• No results found

Application of Trial Equation Method for Solving the Getmanou Equation

N/A
N/A
Protected

Academic year: 2020

Share "Application of Trial Equation Method for Solving the Getmanou Equation"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

http://dx.doi.org/10.4236/am.2014.510139

Application of Trial Equation Method for

Solving the Getmanou Equation

Li Yang

Department of Mathematics, Northeast Petroleum University, Daqing, China Email: liyang120918@163.com

Received 21 March 2014; revised 21 April 2014; accepted 28 April 2014

Copyright © 2014 by author and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Abstract

Under the travelling wave transformation, some nonlinear partial differential equations such as the Getmanou equation are transformed to ordinary differential equation. Then using trial equa-tion method and combing complete discriminaequa-tion system for polynomial, the classificaequa-tions of all single traveling wave solution to this equation are obtained.

Keywords

The Nonlinear Partial Differential Equation, Trial Equation Method, Complete Discrimination System for Polynomia, Traveling Wave Transform, the Getmanou Equation

1. Introduction

Many problems in natural and engineering sciences are modeled by partial differential equations (PDE). Looking for the solutions of the equation, especially the exact solutions, is very important. These exact solutions can describe many important phenomena in physics and other fields and also help physicists to understand the mechanisms of the complicated physical phenomena. Many mathematicians and physicists work in the field, and a variety of powerful methods have been employed to study nonlinear phenomena, such as the inverse scattering transform [1], the Bäcklund transformation method [2], the Darboux transformation [3], the homogeneous balance method [4], the tanh function method [5], the exp-function method [6], the G'/G-expansion method [7], and so on.

(2)

combined with complete discrimination system for polynomial.

2. Application of Trial Equation Method

The Getmanou equation [12] reads as

(

2

)

2 1 0.

1

x t xt

u u

u u u

u

+ − − =

− (1) Or equivalently

(

2

)

(

2

)

2

1−u uxt+u ux tu 1−u =0. (2) Taking the traveling wave transformation u=u

( )

ξ1 and ξ1=kxt, we can obtain the corresponding ODE

(

2

)

( )

2 5 3

1 2 0.

kω −u u′′+kω u′ −u + u − =u (3) we take the trial equation as follows

0 1 .

m m

u′′ =a +a u+ + a u (4) According to the trial equation method of rank homogeneous equation, balancing u u′′2 with 5

u gets 3

m= .

Equation (4) has the following specific form

3 2

3 2 1 0.

u′′ =a u +a u +a u+a (5) From Equation (5), we get

( )

2 4 3 2

3 2 1 0

1 2

2 .

2 3

u′ = a u + a u +a u + a u+d (6) Substituting Equations (5) and (6) into Equation (3), we have

5 4 3 2

5 4 3 2 1 0 0.

r u +r u +r u +r u +r u+ =r (7) where

0 0

1 1 0

2 2 1 0

3 3 2 1

4 3 2

5 3

.

2 1.

. 2

2. 3

1

. 2

1.

r k a k d

r k a k a

r k a k a k a

r k a k a k a

r k a k a

r k a

ω ω

ω ω

ω ω ω

ω ω ω

ω ω

ω

= +

= + −

= + −

= + − +

= −

= − −

(8)

Let the coefficient r ii

(

=0,1, 2, 3, 4, 5

)

be zero, we will yield nonlinear algebraic equations. Solving the equations, we will determine the values of a a a a d0, 1, 2, 3, . We get

0 1 2 3

1 2 1 1 1

, , , , .

6 3 2 6

a a a a d

kω kω kω kω kω

= = = − = − = (9)

When a3> 0, we take transformations as follows

1 1

4 4

2

3 3 1

3

1 1

, .

2 3 2

a

w a u a

a ξ ξ

 

   

= + =

    (10) Then Equation (6) becomes

( )

2 4 2

.

(3)

where w is a function of ξ and

1 1

2 2 2 1

1 3 3 2 3

1 1 1

4 1 4 3 2 4

1 3 2 3 3 2 3 0 3

1 2 2 4 3

0 0 2 3 1 2 3 2 3

1 1 1

.

2 3 2

2 1 4 1 1

2 .

3 2 27 2 2

2 1 1

.

3 9 54

p a a a a a

q a a a a a a a a a

r a a a a a a a a a

− −

− − −

− −

− − −

   

=

   

     

= − + +

     

= − + −

(12)

When a3< 0, we take transformations as follows

1 1

4 4

2

3 3 1

3

1 1

, .

