IML 451
İmalat Makinaları
10b.30
Taşlama ve İleri İmalat
Eylül 2008Polishing Using Magnetic Fields
Figure 25.30 Schematic illustration of polishing of balls and rollers using magnetic fields.
(a) Magnetic float polishing of ceramic balls. (b) Magnetic-field-assisted polishing of
rollers. Source: R. Komanduri, M. Doc, and M. Fox.
IML 451
İmalat Makinaları
10b.31
Taşlama ve İleri İmalat
Eylül 2008Abrasive-Flow Machining
Figure 25.31 Schematic
illustration of abrasive
flow machining to
deburr a turbine
impeller. The arrows
indicate movement of
the abrasive media.
Note the special fixture,
which is usually
different for each part
design.
Source
: Extrude Hone
Corp.
IML 451
İmalat Makinaları
10b.32
Taşlama ve İleri İmalat
Eylül 2008Robotic
Deburring
Figure 25.32 A deburring
operation on a robot-held
die-cast part for an outboard
motor housing, using a
grinding wheel. Abrasive
belts (Fig. 25.26) or flexible
abrasive radial-wheel
brushes can also be used for
such operations.
Source
: Courtesy of Acme
Manufacturing Company
and Manufacturing
Engineering Magazine
,
Society of Manufacturing
Engineers.
IML 451 İmalat Makinaları10b.33
Taşlama ve İleri İmalat
Eylül 2008Economics of Grinding and Finishing Operations
Figure 25.33 Increase
in the cost of
machining and
finishing a part as a
function of the surface
finish required. This
is the main reason that
the surface finish
specified on parts
should not be any finer
than necessary for the
part to function
properly.
IML 451
İmalat Makinaları
10b.34
Taşlama ve İleri İmalat
Eylül 2008Examples of Parts Made by Advanced
Machining Processes
Figure 26.1 Examples of parts made by advanced machining processes. These parts are made by advanced
machining processes and would be difficult or uneconomical to manufacture by conventional processes. (a)
Cutting sheet metal with a laser beam. Courtesy of Rofin-Sinar, Inc., and Manufacturing Engineering
Magazine, Society of Manufacturing Engineers.
(b) Microscopic gear with a diameter on the order of 100
µm, made by a special etching process. Courtesy of Wisconsin Center for Applied Microelectronics,
University of Wisconsin-Madison.
(a)
(b)
IML 451
İmalat Makinaları
10b.35
Taşlama ve İleri İmalat
Eylül 2008General Characteristics of Advanced
Machining Processes
T A B L E 2 6 . 1 P r o c e s s C h a r a c t e r i s t i c s P r o c e s s p a r a m e t e r s a n d t y p i c a l m a t e r i a l r e m o v a l r a t e o r c u t t i n g s p e e d C h e m i c a l m a c h i n i n g ( C M ) S h a l l o w r e m o v a l ( u p t o 1 2 m m ) o n l a r g e f l a t o r c u r v e d s u r f a c e s ; b l a n k i n g o f t h i n s h e e t s ; l o w t o o l i n g a n d c o s t ; s u i t a b l e f o r l o w p r o d u c t i o n r u n s . 0 . 0 0 2 5 – 0 . 1 m m / m i n . E l e c t r o c h e m i c a l m a c h i n i n g ( E C M ) C o m p l e x s h a p e s w i t h d e e p c a v i t i e s ; h i g h e s t r a t e o f m a t e r i a l r e m o v a l a m o n g n o n t r a d i t i o n a l p r o c e s s e s ; e x p e n s i v e t o o l i n g a n d e q u i p m e n t ; h i g h p o w e r c o n s u m p t i o n ; m e d i u m t o h i g h p r o d u c t i o n q u a n t i t y . V : 5 – 2 5 d c ; A : 1 . 5 – 8 A / m m2; 2 . 5 – 1 2 m m / m i n , d e p e n d i n g o n c u r r e n t d e n s i t y . E l e c t r o c h e m i c a l g r i n d i n g ( E C G ) C u t t i n g o f f a n d s h a r p e n i n g h a r d m a t e r i a l s , s u c h a s t u n g s t e n - c a r b i d e t o o l s ; a l s o u s e d a s a h o n i n g p r o c e s s ; h i g h e r r e m o v a l r a t e t h a n g r i n d i n g . A : 1 – 3 A / m m2; T y p i c a l l y 2 5 m m3/ s p e r 1 0 0 0 A . E l e c t r i c a l - d i s c h a r g e m a c h i n i n g ( E D M ) S h a p i n g a n d c u t t i n g c o m p l e x p a r t s m a d e o f h a r d m a t e r i a l s ; s o m e s u r f a c e d a m a g e m a y r e s u l t ; a l s o u s e d a s a g r i n d i n g a n d c u t t i n g p r o c e s s ; e x p e n s i v e t o o l i n g a n d e q u i p m e n t . V : 5 0 – 3 8 0 ; A : 0 . 