Can the hint of
δ
CPfrom T2K also indicate
the hierarchy and octant ?
Monojit Ghosh
Physical Research Laboratory Ahmedabad
XXI DAE-BRNS High Energy Physics Symposium IITG, 8-12 December, 2014
Introduction
In neutrino oscillation one flavor evolves into another.
This is because the flavor eigenstates and mass eigenstates are not same and related by
|ναi=
N
X
i=1
Uαi|νii
Where U is the unitary PMNS matrix which diagonalize the neutrino mass matrix
mν =Umdiagν UT
wheremνdiag =diag(m1,m2,m3)
Continue...
Neutrino oscillation also involves two independent mass squared difference i.e the solar mass square difference (m22−m21 = ∆21) and the atmospheric mass squared
difference (m23−m21= ∆31).
The undetermined sign of ∆31 give rise to two
possible mass orderings i.e. Normal
Hierarchy(NH i.e m3 >m1) and Inverted
Unknowns
Hierarchy(NH or IH)
Octant of θ23(LO:θ23<45 or HO:θ23<45)
Current status of
δ
CPRecently, an indication forδCP = -90o has been obtained from T2K data
This hint comes from T2K running in the “neutrino mode” with 8% of the expected total flux of T2K (7.8×1021 protons
The question
In this work we ask the following questions: If the T2K hint of -90o is confirmed by the further T2K ‘neutrino’ runs, then can it indicate the true hierarchy and true octant ?
The T2K experiment
T2K is a long-base experiment in Japan currently running in neutrino mode
νµ’s are shot from J-PARC towards 295 km away
Super-Kamiokande detector, which is a Water Cerenkov detector having mass 22.5 kt.
The flux peaks sharply at the first oscillation maxima around 0.6 GeV
The appearance channel
For T2K, the probability relevant for the measurement of CP can be expressed in terms ofα= ∆21/∆31as
Pµe = 4s132 s232
sin2[(1−Aˆ)∆] (1−Aˆ)2 +
αsin 2θ13sin 2θ23cos (∆ +δCP)
sin ˆA∆ ˆ A
sin [(1−Aˆ)∆] (1−Aˆ)
∆ = ∆31L/4E = +ve for NH & -ve for IH
A= ˆA∆31= 0.76×10−4ρ(gm/cc)E(GeV)
Degeneracies in
P
µeThe determination of CP in T2K is affected by degeneracies:
a)Hierarcy-δCP degeneracy i.e Pµe(δCP,NH) =Pµe(δCP0 ,IH)
b)Octant-δCP degeneracy i.ePµe(LO, δCP) =Pµe(HO, δCP0 )
Due to (a) and (b) there exist 3 fakesolutions: i)wrong hierarchy-right octant
ii)right hierarchy-wrong octant iii)wrong hierarchy-wrong octant
As for ¯ν, ˆAandδCP both changes sign, addition of ¯ν resolves
CP Precision
True value: -90o(motivated by T2K hint)-NH-LO(39o),
χ2(= (Ntrue −Ntest)2/Ntrue) vsδCP(test) for differenttest
combinations of hierarchy and octant
8+0 correspond to running T2K in only ν mode with total
8×1021 POT 10 20 30 40 χ 2 T2K(8+0) True NH,True LO δCP(True)=-90o NH-LO NH-HO IH-LO IH-HO 3 best fits: -90, 0, 135 0, 135 arises due to the fake IH-HO and NH-HO solutions(wrong octant i.e HO(51o))
Conclusion: If true
combination is NH-LO, then clear hint at -90 is
Continue...
The same fig plotted for all 4 possible true combinations i.e NH-LO, NH-HO, IH-LO, IH-HO
T2K config: 8+0 0 10 20 30 40 -180 -120 -60 0 60 120 180 δCP (Test) χ 2 True NH, True LO δCP (True) = -90o NH-LO NH-HO IH-LO IH-HO 0 10 20 30 40 -180 -120 -60 0 60 120 180 δCP (Test) χ 2 True NH, True HO δCP (True) = -90o NH-LO NH-HO IH-LO IH-HO 0 10 20 30 40 -180 -120 -60 0 60 120 180 δCP (Test) χ 2
True IH, True LO
δCP (True) = -90o NH-LO NH-HO IH-LO IH-HO 0 10 20 30 40 -180 -120 -60 0 60 120 180 δCP (Test) χ 2
True IH, True HO
δCP (True) = -90o NH-LO NH-HO IH-LO IH-HO
Only NH-HO gives clear hint at -90
Impact of anti-neutrino run
T2K config: 4+4 0 10 20 30 40 -180 -120 -60 0 60 120 180 δCP (Test) χ 2 True NH, True LO δCP (True) = -90o NH-LO NH-HO IH-LO IH-HO 0 10 20 30 40 -180 -120 -60 0 60 120 180 δCP (Test) χ 2 True NH, True HO δCP (True) = -90o NH-LO NH-HO IH-LO IH-HO 0 10 20 30 40 -180 -120 -60 0 60 120 180 δCP (Test) χ 2True IH, True LO
δCP (True) = -90o NH-LO NH-HO IH-LO IH-HO 0 10 20 30 40 -180 -120 -60 0 60 120 180 δCP (Test) χ 2
True IH, True HO
δCP (True) = -90o NH-LO NH-HO IH-LO IH-HO ¯
ν removes the wrong octant fits but not wrong hierarchy fits 2nd panel remains unaltered as it does not have any wrong octant best fit
The CP violation discovery
χ
2To quantify the ¯ν run we study CPV discovery The CPV discoveryχ2 is defined as
χ2= min(Nex(δ
tr
CP)−Nth(δCPtest = 0,180o))2 Nex(δtrCP)
χ2 = 0 atδtrCP = 0&180(CP conserving values) = max atδCPtr =±90
Continue...
CPV discovery χ2 is plotted vsδCP(true) for all 4 possible
true combinations 0 2 4 6 8 -180 -120 -60 0 60 120 180 δCP (True) χ 2 NH, LO 4+4 8+0 5+3 6+2 7+1 0 2 4 6 8 -180 -120 -60 0 60 120 180 δCP (True) χ 2 NH, HO 4+4 8+0 5+3 6+2 7+1 0 2 4 6 8 -180 -120 -60 0 60 120 180 δCP (True) χ 2 IH, LO 4+4 8+0 5+3 6+2 7+1 0 2 4 6 8 -180 -120 -60 0 60 120 180 δCP (True) χ 2 IH, HO 4+4 8+0 5+3 6+2 7+1
For NH-HO and IH-HO, 8+0 is best: addition of ¯ν reduce sensitivity
For NH-LO, 5+3 and for IH-HO 6+2 is best: further addition of ¯ν reduce sensitivity
The Answer
In conclusion we give the following answers:
If T2K runs only in ν mode and givesδCP = -90, then true
hierarchy is NH and true octant is HO
If T2K runs in equal ν-¯ν mode and givesδCP = -90, then true
hierarchy is NH ¯
ν only removes wrong octant solution if it is present otherwise it reduces sensitivity
The Answer
In conclusion we give the following answers:
If T2K runs only in ν mode and givesδCP = -90, then true
hierarchy is NH and true octant is HO
If T2K runs in equal ν-¯ν mode and givesδCP = -90, then true
hierarchy is NH ¯
ν only removes wrong octant soluion if it is present otherwise it reduces sensitivity