2 3 2

a

w a u a

a ξ ξ

 

   

= − + = −

    (13)

Then Equation (6) becomes

( )

2

(

4 2

)

.

w′ = − w +pw +qw r+ (14) where w is a function of ξ and

1 1

2 2

2 1

1 3 3 2 3

1 1 1

4 4 4

1 3 2

1 3 2 3 3 2 3 0 3

1 2 2 4 3

0 0 2 3 1 2 3 2 3

1 1 1

.

2 3 2

2 1 4 1 1

2 .

3 2 27 2 2

2 1 1

.

3 9 54

p a a a a a

q a a a a a a a a a

r a a a a a a a a a

− −

− − −

− −

− − −

   

= − +

   

     

=

     

= − + − +

(15)

We write the complete discrimination system for polynomial F w

( )

=w4+pw2+qw r+ as follows

3 2 4 3 2 2 2 2 4 3 2

1 2 3 4 2

27

4, , 8 2 9 , 4 36 32 64 , 9 32 .

4

D = D = −p D = rppq D = p rp q + prqr pq + r E = qpr (16) Then we consider the following ODE

( )

2

(

4 2

)

.

w′ =ε w +pw +qw r+ (17) where ε=±1. Rewrite Equation (17) by integral form as follows

(

)

(

)

0

4 2

d

. w

w pw qw r

ξ ξ

ε

± − =

+ + +

(18)

3. Classification of the Traveling Wave Solutions

According to the complete discrimination system for the fouth order polynomial, we give the corresponding single traveling wave solutions to Equation (1).

Case 1. D4=0, D3 =0, D2< 0. Then we have

( ) (

)

2 2

2

1 1 .

F w = w l− +s (19) where l1 and s1 are real numbers, s1> 0.

When ε =1, we have

(

)

1tan 1 0 1.

(4)

(

)

1 1

4 4

2

3 1 1 3 1 0 1

3

1 1

tan .

2 2 3

a

u a s s a l

a ξ ξ

−    

 

   

= − +

 

   

 

 

(21)

Case 2. D4=0, D3 =0, D2=0. Then we have

( )

4

.

F w =w (22) When ε =1, we have

(

0

)

1 . w

ξ ξ = −

− (23) The corresponding solution is

(

)

1 2

2 3

1 0 3

1 1

.

2 3

a

u a

a ξ ξ

 

= −

  (24) Case 3. D4=0,D3=0,D2> 0,E2 =0. Then we have

( ) (

) (

2

)

2

.

F w = w−α w−β (25) where α and β are real numbers, α β> .

When ε =1

(i) If w>α or w<β, we have

(

0

)

coth 1 .

2 2

w=β α−  α β ξ ξ− − − + β

  (26)

The corresponding solution is

(

)

1 1

4 4

2

3 3 1 0

3

1 1

coth 1 .

2 2 2 2 3

a

u a a

a

β α α β ξ ξ β

−    

− −

 

   

= − − +

 

   

 

 

(27)

(ii) If α>w>β , we have

(

0

)

tanh 1 .

2 2

w=β α−  α β ξ ξ− − − + β

  (28)

The corresponding solution is

(

)

1 1

4 4

2

3 3 1 0

3

1 1

tanh 1 .

2 2 2 2 3

a

u a a

a

β α α β ξ ξ β

−    

− −

 

   

= − − + −

 

(29)

Case 4. D4=0, D3> 0, D2> 0. Then we have

( ) (

) (

2

)(

)

.

F w = w−α w−β w−γ (30) where α, β, γ are real numbers, and β γ> .

When ε =1

(i) If α β> , w>β or if α γ< , w<γ , we have

(

)

(

)(

)

(

)(

)

(

)(

)

2

0

1

ln .

w w

w

β α γ α β γ

ξ ξ

α α β α γ

 

± − =

− − (31)

(5)

(

)

(

)(

)

(

)

(

)

1 4

3 1 0

2

1 1

4 4

2 2

3 3

3 3

1 4

2 3

3 1

2

1 1

2 3 2 3

1

ln .