1 – 5 0 0 ; T y p i c a l l y 3 0 0 m m3/ m i n . W i r e E D M C o n t o u r c u t t i n g o f f l a t o r c u r v e d s u r f a c e s ; e x p e n s i v e e q u i p m e n t . V a r i e s w i t h m a t e r i a l a n d t h i c k n e s s . L a s e r - b e a m m a c h i n i n g ( L B M ) C u t t i n g a n d h o l e m a k i n g o n t h i n m a t e r i a l s ; h e a t -a f f e c t e d z o n e ; d o e s n o t r e q u i r e -a v -a c u u m ; e x p e n s i v e e q u i p m e n t ; c o n s u m e s m u c h e n e r g y . 0 . 5 0 – 7 . 5 m / m i n . E l e c t r o n - b e a m m a c h i n i n g ( E B M ) C u t t i n g a n d h o l e m a k i n g o n t h i n m a t e r i a l s ; v e r y s m a l l h o l e s a n d s l o t s ; h e a t - a f f e c t e d z o n e ; r e q u i r e s a v a c u u m ; e x p e n s i v e e q u i p m e n t . 1 – 2 m m3/ m i n . W a t e r - j e t m a c h i n i n g ( W J M ) C u t t i n g a l l t y p e s o f n o n m e t a l l i c m a t e r i a l s t o 2 5 m m a n d g r e a t e r i n t h i c k n e s s ; s u i t a b l e f o r c o n t o u r c u t t i n g o f f l e x i b l e m a t e r i a l s ; n o t h e r m a l d a m a g e ; n o i s y . V a r i e s c o n s i d e r a b l y w i t h m a t e r i a l . A b r a s i v e w a t e r - j e t m a c h i n i n g ( A W J M ) S i n g l e o r m u l t i l a y e r c u t t i n g o f m e t a l l i c a n d n o n m e t a l l i c m a t e r i a l s . U p t o 7 . 5 m / m i n . A b r a s i v e - j e t m a c h i n i n g ( A J M ) C u t t i n g , s l o t t i n g , d e b u r r i n g , d e f l a s h i n g , e t c h i n g , a n d c l e a n i n g o f m e t a l l i c a n d n o n m e t a l l i c m a t e r i a l s ; m a n u a l l y c o n t r o l l e d ; t e n d s t o r o u n d o f f s h a r p e d g e s ; h a z a r d o u s . V a r i e s c o n s i d e r a b l y w i t h m a t e r i a l .IML 451
İmalat Makinaları
10b.36
Taşlama ve İleri İmalat
Eylül 2008Figure 26.2 (a) Missile skin-panel section contoured by chemical milling to improve the stiffness-to-weight ratio of the
part. (b) Weight reduction of space launch vehicles by chemical milling aluminum-alloy plates. These panels are
chemically milled after the plates have first been formed into shape by processes such as roll forming or stretch forming.
The design of the chemically machined rib patterns can be modified readily at minimal cost. Source: Advanced Materials
and Processes,
December 1990. ASM International.
Chemical Milling
IML 451
İmalat Makinaları
10b.37
Taşlama ve İleri İmalat
Eylül 2008Chemical Machining
Figure 26.3 (a) Schematic illustration of the chemical machining process. Note that no forces
or machine tools are involved in this process. (b) Stages in producing a profiled cavity by
chemical machining; note the undercut.
IML 451
İmalat Makinaları
10b.38
Taşlama ve İleri İmalat
Eylül 2008Range of Surface Roughnesses and Tolerances
IML 451
İmalat Makinaları
10b.39
Taşlama ve İleri İmalat
Eylül 2008Chemical Blanking and Electrochemical
Machining
Figure 26.6 Schematic illustration of the
electrochemical-machining process. This process is the reverse of electroplating,
described in Section 33.8.
Figure 26.5 Various parts made by chemical
blanking. Note the fine detail. Source: Courtesy
of Buckbee-Mears St. Paul.
IML 451
İmalat Makinaları
10b.40
Taşlama ve İleri İmalat
Eylül 2008Examples of Parts Made by
Electrochemical Machining
Figure 26.7
Typical parts
made by
electrochemical
machining. (a)
Turbine blade
made of a nickel
alloy, 360 HB;
note the shape of
the electrode on
the right.
