Abrasive-Flow Machining

Full text

(1)

IML 451

İmalat Makinaları

10b.30

Taşlama ve İleri İmalat

Eylül 2008

Polishing Using Magnetic Fields

Figure 25.30 Schematic illustration of polishing of balls and rollers using magnetic fields.

(a) Magnetic float polishing of ceramic balls. (b) Magnetic-field-assisted polishing of

rollers. Source: R. Komanduri, M. Doc, and M. Fox.

IML 451

İmalat Makinaları

10b.31

Taşlama ve İleri İmalat

Eylül 2008

Abrasive-Flow Machining

Figure 25.31 Schematic

illustration of abrasive

flow machining to

deburr a turbine

impeller. The arrows

indicate movement of

the abrasive media.

Note the special fixture,

which is usually

different for each part

design.

Source

: Extrude Hone

Corp.

(2)

IML 451

İmalat Makinaları

10b.32

Taşlama ve İleri İmalat

Eylül 2008

Robotic

Deburring

Figure 25.32 A deburring

operation on a robot-held

die-cast part for an outboard

motor housing, using a

grinding wheel. Abrasive

belts (Fig. 25.26) or flexible

abrasive radial-wheel

brushes can also be used for

such operations.

Source

: Courtesy of Acme

Manufacturing Company

and Manufacturing

Engineering Magazine

,

Society of Manufacturing

Engineers.

IML 451 İmalat Makinaları

10b.33

Taşlama ve İleri İmalat

Eylül 2008

Economics of Grinding and Finishing Operations

Figure 25.33 Increase

in the cost of

machining and

finishing a part as a

function of the surface

finish required. This

is the main reason that

the surface finish

specified on parts

should not be any finer

than necessary for the

part to function

properly.

(3)

IML 451

İmalat Makinaları

10b.34

Taşlama ve İleri İmalat

Eylül 2008

Examples of Parts Made by Advanced

Machining Processes

Figure 26.1 Examples of parts made by advanced machining processes. These parts are made by advanced

machining processes and would be difficult or uneconomical to manufacture by conventional processes. (a)

Cutting sheet metal with a laser beam. Courtesy of Rofin-Sinar, Inc., and Manufacturing Engineering

Magazine, Society of Manufacturing Engineers.

(b) Microscopic gear with a diameter on the order of 100

µm, made by a special etching process. Courtesy of Wisconsin Center for Applied Microelectronics,

University of Wisconsin-Madison.

(a)

(b)