1

2 3

a

a a

a u a u

a a

a

a u

a

ξ ξ

β α γ α β γ

α β α γ

α

 

±

 

   

  +   +

      

   

 

=

− −

+ −

 

 

   

(32)

(ii) If α β> , w<γ or if α γ< , w<β, we have

(

)

(

)(

)

(

)(

)

(

)(

)

2

0

1

ln .

w w

w

β γ α β α γ

ξ ξ

α α β α γ

 

± − =

− − (33)

The corresponding solution is

(

)

(

)(

)

(

)

(

)

1 4

3 1 0

2

1 1

4 4

2 2

3 3

3 3

1 4

2 3

3 1

2

1 1

2 3 2 3

1

ln .

1

2 3

a

a a

a u a u

a a

a

a u

a ξ ξ

β γ α β α γ

α β α γ

α

 

±

 

   

  +   +

      

   

 

=

− −

+ −

 

 

 

(34)

(iii) If β α γ> > , we have

(

)

(

)(

)

(

)(

) (

)(

)

(

)(

)

0

1

arcsin w w .

w

β α γ α β γ

ξ ξ

α β γ β α α γ

− − + − −

± − =

− −

− − (35)

The corresponding solution is

(

)

(

) (

)

(

)

1 4

3 1 0

1 1

4 4

2 2

3 3

3 3

1 4

2 3

3 1

2

1 1

2 3 2 3

1

arcsin .

( )( )

1

2 3

a

a a

a u a u

a a

a

a u

a ξ ξ

β α γ α β γ

β α α γ

α β γ

 

±

 

 

   

+ + +

 

   

=

− − 

 

+

 

 

(36)

When ε = −1

(i) If α β> ,w>β or if α γ< ,w<γ , we have the corresponding solution is

(

)

(

)(

)

(

)(

)

(

)(

)

2

0

1

ln .

w w

w

β α γ α β γ

ξ ξ

α α β α γ

 

± − =

− − (37)

(6)

(

)

(

)(

)

(

)

(

)

1 4

3 1 0

2

1 1

4 4

2 2

3 3

3 3

1 4

2 3

3 1

2

1 1

2 3 2 3

1

ln .

1

2 3

a

a a

a u a u

a a

a

a u

a ξ ξ

β α γ α β γ

α β α γ

α

 

± −

 

   

+ +

       

       

 

=

− −

+

 

 

(38)

(ii) If α β> , w<γ or if α γ< , w<β, we have

(

)

(

)(

)

(

)(

)

(

)(

)

2

0

1

ln .

w w

w

β γ α β α γ

ξ ξ

α α β α γ

 

± − =

− − (39)

The corresponding solution is

(

)

(

)(

)

(

)

(

)

1 4

3 1 0

2

1 1

4 4

2 2

3 3

3 3

1 4

2 3

3 1

2

1 1

2 3 2 3

1

ln .

1

2 3

a

a a

a u a u

a a

a

a u

a ξ ξ

β γ α β α γ

α β α γ

α

 

± −

 

   

+ +

      

   

 

=

− −

+

 

 

(40)

(iii) If β α γ> > , we have

(

)

(

)(

)

(

)(

) (

)(

)

(

)(

)

0

1

arcsin w w .

w

β α γ α β γ

ξ ξ

α β γ β α α γ

− − + − −

± − =

− −

− − (41)

The corresponding solution is

(

)

(

)(

)

(

) (

)

(

)

1 4

3 1 0

1 1

4 4

2 2

3 3

3 3

1 4

2 3

3 1

2

1 1

2 3 2 3

1

arcsin .

1

2 3

a

a a

a u a u

a a

a

a u

a ξ ξ

β α γ α β γ

β α α γ

α β γ

 

± −

 

 

   

+ + +

    

   

=

 

− −

+

  

 

(42)

Case 5. D4=0, D3 =0, D2> 0, E2 =0. Then we have

( ) (

) (

3

)

.

F w = w−α w−β (43) where α and β are real numbers.

When ε =1, if w>α, w>β or if w<α, w<β, we have

(

)

(

) (

2

)

2

0 4

. 4

w α β

α β ξ ξ

− =

(7)

The corresponding solution is

(

)

(

)

(

)

1 4

2

3 1

3

2 2

2

3 1 0

4 1

.

2 3

1

4 2

a

u a

a a

α β

α β ξ ξ

 

=

 

− −

 

(45)

When ε = −1, if w>α, w<β or if w<α, w>β, we have

(

)

(

) (

2

)

2

0 4

. 4

w β α

α β ξ ξ

− =

− − + (46) The corresponding solution is

(

)

(

)

(

)

1 4

2

3 1

3

2 2

2

3 1 0

4 1

.

