• No results found

Energy and Spectrum of an Undirected Graph

N/A
N/A
Protected

Academic year: 2022

Share "Energy and Spectrum of an Undirected Graph "

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

Energy and Spectrum of an Undirected Graph ๐‘ฎ ๐’Ž,๐’

M. Venkata Anusha

1

, M. Siva Parvathi*

2

and S. Uma Maheswari

3

1,2

Department of Applied Mathematics,

Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, INDIA.

3

Department of Mathematics,

J.M.J. College for Women, Tenali, Andhra Pradesh, INDIA.

email:anuanusha648@gmail.com, parvathimani2008@gmail.com, umadhanu.c@gmail.com.

(Received on: June 20, 2019) ABSTRACT

In this paper the notation of Gm,n be a basic simple undirected graph with vertex set V = In= {1,2,3,ยทยทยท , n} and u, v โˆˆ V are adjacent if and only if u โ‰  v and u + v is not divisible by m, where m โˆˆ N and m > 1. We have determined the energies and spectrum of the graph Gm,n.

AMS Subject Classification: 05C50, 05C35.

Keywords: Energy of a graph, Spectrum of a graph, Matrix energy of a graph.

1. INTRODUCTION

The concept of Energy of a Graph was introduced by I. Gutman

1

in 1978. A great variety of graph energies is being considered in the current mathematical chemistry. It can be used to approximate the total ฯ€-electron energy of a molecule

2

. This spectrum-based graph invariant has been much studied in both chemical and mathematical literature. Now a dayโ€™s graph energy is referred to as, closely related to the total ฯ€-electron energy calculated within the Huckel molecular orbital approximation

3

.

Let ๐บ be a graph with ๐‘› vertices and ๐‘š edges and the adjacency matrix of ๐ด(๐บ) of ๐บ

is defined by its entries as ๐‘Ž

๐‘–๐‘—

= 1, if two vertices are adjacent and 0 otherwise. Let the eigen

values of ๐ด(๐บ) be ฮป

1

, ฮป

2

, ฮป

3

, โ€ฆ , ฮป

๐‘›

where ฮป

1

โ‰ฅ ฮป

2

โ‰ฅ ฮป

3

โ‰ฅ โ‹ฏ โ‰ฅ ฮป

๐‘›

.Then spectral radius ฮป

1

is

the highest eigen value of ๐บ. Then we will write ฮป

๐‘–

(๐บ) instead of ฮป

๐‘–

.We know

det ๐ด = โˆ

๐‘›๐‘–=1

ฮป

๐‘–

. Spectrum is the collection of Eigen values with their multiplicities

(2)

Nikiforov

6

generalised the matrix energy of any graph is defined as the sum of singular values of the adjacency matrix of ๐บ, and it is denoted by โ„‡

๐‘š

(๐บ).

2. THE UNDIRECTED GRAPH ON A FINITE SUBSET OF NATURAL NUMBERS AND ITS PROPERTIES

Definition 2.1: Ivy. Chakrabarty

7

introduced an undirected graph ๐บ

๐‘š,๐‘›

on a finite subset of natural numbers and proved some basic properties of ๐บ

๐‘š,๐‘›

. Let ๐บ

๐‘š,๐‘›

be a simple undirected graph with vertex set ๐‘‰ = ๐ผ

๐‘›

= {1,2,3,ยทยทยท , ๐‘›} and ๐‘ข, ๐‘ฃ โˆˆ ๐‘‰ are adjacent if and only if ๐‘ข โ‰  ๐‘ฃ and ๐‘ข + ๐‘ฃ is not divisible by ๐‘š, where ๐‘š โˆˆ ๐‘ and ๐‘š > 1. If ๐‘š = 1, the graph is disconnected and it forms only isolated vertices. Some of the properties of ๐บ

๐‘š,๐‘›

are

Lemma 2.1: Let ๐‘š, ๐‘› โˆˆ ๐‘, ๐‘š, ๐‘› > 1. Then the graph ๐บ

๐‘š,๐‘›

is connected.

