• No results found

The First and Second Zagreb Indices of Generalized Complementary Prisms

N/A
N/A
Protected

Academic year: 2022

Share "The First and Second Zagreb Indices of Generalized Complementary Prisms"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

ISSN: 2347-1557

Available Online: http://ijmaa.in/

Appli

tio ca

•I ns

SS N:

47 23

55 -1

7

Interna s

International Journal of Mathematics And its Applications

The First and Second Zagreb Indices of Generalized Complementary Prisms

Research Article

S.Arockiaraj1∗ and Vijaya Kumari2

1 Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India.

2 Research Scholar, Department of Mathematics, Karpagam University,Coimbatore, Tamilnadu, India.

Abstract: The first and second zagreb indices of a graph G are defined as M1(G) = P

uv∈E(G)

[deg(u) + deg(v)] (or equivalently P

u∈V (G)

[deg(u)2] and M2(G) = P

uv∈E(G)

[deg(u)deg(v)] respectively. In this paper, we have obtained the first and second zagreb indices of the generalized complementary prisms Gm+n, Gm,n, Gm,mc and GPm,m.

MSC: 05C15, 05C38.

Keywords: First Zagreb Index, Second Zagreb index, Complementary Prism and Generalized Complementary Prism c

JS Publication.

1. Introduction

Throughout this paper, all graphs we considered are simple and connected. For a vertex v ∈ V (G), deg(v) denotes the degree of v. The Zagreb indices have been introduced by Gutman and Trinajstic [3,4] and are defined as:

M1(G) = X

e=uv∈E(G)

[deg(u) + deg(v)] = X

v∈V (G)

[deg(v)]2, M2(G) = X

e=uv∈E(G)

[deg(u)deg(v)]

Further, so many authors have studied about Zagreb indices in graphs [1,2,6,7]. Kathiresan and Arockiaraj introduced some generalization of complementary prisms and studied the Wiener index of those generalized complementary prisms [5].

Let G and H be any two graphs on p1 and p2 vertices, respectively and let R and S be subsets of V (G) = {u1, u2, . . . , up1} and V (H) = {v1, v2, . . . , vp2} respectively. The complementary product G(R)2H(S) has the vertex set {(ui, vj) : 1 ≤ i ≤ p1, 1 ≤ j ≤ p2} and (ui, vj) and (uh, vk) are adjacent in G(R)2H(S)

(1) if i = h, ui∈ R and vjvk∈ E(H), or if i = h, ui∈ R and v/ jvk∈ E(H) or/

(2) if j = k, vj∈ S and uiuh∈ E(G), or if j = k, vj∈ S and u/ iuh∈ E(G)./

E-mail: psarockiaraj@gmail.com

55

(2)

In other words, G(R)2H(S) is the graph formed by replacing each vertex ui∈ R of G by a copy of H, each vertex ui∈ R of G/ by a copy of H, each vertex vj∈ S of H by a copy of G and each vertex vj∈ S of H by a copy of G. If R = V (G) (respectively,/ S = V (H)), the complementary product can be written as G2H(S) (respectively, G(R)2H). The complementary prism GG obtained from G is G2K2(S) with |S| = 1. That is, GG has a copy of G and a copy of G with a matching between the corresponding vertices. In GG, we have an edge vv for each vertex v in G. The authors consider this edge as K2 or K1,1 or P2. By taking m copies of G and n copies of G, they generalize the complementary prism as a graph G2H(S), where H = Km+n (or Km,n) and S is a subset of V (H) having m vertices and H = C2m (or P2m) whose vertex set is {v1, v2, . . . , v2m} and S = {v1, v3, . . . , v2m−1}.

In this paper, we have obtained the first and second zagreb indices of the generalized complementary prisms Gm+n, Gm,n, Gcm,mand GPm,m.

2. Main Results

Proposition 2.1. For any m, n ≥ 1, M1(Gm+n) = (m + n)M1(G) + 4mq(m + n − 1) + mp(m + n − 1)2+ np(m + n + p − 2)2− 4nq(m + n + p − 2).