2 3

1

4 2

a

u a

a a

β α

α β ξ ξ

 

= −

 

− +

 

(47)

Case 6. D4=0, D D2 3< 0. Then we have

( ) (

) (

2

)

2 2

1 1 .

F w = w−α  w l− +s (48) where α,l1 and s1 are real numbers.

When ε =1, we have

(

)

(

)

(

)

(

)

(

)

{

}

2 2 2 2

1 1 0 1 1

2

2 2

1 1 0

exp

.

exp 1

l s l s

w

l s

α ξ ξ γ α

α ξ ξ γ

± + − + +

 

 

=

± +

 

 

(49)

The corresponding solution is

(

)

(

)

(

)

(

)

(

)

1 4

2 2 2 2

1 1 3 1 0 1 1

1 4

2

3 2

1

3 4

2 2

1 1 3 1 0

1 exp

2 1

.

2 3

1

exp 1

2

l s a l s

a

u a

a

l s a

α ξ ξ γ α

α ξ ξ γ

 

 

± + − + +

   

   

=

     

± +  

 

 

 

(50)

where

(

)

1

2 2

1 1

2l

l s

α γ

α − =

− + .

Case 7. D4> 0, D3> 0, D1> 0. Then we have

( ) (

1

)(

2

)(

3

)(

4

)

.

F w = w−α w−α w−α w−α (51) where α1, α2, α3 and α4 are real numbers, and α1234.

When ε =1

(i) If w1 or w4, we have

(

)

(

)(

) (

)

(

)

(

)

(

)(

) (

)

(

)

1 3 2 4

2

2 1 4 0 1 2 4

1 3 2 4

2

1 4 0 2 4

sn ,

2

.

sn ,

2

m

w

m

α α α α

α α α ξ ξ α α α

α α α α

α α ξ ξ α α

 

− − − −

 

 

=

 

− − − −

 

 

(8)

The corresponding solution is

(

)

(

)(

)

(

)

(

)

(

)

(

)(

)

(

)

(

)

1 4

1 3 2 4

2

2 1 4 3 1 0 1 2 4

1 4 2 3 1 3 4

1 3 2 4

2

1 4 3 1 0 2 4

1 sn , 2 2 1 . 2 3 1 sn , 2 2 a m a u a a a m

α α α α

α α α ξ ξ α α α

α α α α

α α ξ ξ α α

−       − − − −       = −       − − − −     (53)

(ii) If α2 >w3, we have

(

)

(

)(

) (

)

(

)

(

)

(

)(

) (

)

(

)

1 3 2 4

2

4 2 3 0 3 2 4

1 3 2 4

2

2 3 0 2 4

sn , 2 . sn , 2 m w m

α α α α

α α α ξ ξ α α α

α α α α

α α ξ ξ α α

   − − − −     =     − − − −     (54)

The corresponding solution is

(

)

(

)(

)

(

)

(

)

(

)

(

)(

)

(

)

(

)

1 4

1 3 2 4

2

4 2 3 3 1 0 3 2 4

1 4 2 3 1 3 4

1 3 2 4

2

2 3 3 1 0 2 4

1 sn , 2 2 1 . 2 3 1 sn , 2 2 a m a u a a a m

α α α α

α α α ξ ξ α α α

α α α α

α α ξ ξ α α

−       − − −       = −       − − − −     (55)

When ε = −1

(i) α1 >w2, we have

(

)

(

)(

) (

)

(

)

(

)

(

)(

) (

)

(

)

1 3 2 4

2

3 1 2 0 2 1 3

1 3 2 4

2

1 2 0 1 3

sn , 2 . sn , 2 m w m

α α α α

α α α ξ ξ α α α

α α α α

α α ξ ξ α α

   − − − −     =     − − − −     (56)

The corresponding solution is

(

)

(

)(

)

(

)

(

)

(

)

(

)(

)

(

)

(

)

1 4

1 3 2 4

2

3 1 2 3 1 0 2 1 3

1 4 2 3 1 3 4

1 3 2 4

2

1 2 3 1 0 1 3

1 sn , 2 2 1 . 2 3 1 sn , 2 2 a m a u a a a m

α α α α

α α α ξ ξ α α α

α α α α

α α ξ ξ α α

−       − − − −       = − −       − − − −     (57)

(ii) α3 >w4, we have

(

)

(

)(

) (

)

(

)