Lemma 2.2: ๐บ

๐‘š,๐‘›

โ‰… ๐พ

3

if and only if ๐‘› = 3 and ๐‘š โ‰ฅ 6.

Lemma 2.3: ๐บ

๐‘š,๐‘›

is a (๐‘› โˆ’ 2)-regular graph for ๐‘› = ๐‘š โˆ’ 1, where ๐‘š is odd.

Lemma 2.4: ๐บ

๐‘š,๐‘›

is a complete ๐‘˜ โˆ’partite graph, if ๐‘› = ๐‘š โˆ’ 1, where ๐‘š is odd and ๐‘˜ =

๐‘›

2

. Lemma 2.5: Let ๐‘š โ‰ฅ 2๐‘›.Then ๐บ

๐‘š,๐‘›

is complete.

3. ENERGY AND SPECTRUM OF A GRAPH ๐‘ฎ

๐’Ž,๐’

:

Definition 3.1: Let ๐บ

๐‘š,๐‘›

be an undirected graph with ๐‘› vertices and ๐‘š be the positive integer

> 1 and let ๐ด = (๐‘Ž

๐‘–๐‘—

) be the adjacency matrix of ๐ด(๐บ) of ๐บ is defined by its entries as ๐‘Ž

๐‘–๐‘—

= 1 , if two vertices are adjacent and 0 otherwise and ฮป

1

โ‰ฅ ฮป

2

โ‰ฅ ฮป

3

โ‰ฅ โ‹ฏ โ‰ฅ ฮป

๐‘›

are the eigen values of ๐ด(๐บ). The spectrum of ๐บ

๐‘š,๐‘›

is ( ฮป

1

ฮป

2

โ€ฆ ฮป

๐‘›

๐‘š

1

๐‘š

2

โ€ฆ ๐‘š

๐‘›

) and the energy is the sum of the absolute values of the eigen values of ๐บ

๐‘š,๐‘›

. i.e.,โ„‡( ๐บ

๐‘š,๐‘›

) = โˆ‘

๐‘›๐‘–=1

|ฮป

๐‘–

|.

Theorem 3.1: The energy of the graph ๐บ

๐‘š,๐‘›

is 2๐‘› โˆ’ 2 if ๐‘› โ‰ฅ 3 and ๐‘š โ‰ฅ 2๐‘›.

Proof: Let ๐‘‰ = {1,2,3, โ€ฆ , ๐‘›} be the vertex set of the graph ๐บ

๐‘š,๐‘›

where ๐‘š, ๐‘› โˆˆ ๐‘ ๐‘Ž๐‘›๐‘‘ ๐‘š > 1.

If ๐‘› โ‰ฅ 3 and ๐‘š โ‰ฅ 2๐‘› , then the graph ๐บ

๐‘š,๐‘›

is complete and connected.

(3)

For the graph, ๐‘ฎ๐Ÿ๐Ÿ”,๐Ÿ–, ๐œบ(๐‘ฎ๐Ÿ๐Ÿ”,๐Ÿ–) = ๐Ÿ๐Ÿ’

The adjacency matrix of ๐บ

๐‘š,๐‘›

graph is an ๐‘› ร— ๐‘› matrix defined as ๐ด(๐บ

๐‘š,๐‘›

) = (๐‘Ž

๐‘–๐‘—

) = { 1, ๐‘–๐‘“ u

i

and v

j

are adjacent ,

0, ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ .

Then ๐ด(๐บ

๐‘š,๐‘›

) = (

0 1

1 0 1 1 โ€ฆ 1

1 1 โ€ฆ 1 1

โ‹ฎ 1 1 1 โ‹ฎ

0

โ‹ฎ 1 โ€ฆ

โ‹ฎ โ‹ฑ 1 1 1 โ€ฆ 0) โ‹ฎ

๐‘›ร—๐‘›

.

The characteristic equation is |๐ด โˆ’ ๐ผ| = 0.

This implies( + 1)

(๐‘›โˆ’1)

+ [ โˆ’ (๐‘› โˆ’ 1)] = 0.