IML 451

İmalat Makinaları

10b.35

Taşlama ve İleri İmalat

Eylül 2008

General Characteristics of Advanced

Machining Processes

T A B L E 2 6 . 1 P r o c e s s C h a r a c t e r i s t i c s P r o c e s s p a r a m e t e r s a n d t y p i c a l m a t e r i a l r e m o v a l r a t e o r c u t t i n g s p e e d C h e m i c a l m a c h i n i n g ( C M ) S h a l l o w r e m o v a l ( u p t o 1 2 m m ) o n l a r g e f l a t o r c u r v e d s u r f a c e s ; b l a n k i n g o f t h i n s h e e t s ; l o w t o o l i n g a n d c o s t ; s u i t a b l e f o r l o w p r o d u c t i o n r u n s . 0 . 0 0 2 5 – 0 . 1 m m / m i n . E l e c t r o c h e m i c a l m a c h i n i n g ( E C M ) C o m p l e x s h a p e s w i t h d e e p c a v i t i e s ; h i g h e s t r a t e o f m a t e r i a l r e m o v a l a m o n g n o n t r a d i t i o n a l p r o c e s s e s ; e x p e n s i v e t o o l i n g a n d e q u i p m e n t ; h i g h p o w e r c o n s u m p t i o n ; m e d i u m t o h i g h p r o d u c t i o n q u a n t i t y . V : 5 – 2 5 d c ; A : 1 . 5 – 8 A / m m2; 2 . 5 – 1 2 m m / m i n , d e p e n d i n g o n c u r r e n t d e n s i t y . E l e c t r o c h e m i c a l g r i n d i n g ( E C G ) C u t t i n g o f f a n d s h a r p e n i n g h a r d m a t e r i a l s , s u c h a s t u n g s t e n - c a r b i d e t o o l s ; a l s o u s e d a s a h o n i n g p r o c e s s ; h i g h e r r e m o v a l r a t e t h a n g r i n d i n g . A : 1 – 3 A / m m2; T y p i c a l l y 2 5 m m3/ s p e r 1 0 0 0 A . E l e c t r i c a l - d i s c h a r g e m a c h i n i n g ( E D M ) S h a p i n g a n d c u t t i n g c o m p l e x p a r t s m a d e o f h a r d m a t e r i a l s ; s o m e s u r f a c e d a m a g e m a y r e s u l t ; a l s o u s e d a s a g r i n d i n g a n d c u t t i n g p r o c e s s ; e x p e n s i v e t o o l i n g a n d e q u i p m e n t . V : 5 0 – 3 8 0 ; A : 0 . 1 – 5 0 0 ; T y p i c a l l y 3 0 0 m m3/ m i n . W i r e E D M C o n t o u r c u t t i n g o f f l a t o r c u r v e d s u r f a c e s ; e x p e n s i v e e q u i p m e n t . V a r i e s w i t h m a t e r i a l a n d t h i c k n e s s . L a s e r - b e a m m a c h i n i n g ( L B M ) C u t t i n g a n d h o l e m a k i n g o n t h i n m a t e r i a l s ; h e a t -a f f e c t e d z o n e ; d o e s n o t r e q u i r e -a v -a c u u m ; e x p e n s i v e e q u i p m e n t ; c o n s u m e s m u c h e n e r g y . 0 . 5 0 – 7 . 5 m / m i n . E l e c t r o n - b e a m m a c h i n i n g ( E B M ) C u t t i n g a n d h o l e m a k i n g o n t h i n m a t e r i a l s ; v e r y s m a l l h o l e s a n d s l o t s ; h e a t - a f f e c t e d z o n e ; r e q u i r e s a v a c u u m ; e x p e n s i v e e q u i p m e n t . 1 – 2 m m3/ m i n . W a t e r - j e t m a c h i n i n g ( W J M ) C u t t i n g a l l t y p e s o f n o n m e t a l l i c m a t e r i a l s t o 2 5 m m a n d g r e a t e r i n t h i c k n e s s ; s u i t a b l e f o r c o n t o u r c u t t i n g o f f l e x i b l e m a t e r i a l s ; n o t h e r m a l d a m a g e ; n o i s y . V a r i e s c o n s i d e r a b l y w i t h m a t e r i a l . A b r a s i v e w a t e r - j e t m a c h i n i n g ( A W J M ) S i n g l e o r m u l t i l a y e r c u t t i n g o f m e t a l l i c a n d n o n m e t a l l i c m a t e r i a l s . U p t o 7 . 5 m / m i n . A b r a s i v e - j e t m a c h i n i n g ( A J M ) C u t t i n g , s l o t t i n g , d e b u r r i n g , d e f l a s h i n g , e t c h i n g , a n d c l e a n i n g o f m e t a l l i c a n d n o n m e t a l l i c m a t e r i a l s ; m a n u a l l y c o n t r o l l e d ; t e n d s t o r o u n d o f f s h a r p e d g e s ; h a z a r d o u s . V a r i e s c o n s i d e r a b l y w i t h m a t e r i a l .

(4)

IML 451

İmalat Makinaları

10b.36

Taşlama ve İleri İmalat

Eylül 2008

Figure 26.2 (a) Missile skin-panel section contoured by chemical milling to improve the stiffness-to-weight ratio of the

part. (b) Weight reduction of space launch vehicles by chemical milling aluminum-alloy plates. These panels are

chemically milled after the plates have first been formed into shape by processes such as roll forming or stretch forming.

The design of the chemically machined rib patterns can be modified readily at minimal cost. Source: Advanced Materials

and Processes,

December 1990. ASM International.

Chemical Milling

IML 451

İmalat Makinaları

10b.37

Taşlama ve İleri İmalat

Eylül 2008

Chemical Machining

Figure 26.3 (a) Schematic illustration of the chemical machining process. Note that no forces

or machine tools are involved in this process. (b) Stages in producing a profiled cavity by

chemical machining; note the undercut.

(5)

IML 451

İmalat Makinaları

10b.38

Taşlama ve İleri İmalat

Eylül 2008

Range of Surface Roughnesses and Tolerances

IML 451

İmalat Makinaları

10b.39

Taşlama ve İleri İmalat

Eylül 2008

Chemical Blanking and Electrochemical

Machining

Figure 26.6 Schematic illustration of the

electrochemical-machining process. This process is the reverse of electroplating,

described in Section 33.8.

Figure 26.5 Various parts made by chemical

blanking. Note the fine detail. Source: Courtesy

of Buckbee-Mears St. Paul.

(6)

IML 451

İmalat Makinaları

10b.40

Taşlama ve İleri İmalat

Eylül 2008

Examples of Parts Made by

Electrochemical Machining

Figure 26.7

Typical parts

made by

electrochemical

machining. (a)

Turbine blade

made of a nickel

alloy, 360 HB;

note the shape of

the electrode on

the right.

