology and Geochemistry, Eotvos University, Budapest (Hungary), pp: 172.

Guzmics, T., Kodolányi, J., KOVÁCS, I., Szabó, Cs., Bali, E., Ntaflos, T. (2009): Primary carbonatite melt

inclusions in apatite and in K-feldspar of clinopyroxene-rich mantle xenoliths hosted in lamprophyre dikes

(Hungary). Mineralogy and Petrology, 94, 225-242.

Impakt faktor/Impact factor: 1,511; Független hivatkozások száma/Independent citations:

9/8

9) Hurai et al. (2013) (2013). High-pressure aragonite phenocrysts in carbonatite and carbonated syenite xenoliths within an alkali basalt. Am Mineral, 98, 1074-1077.

8) Zeng et al. (2013) Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: the case for mantle xenolith-magma interactioN, Geochemistry, Geophysics, Geosystems DOI: 10.1002/ggge.20127

7) Grassi & Schmidt (2011) Melting of carbonated pelites at 8–13 GPa: generating K-rich carbonatites for mantle metasomatism. Contributions to Mineralogy and Petrology, 162 (1), 169-191.

6) Dobosi and Harangi (2011) Hungarian national report on IAVCEI 2007–2010. Acta Geodaetica et Gephysica Hungarica 46 (2), 464-482.

5) Su et al. (2011) The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China. Contributions to Mineralogy and Petrology, 161 (3), 465-482-

4) Demény et al. (2010) Origin of CO2 and carbonate veins in mantle-derived xenoliths in the Pannonian Basin. Lithos, 117 (1-4),

172-182.

3) Upton et al. (2009) Megacrysts and salic xenoliths in Scottish alkali basalts: derivatives of deep crustal intrusions and small-melt fractions from the upper mantle. Mineralogical Magazine, 73 (6), 943-956.

2) Thomas et al. (2009) A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems. Mineralogy and Petrology, 96 (3-4), 129-140.

1) Berkesi, M. (2011) The role of fluids in the lithospheric mantle (Central Pannonian Basin, western Hungary): detailed fluid inclusion study in mantle xenoliths. Ph.D. Thesis, Department of Petrology and Geochemistry, Eötvös University, Budapest (Hungary), pp. 168.

KOVÁCS,

I., O’Neill

,

H. St. C., Hermann

,

J., Hauri, E. (2010): Site-specific infrared O-H absorption coefficients

for water substitution into olivine. American Mineralogist, 95, 292-299.

Impakt faktor/Impact factor: 2,026; Független hivatkozások száma/Independent citations:

38/34

38) Luo et al. (2014). Designing of In Situ FTIR Cell and its Application. Advanced Materials Research, 900, 390-393.

37) Warren and Hauri (2014) (2014). Pyroxenes as tracers of mantle water variations. Journal of Geophysical Research: Solid Earth, 119(3), 1851-1881.

36) Schaible and Baragiola. (2014). Hydrogen implantation in silicates: The role of solar wind in SiOH bond formation on the surfaces of airless bodies in space. Journal of Geophysical Research: Planets, 119(9), 2017-2028.

35) Crépisson et al. (2014). Theoretical infrared spectrum of partially protonated cationic vacancies in forsterite. European Journal of Mineralogy, 26(2), 203-210.

34) Yang et al. (2014). CO2-induced small water solubility in olivine and implications for properties of the shallow mantle. Earth and

Planetary Science Letters, 403, 37-47.

33) Hilchie et al. (2014). The origin of high hydrogen content in kimberlitic olivine: Evidence from hydroxyl zonation in olivine from kimberlites and mantle xenoliths. Lithos, 202, 429-441.

32) Douchet et al. (2014). High water contents in the Siberian cratonic mantle linked to metasomatism: An FTIR study of Udachnaya peridotite xenoliths. Geochimica et Cosmochimica Acta, 137, 159-187.

31) Baptiste et al. (2014). Deformation, hydration, and anisotropy of the lithospheric mantle in an active rift: Constraints from mantle xenoliths from the North Tanzanian Divergence of the East African Rift. Tectonophysics. doi:10.1016/j.tecto.2014.11.011 30 de Hoog et al. (2014). Titanium-and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps,

Italy): evidence for deep subduction of high-field strength and fluid-mobile elements. Contributions to Mineralogy and Petrology, 167(3), 1-15.

29) Bolfan-Casanova et al. (2014) Measurement of water contents in olivine using Raman spectroscopy. American Mineralogist, 99, 449-156.

27) Sokol et al. (2013) Partitioning of H2O between olivine and carbonate–silicate melts at 6.3 GPa and 1400 °C: Implications for kimberlite formation. Geochimica et Cosmochimica Acta, 383 (1), 58–67.

References

Related documents

I, privately, called the Village a SHIP OF WIDOWS (3). I soon found that the rules were not the only form of oppression. The building design fostered supervision and this

In this study, the results of dual culture revealed the rapid and effective growth of Trichoderma isolates used against Sclerotium rolfsii in comparison to other

Molecular docking studies of the selected compounds against Aurora kinase revealed superior docking scores ranging from -8.273 (compound 8) to -5.641 (compound 2) and

Treatment of rats with silymarin and leaves powder slurry showed significant increase in body weight as compared to CCl4 treated group (Table 1).. Serum

( F ) The uptake levels of Tat/pGL3-YOYO-1 complexes (N/P = 10, 20) in cos-7 cells, pretreated with endocytosis inhibitors, were quantified and analyzed by fluorescence activated

In order to verify the performance of the emotional reasoning system using the fuzzy reasoning presented in this study, we show the image that induces the

Mutant complementation mapping: We used complemen- tation tests to 27 mutations at 26 positional candidate genes within QTL defined by deficiency complementa- tion mapping to