(

)

(

)(

) (

)

(

)

1 3 2 4

2

1 3 4 0 4 1 3

1 3 2 4

2

3 4 0 3 1

sn , 2 . sn , 2 m w m

α α α α

α α α ξ ξ α α α

α α α α

α α ξ ξ α α

   − − − −     =     − − − −     (58)

(9)

(

)

(

)(

)

(

)

(

)

(

)

(

)(

)

(

)

(

)

1 4

1 3 2 4

2

1 3 4 3 1 0 4 3 1

1 4 2 3 1 3 4

1 3 2 4

2

3 4 3 1 0 3 1

1 sn , 2 2 1 . 2 3 1 sn , 2 2 a m a u a a a m

α α α α

α α α ξ ξ α α α

α α α α

α α ξ ξ α α

−       − − − −       = − −       − − −     (59)

where

(

)(

)

(

1 2

)(

3 4

)

2

1 3 2 4

m α α α α

α α α α

− −

=

− − .

Case 8. D4< 0, D D2 3≥0. Then we have

( ) (

)(

) (

)

2 2

1 1 .

F w = w−α w−β w l− +s (60) where α, β, l1, s1 are real numbers, and α β> , s1> 0.

When ε =1, we have

(

) (

)

(

) (

)

1 1 0 1 1 1 0 1 2 cn , 2 . 2 cn , 2 s m

a m b

mm w

s m

c m d

mm α β ξ ξ α β ξ ξ    − +     =    − +     (61)

The corresponding solution is

(

)

(

)

(

)

(

)

1 4 1 1

3 1 0

1 1 4 2 3 1 3 4 1 1

3 1 0

1 2 1 cn , 2 2 1 .

2 2 3

1

cn ,

2 2

s m

a a m b

mm

a

u a

a s m

c a m d

mm α β ξ ξ α β ξ ξ −      +      = −     +    (62)

When ε = −1, we have

(

) (

)

(

) (

)

1 1 0 1 1 1 0 1 2 cn , 2 . 2 cn , 2 s m

a m b

mm w

s m

c m d

mm α β ξ ξ α β ξ ξ    − +     =    − +     (63)

The corresponding solution is

(

)

(

)

(

)

(

)

1 4 1 1

3 1 0

1 1 4 2 3 1 3 4 1 1

3 1 0

1 2 1 cn , 2 2 1 .

2 2 3

1

cn ,

2 2

s m

a a m b

mm

a

u a

a s m

c a m d

mm α β ξ ξ α β ξ ξ −      +      = − −     +    (64) where

(

) (

)

(

) (

)

(

(

)(

)

)

1

1 1 1 1

1

2

1 1 1

1 2 2 1 2 1 1 , , , 2 1 , , 2 1 1, . 1 s

c a l d a l s m a c d

m

s l l

b d c E

s

m E E m

m

α β α β

α β

α β α β

(10)

We choose m1 such that εm1< 0.

Case 9. D4> 0, D D2 3≤0. Then we have

( ) (

)

2 2

(

)

2 2

1 1 2 2 .

F w = w l− +s    w l− +s (66) where l1, l2, s1, s2 are real numbers, and s1>s2 > 0.

When ε =1, we have

(

)

(

)

(

(

)

)

(

)

(

00

)

(

(

00

)

)

sn , cn ,

.

sn , cn ,

a m b m

w

c m d m

η ξ ξ η ξ ξ

η ξ ξ η ξ ξ

− + −

=

− + − (67)

The corresponding solution is

(

)

(

)

(

)

(

)

1 1

4 4

3 1 0 3 1 0

1 4

2

3 1 1

3

4 4

3 1 0 3 1 0

1 1

sn , cn ,

2 2

1

.

2 3

1 1

sn , cn ,

2 2

a a m b a m

a

u a

a

c a m d a m

η ξ ξ η ξ ξ

η ξ ξ η ξ ξ

   

   

+

 

     

=

   

 

+

 

   

(68)

where

(

)

2

1 1 2 1 1 1 1

1

2

2 2 2 2 2

1 2 1 2 2 2 1

1 2 2 2 2

1 2 1

, , , ,

1

, 1, 1 , .

2 s

c s d l l a l c s d b l d s c m

s s l l m c d

E m E E m s

s s m η c d

= − − = − = + = −

+ + − +

= = + − = − =

+

(69)

In Equations (21) (24) (27) (29) (32) (34) (36) (38) (40) (42) (45) (47) (50) (53) (55) (57) (59) (62) (64) and (68), the integration constant ξ0 has been rewritten, but we still use it. The classifications of all single traveling wave solution to this equation are obtained.