Proof. In Gm+n,

deg(u) =





degG(u) + m + n − 1, if u is in a copy of G m + n + p − 2 − degG(u), if u is in a copy of G.

Therefore,

M1(Gm+n) = X

u∈V (Gm+n)

[deg(u)]2

=

m

X

i=1

X

u∈ith copy of G

[deg(u)]2+

n

X

i=1

X

u∈ith copy of G

[deg(u)]2

= m X

u∈a copy of G

[deg(u)]2+ n X

u∈a copy of G

[deg(u)]2

= m X

u∈V (G)

[degG(u) + m + n − 1]2+ n X

u∈V (G)

[m + n + p − degG(u) − 2]2

= m

 X

u∈V (G)

(degG(u))2+ X

u∈V (G)

[2(m + n − 1)degG(u)] + X

u∈V (G)

(m + n − 1)2

+ n

 X

u∈V (G)

(m + n + p − 2)2

− X

u∈V (G)

[2(m + n + p − 2)degG(u)] + X

u∈V (G)

[degG(u)]2

= mM1(G) + 2m(m + n − 1) X

u∈V (G)

degG(u) + mp(m + n − 1)2

+ np(m + n + p − 2)2− 2n(m + n + p − 2) X

u∈V (G)

degG(u) + nM1(G)

= (m + n)M1(G) + 4mq(m + n − 1) + mp(m + n − 1)2+ np(m + n + p − 2)2− 4nq(m + n + p − 2).

(3)

Proof. In Gm,n,

deg(u) =





degG(u) + n, when u is in a copy of G m + p − 1 − degG(u), when u is in a copy of G.

Therefore,

M1(Gm,n) = X

u∈V (Gm,n)

[deg(u)]2=

m

X

i=1

X

u∈ith copy of G

(deg(u))2

+

n

X

i=1

X

u∈ithcopy of G

(deg(u))2

= m X

u∈V (G)

[degG(u) + n]2+ n X

u∈V (G)

[m + p − 1 − degG(u)]2

= m

 X

u∈V (G)

(degG(u))2+ X

u∈V (G)

(2ndegG(u)) + X

u∈V (G)

n2

+ n

 X

u∈V (G)

(m + p − 1)2− X

u∈V (G)

[2(m + p − 1)degG(u)] + X

u∈V (G)

[degG(u)]2

= mM1(G) + 4mnq + mn2p + np(m + p − 1)2− 4nq(m + p − 1) + nM1(G)

= (m + n)M1(G) + 4mnq + mn2p + np(m + p − 1)2− 4nq(m + p − 1).

Proposition 2.3. For any m ≥ 1, M1(Gcm,m) = 2mM1(G) + mp3+ 2mp2+ 5mp + 4mq − 4mpq.

Proof. In Gcm,m,

deg(u) =





degG(u) + 2, when u is in a copy of G p + 1 − degG(u), when u is in a copy of G.

Therefore,

M1(Gcm,m) = X

u∈V (Gc2m)

[deg(u)]2

=

m

X

i=1

X

u∈ith copy of G

[deg(u)]2+

m

X

i=1

X

u∈ith copy of G

[deg(u)]2

= m X

u∈ith copy of G

[deg(u)]2+ m X

u∈ith copy of G

[deg(u)]2

= m X

u∈V (G)

[degG(u) + 2]2+ m X

u∈V (G)

[p + 1 − degG(u)]2

= m

 X

u∈V (G)

[degG(u)]2+ X

u∈V (G)

[4degG(u)] + X

u∈V (G)

4

+ m

 X

u∈V (G)

(p + 1)2− X

u∈V (G)

[2(p + 1)degG(u)] + X

u∈V (G)

[degG(u)]2

= mM1(G) + 8mq + 4mp + mp(p + 1)2+ 4mq(p + 1) + mM1(G)

= 2mM1(G) + mp3+ 2mp2+ 5mp + 4mq − 4mpq.

57

(4)

Proposition 2.4. For any integer m ≥ 1, M1(GPm,m) = 2mM1(G) + (m − 1)[p3+ 2p2− 4pq + 5p − 4q] + p3− 4pq + p + 4q.