Source

: ASM

International. (b)

Thin slots on a

4340-steel

roller-bearing cage. (c)

Integral airfoils

on a compressor

disk.

IML 451 İmalat Makinaları

10b.41

Taşlama ve İleri İmalat

Eylül 2008

Biomedical Implant

(a)

(b)

Figure 26.8 (a) Two total knee replacement systems showing metal implants (top pieces) with

an ultrahigh molecular weight polyethylene insert (bottom pieces). (b) Cross-section of the

ECM process as applied to the metal implant. Source: Biomet, Inc.

(7)

IML 451

İmalat Makinaları

10b.42

Taşlama ve İleri İmalat

Eylül 2008

Electrochemical Grinding

Figure 26.9 (a) Schematic illustration of the electrochemical-grinding process. (b) Thin slot produced on a

round nickel-alloy tube by this process.

IML 451

İmalat Makinaları

10b.43

Taşlama ve İleri İmalat

Eylül 2008

Electrical-Discharge Machining

(a)

(b)

Figure 26.10 (a) Schematic illustration of the electrical-discharge machining process. This is one of

the most widely used machining processes, particularly for die-sinking operations. (b) Examples of

cavities produced by the electrical-discharge machining process, using shaped electrodes. Two round

parts (rear) are the set of dies for extruding the aluminum piece shown in front (see also Fig. 15.9b).

Source

: Courtesy of AGIE USA Ltd. (c) A spiral cavity produced by EDM using a slowly rotating

electrode, similar to a screw thread. Source: American Machinist.

(8)

IML 451

İmalat Makinaları

10b.44

Taşlama ve İleri İmalat

Eylül 2008

Examples of EDM

Figure 26.11 Stepped cavities produced

with a square electrode by the EDM

process. The workpiece moves in the

two principal horizontal directions (x-y),

and its motion is synchronized with the

downward movement of the electrode to

produce these cavities. Also shown is a

round electrode capable of producing

round or elliptical cavities.

Source

: Courtesy of AGIE USA Ltd.

Figure 26.12 Schematic

illustration of producing

an inner cavity by EDM,

using a specially

designed electrode with a

hinged tip, which is

slowly opened and

rotated to produce the

large cavity.

Source

: Luziesa France.

IML 451

İmalat Makinaları

10b.45

Taşlama ve İleri İmalat

Eylül 2008

Wire EDM

Figure 26.13 (a) Schematic illustration of the wire EDM process. As much as 50 hours of

machining can be performed with one reel of wire, which is then discarded. (b) Cutting a

thick plate with wire EDM. (c) A computer-controlled wire EDM machine.

Source

: Courtesy of AGIE USA Ltd.

(9)

IML 451

İmalat Makinaları

10b.46

Taşlama ve İleri İmalat

Eylül 2008

IML 451

İmalat Makinaları

10b.47

Taşlama ve İleri İmalat

Eylül 2008

Laser-Beam Machining

Figure 26.14 (a) Schematic illustration of the laser-beam machining process. (b) and (c)

Examples of holes produced in nonmetallic parts by LBM.

(10)

IML 451

İmalat Makinaları

10b.48

Taşlama ve İleri İmalat

Eylül 2008

General Applications of Lasers in Manufacturing

TABLE 26.2

Application

Laser type

Cutting

Metals

PCO2 , CWCO2 , Nd : YAG, ruby

Plastics

CWCO2

Ceramics

PCO2

Drilling

Metals

PCO2 , Nd : YAG, Nd : glass, ruby

Plastics

Excimer

Marking

Metals

PCO2 , Nd : YAG

Plastics

Excimer

Ceramics

Excimer

Surface treatment, metals

CWCO2

Welding, metals

PCO2 , CWCO2 , Nd : YAG, Nd : glass, ruby

Note: P pulsed, CW continuous wave.

IML 451

İmalat Makinaları

10b.49

Taşlama ve İleri İmalat

Eylül 2008

Electron-Beam Machining

Figure 26.15 Schematic illustration of the electron-beam machining process. Unlike LBM,

this process requires a vacuum, so workpiece size is limited to the size of the vacuum

chamber.

(11)

IML 451

İmalat Makinaları

10b.50

Taşlama ve İleri İmalat

Eylül 2008

Water-Jet Machining

Figure 26.16 (a) Schematic illustration of water-jet

machining. (b) A computer-controlled, water-jet cutting

machine cutting a granite plate. (c) Examples of various

nonmetallic parts produced by the water-jet cutting process.

Source

: Courtesy of Possis Corporation.

(a)

(b)

IML 451

İmalat Makinaları

10b.51

Taşlama ve İleri İmalat

Eylül 2008

Abrasive-Jet Machining

Figure

Updating...

References

Updating...

Related subjects :