4. Conclusion

In this paper, the trial equation method combined with complete discrimination system for polynomial has been effectively used to solve the Getmanou equation. The obtained results emphasize that the method is completely useful. With the same method, some of other equations can be dealt with.

Acknowledgements

I would like to thank the referees for their valuable suggestions.

References

[1] Ablowitz, M.J. and Clarkson, P.A. (1992) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge, 721-725.

[2] Satsuma, J. and Kaup D.J. (1977) A Bäcklund Transformation for a Higher Order Korteweg-De Vries Equation. Jour-nal of the Physical Society of Japan, 43, 692-697. http://dx.doi.org/10.1143/JPSJ.43.692

[3] Gu, C., Hu, H. and Zhou, Z. (2006) Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry. Springer, Berlin, Heidelberg.

[4] Wang, M., Zhou, Y. and Li, Z. (1996) Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics. Physics Letters A, 216, 67-75. http://dx.doi.org/10.1016/0375-9601(96)00283-6

[5] Fan, E. (2000) Extended tanh-Function Method and Its Applications to Nonlinear Equations. Physics Letters A, 277, 212-218. http://dx.doi.org/10.1016/S0375-9601(00)00725-8

[6] He, J.H. and Zhang, L.N. (2008) Generalized Solitary Solution and Compacton-Like Solution of the Jaulent—Miodek Equations Using the Exp-Function Method. Physics Letters A, 372, 1044-1047.

(11)

[7] Wang, M., Li, X. and Zhang, J. (2008) The (G'/G)-Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics. Physics Letters A, 372, 417-423.

http://dx.doi.org/10.1016/j.physleta.2007.07.051

[8] Liu, C.S. (2006) Trial Equation Method to Nonlinear Evolution Equations with Rank Inhomogenous: Mathematical Discussions and Its Applications. Communications in Theoretical Physics, 45, 219-223.

http://dx.doi.org/10.1088/0253-6102/45/2/005

[9] Liu, C.S. (2005) Trial Equation Method and Its Applications to Nonlinear Evolution Equations. Acta Physica Sinica, 54, 2505. (in Chinese)

[10] Liu, C.S. (2007) Classification of All Single Travelling Wave Solutions to Calogero-Degasperis-Focas Equation.

Communications in Theoretical Physics, 48, 601-604. http://dx.doi.org/10.1088/0253-6102/48/4/004

[11] Liu, C.S. (2006) Direct Integral Method, Complete Discrimination System for Polynomial and Applications to Classi-fications of All Single Traveling Wave Solutions to Nonlinear Differential Equations: A Survey. arXiv preprint nlin/ 0609058.

[12] Liu, C.S. (2008) Solution of ODE u′′+p u u( )( )′2+q u( ) = 0 and Applications to Classifications of All Single Travelling Wave Solutions to Some Nonlinear Mathematical Physics Equations. Communications in Theoretical Physics, 49, 291- 296. http://dx.doi.org/10.1088/0253-6102/49/2/07

References

Related documents

If a user possesses a set of attributes satisfying the access policy of the encrypted data, and is not revoked in any of the valid attribute groups, then he will be able to decrypt

plentiful, in general having a little more cyto- plasm than was seen in the giant cells of the lymph nodes. Intranuclear inclusions were fre- quently seen. The appendix showed

Radio modem, cellular, and also satellite communication with an automatic channels choice of communication in the conditions of the powerful electromagnetic fields having

As with TFs and HMs, the power of different core predictors to predict gene expression using only their signals at the TSSs varies sig- nificantly, with mappability and IgG

In particular, the US Internal Revenue Service (IRS) has the practice of releasing broad statistics like the audit rate of each income class but resists pressures demand- ing details

On the basis of stabi- lizing blood glucose, three patients in this group were subjected to corticosteroid therapy (two patients were given B vitamins), their

The efficiency of an aqueous extract of Azadirachta indica’s seeds and deltamethrin 12.5 EC was tested for the control of Calidea panaethiopica and Aphtona whitfieldi populations,

Thirteen of 13 (100%) individual infected goat milk samples tested positive and 134 of 134 (100%) uninfected bulk milk samples tested negative by the developed iELISA.. Three