Therefore ๐‘†๐‘๐‘’๐‘(๐บ

๐‘š,๐‘›

) = ( โˆ’1 ๐‘› โˆ’ 1 ๐‘› โˆ’ 1 1 ).

Hence the energy of a graph is โ„‡(๐บ

๐‘š,๐‘›

) = โˆ‘

๐‘›๐‘–=1

|ฮป

๐‘–

| = โˆ‘

2๐‘—=1

|ฮป

๐‘—

| ๐‘ ๐‘๐‘’๐‘(ฮป

๐‘—

)

= |ฮป

1

|๐‘ ๐‘๐‘’๐‘(ฮป

1

) + |ฮป

2

|๐‘ ๐‘๐‘’๐‘(ฮป

2

) = 2๐‘› โˆ’ 2.

Theorem 3.2: The energy of the graph ๐บ

๐‘š,๐‘›

is 2๐‘› โˆ’ 4 if ๐‘› = ๐‘š โˆ’ 1 where ๐‘š is odd and โ‰ฅ 5.

Proof: Let ๐‘› = ๐‘š โˆ’ 1 where ๐‘š is odd and โ‰ฅ 5 .

Let ๐‘‰ = {๐‘š โˆ’ 1, ๐‘š โˆ’ 2, โ€ฆ ,2,1} be the vertex set of ๐บ

๐‘š,๐‘›

.

Consider two subsets of ๐‘‰ as ๐‘‰

๐‘–

= {๐‘š โˆ’ ๐‘–, ๐‘–} and ๐‘‰

๐‘—

= {๐‘š โˆ’ ๐‘—, ๐‘—}.

Then the vertex ๐‘š โˆ’ ๐‘– is adjacent to ๐‘š โˆ’ ๐‘—,

Because (๐‘š โˆ’ ๐‘–) + (๐‘š โˆ’ ๐‘—) is not divisible by ๐‘š as (๐‘š โˆ’ ๐‘—) โ‰  i.

(4)

For the graph, ๐‘ฎ๐Ÿ—,๐Ÿ–, ๐œบ(๐‘ฎ๐Ÿ—,๐Ÿ–) = ๐Ÿ๐Ÿ

The adjacency matrix of the graph ๐บ

๐‘š,๐‘›

is ๐ด(๐บ

๐‘š,๐‘›

) =

( 0 1 1 0

1 1 1 1 1 โ‹ฎ

1 โ€ฆ โ‹ฑ 1

1 0

1 โ€ฆ

โ‹ฎ 1

1 0 1 โ‹ฐ 0 1

0 1 1 1

โ‹ฎ โ€ฆ 1 1

1 1 1 0

1 0 โ‹ฐ 1

0 1 1 โ‹ฎ

1 โ€ฆ

0 1

1 โ‹ฑ โ€ฆ โ‹ฎ

โ‹ฎ 1 1 1

โ€ฆ 1 0 1

1 0)

๐‘›ร—๐‘›

and the characteristic equation is ( + 2)

(

๐‘› 2โˆ’1)

+ ( )

๐‘›

2

+ ( โˆ’ (๐‘› โˆ’ 2)) = 0 and ๐‘†๐‘๐‘’๐‘(๐บ

๐‘š,๐‘›

) = ( โˆ’2 0 ๐‘› โˆ’ 2

๐‘›

2

โˆ’ 1

๐‘›

2

1 ).

Hence the energy โ„‡(๐บ

๐‘š,๐‘›

) = 2๐‘› โˆ’ 4.

4. MATRIX ENERGY AND SPECTRUM OF A GRAPH โ„‡

๐’Ž

(๐‘ฎ):

Definition 4.1: Let A(G) be the adjacency matrix of ๐บ and A(G)

โ€ฒ

be the transpose of A(G).

Then A(G)A(G)

โ€ฒ

is a positive semi definite matrix and the eigen values and singular values of the ๐บ are same. The matrix energy of ๐บ is denoted by โ„‡

๐‘š

(๐บ) and is defined as the summation of singular values of A(G).so, the energies โ„‡(๐บ) and โ„‡

๐‘š

(G ) both are same.