Source
: ASM
International. (b)
Thin slots on a
4340-steel
roller-bearing cage. (c)
Integral airfoils
on a compressor
disk.
IML 451 İmalat Makinaları10b.41
Taşlama ve İleri İmalat
Eylül 2008Biomedical Implant
(a)
(b)
Figure 26.8 (a) Two total knee replacement systems showing metal implants (top pieces) with
an ultrahigh molecular weight polyethylene insert (bottom pieces). (b) Cross-section of the
ECM process as applied to the metal implant. Source: Biomet, Inc.
IML 451
İmalat Makinaları
10b.42
Taşlama ve İleri İmalat
Eylül 2008Electrochemical Grinding
Figure 26.9 (a) Schematic illustration of the electrochemical-grinding process. (b) Thin slot produced on a
round nickel-alloy tube by this process.
IML 451
İmalat Makinaları
10b.43
Taşlama ve İleri İmalat
Eylül 2008Electrical-Discharge Machining
(a)
(b)
Figure 26.10 (a) Schematic illustration of the electrical-discharge machining process. This is one of
the most widely used machining processes, particularly for die-sinking operations. (b) Examples of
cavities produced by the electrical-discharge machining process, using shaped electrodes. Two round
parts (rear) are the set of dies for extruding the aluminum piece shown in front (see also Fig. 15.9b).
Source
: Courtesy of AGIE USA Ltd. (c) A spiral cavity produced by EDM using a slowly rotating
electrode, similar to a screw thread. Source: American Machinist.
IML 451
İmalat Makinaları
10b.44
Taşlama ve İleri İmalat
Eylül 2008Examples of EDM
Figure 26.11 Stepped cavities produced
with a square electrode by the EDM
process. The workpiece moves in the
two principal horizontal directions (x-y),
and its motion is synchronized with the
downward movement of the electrode to
produce these cavities. Also shown is a
round electrode capable of producing
round or elliptical cavities.
Source
: Courtesy of AGIE USA Ltd.
Figure 26.12 Schematic
illustration of producing
an inner cavity by EDM,
using a specially
designed electrode with a
hinged tip, which is
slowly opened and
rotated to produce the
large cavity.
Source
: Luziesa France.
IML 451
İmalat Makinaları
10b.45
Taşlama ve İleri İmalat
Eylül 2008Wire EDM
Figure 26.13 (a) Schematic illustration of the wire EDM process. As much as 50 hours of
machining can be performed with one reel of wire, which is then discarded. (b) Cutting a
thick plate with wire EDM. (c) A computer-controlled wire EDM machine.
Source
: Courtesy of AGIE USA Ltd.
IML 451
İmalat Makinaları
10b.46
Taşlama ve İleri İmalat
Eylül 2008IML 451
İmalat Makinaları
10b.47
Taşlama ve İleri İmalat
Eylül 2008Laser-Beam Machining
Figure 26.14 (a) Schematic illustration of the laser-beam machining process. (b) and (c)
Examples of holes produced in nonmetallic parts by LBM.
IML 451
İmalat Makinaları
10b.48
Taşlama ve İleri İmalat
Eylül 2008General Applications of Lasers in Manufacturing
TABLE 26.2
Application
Laser type
Cutting
Metals
PCO2 , CWCO2 , Nd : YAG, ruby
Plastics
CWCO2
Ceramics
PCO2
Drilling
Metals
PCO2 , Nd : YAG, Nd : glass, ruby
Plastics
Excimer
Marking
Metals
PCO2 , Nd : YAG
Plastics
Excimer
Ceramics
Excimer
Surface treatment, metals
CWCO2
Welding, metals
PCO2 , CWCO2 , Nd : YAG, Nd : glass, ruby
Note: P pulsed, CW continuous wave.
IML 451
İmalat Makinaları
10b.49
Taşlama ve İleri İmalat
Eylül 2008Electron-Beam Machining
Figure 26.15 Schematic illustration of the electron-beam machining process. Unlike LBM,
this process requires a vacuum, so workpiece size is limited to the size of the vacuum
chamber.
IML 451
İmalat Makinaları
10b.50
Taşlama ve İleri İmalat
Eylül 2008Water-Jet Machining
Figure 26.16 (a) Schematic illustration of water-jet
machining. (b) A computer-controlled, water-jet cutting
machine cutting a granite plate. (c) Examples of various
nonmetallic parts produced by the water-jet cutting process.
Source
: Courtesy of Possis Corporation.
(a)
(b)
IML 451
İmalat Makinaları