Proof. For any vertex u in GPm,m,

deg(u) =

















degG(u) + 1, if u is in the first copy of G degG(u) + 2, if u is in the remaining copies of G p − degG(u), if u is in the mthcopy of G p + 1 − degG(u), if u is in the remaining copies of G.

Therefore, M1(GPm,m)

= X

u∈V (GPm,m)

[deg(u)]2

= X

u∈1st copy of G

[deg(u)]2+

m

X

i=2

X

u∈ith copy of G

[deg(u)]2

+

m−1

X

i=1

X

u∈ith copy of G

[deg(u)]2

+ X

u∈mth copy of G

[deg(u)]2

= X

u∈V (G)

[degG(u) + 1]2+ (m − 1) X

u∈V (G)

[degG(u) + 2]2+ (m − 1) X

u∈V (G)

[degG(u) + 2]2+ X

u∈V (G)

[degG(u) + 1]2

= X

u∈V (G)

[degG(u) + 1]2+ (m − 1) X

u∈V (G)

[degG(u) + 2]2+ (m − 1) X

u∈V (G)

[(p + 1) − degG(u)]2+ X

u∈V (G)

[p − degG(u)]2

= X

u∈V (G)

[degG(u)]2+ X

u∈V (G)

1 + 2 X

u∈V (G)

degG(u) + (m − 1)

 X

u∈V (G)

[degG(u)]2+ X

u∈V (G)

4 + 4 X

u∈V (G)

degG(u)

+ (m − 1)

 X

u∈V (G)

(p + 1)2+ X

u∈V (G)

[degG(u)]2− X

u∈V (G)

[2(p + 1)degG(u)]

+ X

u∈V (G)

p2+ X

u∈V (G)

[degG(u)]2− X

u∈V (G)

[2p degG(u)]

= M1(G) + p + 4q + (m − 1)[M1(G) + 4p + 8q] + (m − 1)[p(p + 1)2+ M1(G) − 4(p + 1)q] + p3+ M1(G) − 4pq

= 2mM1(G) + (m − 1)[p3+ 2p2− 4pq + 5p − 4q] + p3− 4pq + p + 4q.

Theorem 2.5. For any m, n ≥ 1,

M2(Gm+n) = mM2(G) + nM2(G) + (m + n − 1)[mM1(G) + nM1(G)]

+ (m + n − 1)2



mq + n p(p − 1) 2 − q



+m(m − 1)

2 [M1(G) + (m + n − 1)2p + 4(m + n − 1)q]

+n(n − 1) 2



M(G) + (m + n − 1)2p + 4(m + n − 1) p(p − 1) 2 − q



+ mn[2(m + n + p − 2)q + (m + n − 1)(m + n + p − 2)p − M1(G) − 2(m + n − 1)q].

(5)

Proof. In Gm+n, deg(u) =





degG(u) + m + n − 1, where u is in a copy of G m + n + p − degG(u) − 2, where u is in a copy of G.

Therefore,

M2(Gm+n) = X

uv∈E(Gm+n)

[deg(u) deg(v)]

= X

uv∈an edge of a copy of G

[deg(u)deg(v)] + X

uv∈an edge of a copy of G

[deg(u)deg(v)]

+ X

uv∈Km+n with u,v∈V (G)

[deg(u)deg(v)] + X

uv∈Km+nwith u,v∈V (G)

[deg(u)deg(v)]

X

uv∈Km+n with u∈V (G) and v∈V (G)

[deg(u)deg(v)]

= m X

uv∈E(G)

[(degG(u) + m + n − 1)(degG(v) + m + n − 1)]

+ n X

uv∈E(G)

[(degG(u) + m + n − 1)(degG(v) + m + n − 1)]

+ m

2

! X

u∈V (G)

[degG(u) + m + n − 1)]2+ n 2

! X

u∈V (G)

[degG(u) + m + n − 1]2

+ mn X

u∈V (G)

[(degG(u) + m + n − 1)(m + n + p − 2 − degG(u))]