Theorem 4.1: The matrix energy of ๐บ

๐‘š,๐‘›

is 2๐‘› โˆ’ 2 if ๐‘› โ‰ฅ 3 and ๐‘š โ‰ฅ 2๐‘›.

Proof:

(5)

For the graph, ๐‘ฎ๐Ÿ–,๐Ÿ’, ๐œบ๐’Ž(๐‘ฎ๐Ÿ–,๐Ÿ’) = ๐Ÿ”

Then ๐ด(๐บ

๐‘š,๐‘›

)๐ด

โ€ฒ

(๐บ

๐‘š,๐‘›

) = (

๐‘› โˆ’ 1 ๐‘› โˆ’ 2

๐‘› โˆ’ 2 ๐‘› โˆ’ 1 ๐‘› โˆ’ 2 โ€ฆ ๐‘› โˆ’ 2 ๐‘› โˆ’ 2 โ€ฆ ๐‘› โˆ’ 2 ๐‘› โˆ’ 2

โ‹ฎ ๐‘› โˆ’ 2

๐‘› โˆ’ 2 ๐‘› โˆ’ 2 โ‹ฎ

๐‘› โˆ’ 1

โ‹ฎ

โ€ฆ

โ‹ฑ ๐‘› โˆ’ 2 ๐‘› โˆ’ 2 โ€ฆ ๐‘› โˆ’ 1) โ‹ฎ

๐‘›ร—๐‘›

and the characteristic equation is ( โˆ’ 1)

๐‘›โˆ’1

+ [ โˆ’ (๐‘› โˆ’ 1)] = 0.

Therefore ๐‘†๐‘๐‘’๐‘(๐บ

๐‘š,๐‘›

) = ( 1 ๐‘› โˆ’ 1

๐‘› โˆ’ 1 1 ) and the singular values are 1, ๐‘› โˆ’ 1.

Hence the matrix energy of ๐บ

๐‘š,๐‘›

= โ„‡

๐‘š

(๐บ

๐‘š,๐‘›

) =summation of singular values of ๐ด(๐บ

๐‘š,๐‘›

) =

โˆ‘

2๐‘—=1

|ฮป

๐‘—

| ๐‘ ๐‘๐‘’๐‘(ฮป

๐‘—

) = |ฮป

1

|๐‘ ๐‘๐‘’๐‘(ฮป

1

) + |ฮป

2

|๐‘ ๐‘๐‘’๐‘(ฮป

2

) = 2๐‘› โˆ’ 2.

Theorem 4.2: The matrix energy of the graph ๐บ

๐‘š,๐‘›

is 2๐‘› โˆ’ 4 if ๐‘› = ๐‘š โˆ’ 1 where ๐‘š is odd and โ‰ฅ 5.

Proof: From theorem 3.2, we have

๐ด(๐บ

๐‘š,๐‘›

) =

( 0 1 1 0

1 1 1 1 1 โ‹ฎ

1 โ€ฆ โ‹ฑ 1

1 0

1 โ€ฆ

โ‹ฎ 1

1 0 1 โ‹ฐ 0 1

0 1 1 1

โ‹ฎ โ€ฆ 1 1

1 1 1 0

1 0 โ‹ฐ 1

0 1 1 โ‹ฎ

1 โ€ฆ

0 1

1 โ‹ฑ โ€ฆ โ‹ฎ

โ‹ฎ 1 1 1

โ€ฆ 1 0 1

1 0)

๐‘›ร—๐‘›

.

Then ๐ด(๐บ

๐‘š,๐‘›

)๐ด

โ€ฒ

(๐บ

๐‘š,๐‘›

) =

(

๐‘› โˆ’ 2 ๐‘› โˆ’ 4 ๐‘› โˆ’ 4 ๐‘› โˆ’ 2

๐‘› โˆ’ 4 ๐‘› โˆ’ 4 ๐‘› โˆ’ 4 โ‹ฎ ๐‘› โˆ’ 4 ๐‘› โˆ’ 4

๐‘› โˆ’ 4 โ€ฆ

โ‹ฑ ๐‘› โˆ’ 4

๐‘› โˆ’ 4 ๐‘› โˆ’ 2

๐‘› โˆ’ 4 โ€ฆ

โ‹ฎ ๐‘› โˆ’ 4

๐‘› โˆ’ 4 ๐‘› โˆ’ 2 ๐‘› โˆ’ 2 ๐‘› โˆ’ 4

๐‘› โˆ’ 4 โ‹ฐ

๐‘› โˆ’ 2 ๐‘› โˆ’ 4

๐‘› โˆ’ 4 ๐‘› โˆ’ 4 ๐‘› โˆ’ 4 ๐‘› โˆ’ 4

โ‹ฎ โ€ฆ

๐‘› โˆ’ 4 ๐‘› โˆ’ 4 ๐‘› โˆ’ 4 ๐‘› โˆ’ 2

โ‹ฐ ๐‘› โˆ’ 4

๐‘› โˆ’ 4 ๐‘› โˆ’ 2

๐‘› โˆ’ 2 ๐‘› โˆ’ 4 ๐‘› โˆ’ 4 โ‹ฎ ๐‘› โˆ’ 4 โ€ฆ

๐‘› โˆ’ 2 ๐‘› โˆ’ 4

๐‘› โˆ’ 4 โ‹ฑ

โ€ฆ โ‹ฎ

๐‘› โˆ’ 4 ๐‘› โˆ’ 4

โ‹ฎ ๐‘› โˆ’ 4

โ€ฆ ๐‘› โˆ’ 4 ๐‘› โˆ’ 2 ๐‘› โˆ’ 4

๐‘› โˆ’ 4 ๐‘› โˆ’ 2)

๐‘›ร—๐‘›

(6)

๐‘š,๐‘› ๐‘š ๐‘š,๐‘›

5. REFERENCES

1. I. Gutman - The energy of a graph. Ber. Math-Satist. Sekt. Forschungsz. Graz 103, 1-22 (1978).

2. I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, (1986).

3. I. Gutman, Topology and stability of conjugated hydrocarbons, the dependence of total ฯ€- electron energy on molecular topology. J. Serb.Chem. Soc. 70, 441โ€“456 (2005).

4. D. Cvetkovia, M. Doob. H. Sachs, Spectra of Graphs - Theory and Applications, Academic Press New York, (1980).

5. I. Gutman, X. Li, Y. Shi, Graph Energy, Springer New York Heidelberg Dordrecht London, (2012).

6. V.Nikiforov - The energy of a Graphs and matrices, J. Math. Appl, 326, 1472-1475 (2007).

7. Ivy. Chakrabarty - An undirected graph on a finite subset of natural numbers, Indian

Journal of Discrete Mathematics 2(1), 128-138 (2015).

References

Related documents

This thesis presents two extensions to AMG solvers: an extension of AMG solvers for unsigned, undirected graph Laplacians to signed, undirected graph Laplacian linear systems

We use the Trust graph to study the node degree distribution, graph growth and evolution whereas the undirected graph to compute fundamental graph metric properties such as the

If the utilization of the crane is less, the following items be checked on quarterly basis, otherwise on monthly basis. โ™ฆ Check the entire unit for any structural damage,

At point A, the economy is at its full- employment equilibrium ( ลญ = ลท ) with the long-run Phillips-curve being horizontal. If the left party L wins the election, then it will,

As a standard requirement for all exhibitors, it is necessary to provide proof of general liability coverage from an insurance company in good standing with minimum policy limits of

Which method is based on the theory that the total value of a business is the present value of its projected future earnings, plus the present value of the terminal

โ€ข The degree of a vertex in an undirected graph is the number of edges that leave/enter the vertex.. โ€ข The degree of a vertex in a directed graph is the same, but we

In a undirected graph the connections are assumed to be two-way and edges can be drawn as line segments. Any simple undirected graph G with n vertices