= m

 X

uv∈E(G)

[degG(u)degG(v)] + X

uv∈E(G)

[(m + n − 1)[degG(u) + degG(v)]] + X

uv∈E(G)

(m + n − 1)2

+ n

 X

uv∈E(G)

[degG(u)degG(v)] + X

uv∈E(G)

[(m + n − 1)[degG(u) + degG(v)] + X

uv∈E(G)

(m + n − 1)2

+m(m − 1) 2

 X

u∈V (G)

[degG(u)]2+ X

u∈V (G)

(m + n − 1)2 + X

u∈V (G)

[2(m + n − 1)degG(u)]

+n(n − 1) 2

 X

u∈V (G)

[degG(u)]2+ X

u∈V (G

(m + n − 1)2 + X

u∈V (G)

[2(m + n − 1)degG(u)]

+ mn

 X

u∈V (G)

[(m + n + p − 2)degG(u)] + X

u∈V (G)

[(m + n − 1)(m + n + p − 2)]

− X

u∈V (G)

[degG(u)]2− X

u∈V (G)

[(m + n − 1)degG(u)]

= m[M2(G) + (m + n − 1)M1(G) + (m + n − 1)2q]

+ n

"

M2(G) + (m + n − 1)M1(G) + (m + n − 1)2

p 2

!

− q

!#

+m(m − 1)

2 [M1(G) + (m + n − 1)2p + (m + n − 1)(4q)]

+n(n − 1) 2

"

M1(G) + (m + n − 1)2p + 4(m + n − 1)

p 2

!

− q

!#

+ mn[2(m + n + p − 2)q + (m + n − 1)(m + n + p − 2)p − M1(G) − 2(m + n − 1)q]

59

(6)

= mM2(G) + nM2(G) + (m + n − 1)[mM1(G) + nM1(G)] + (m + n − 1)2



mq + n p(p − 1) 2 − q



+m(m − 1) 2 [M1(G) + (m + n − 1)2p + 4(m + n − 1)q] +n(n − 1)

2



M(G) + (m + n − 1)2p + 4(m + n − 1) p(p − 1) 2 − q



+ mn[2(m + n + p − 2)q + (m + n − 1)(m + n + p − 2)p − M1(G) − 2(m + n − 1)q].

Theorem 2.6. For any integer m, n ≥ 1,

M2(Gm,n) = m[M2(G) + nM1(G) + n2q]

+ n



M2(G) + mM1(G) + m2 p(p − 1) 2 − q



+ mn[2(m + p − 1)q + (m + p − 1)np − M1(G) − 2nq]

Proof. In Gm,n, deg(u) =





degG(u) + n, where u is in a copy of G m + p − 1 − degG(u), where u is in a copy of G.

Therefore,

M2(Gm,n) = X

uv∈E(Gm,n)

[deg(u)deg(v)]

= X

uv∈an edge of a copy of G

[deg(u)deg(v)] + X

uv∈an edge of a copy of G

[deg(u)deg(v)]

+ X

uv∈Km+nwith u∈V (G),v∈V (G)

[deg(u)deg(v)]

= m X

uv∈E(G)

[(degG(u) + n)(degG(v) + n)]

+ n X

uv∈E(G)

[(degG(u) + m)(degG(v) + m)] + mn X

uv∈V (G)

[(degG(u) + n)(m + p − 1 − degG(u))]

= m

 X

uv∈E(G)

[degG(u)degG(v)] + X

uv∈E(G)

[n(degG(u) + degG(v))] + X

uv∈E(G)

n2

+ n

 X

uv∈E(G)

(degG(u)degG(v)) + X

uv∈E(G)

[m(degG(u) + degG(v))] + X

uv∈E(G)

m2

+ mn

 X

u∈V (G)

[(m + p − 1)degG(u)] + X

u∈V (G)

[n(m + p − 1)]

− X

u∈V (G)

[degG(u)]2− X

u∈V (G)

[ndegG(u)]

= m[M2(G) + nM1(G) + n2q]

+ n

"

M2(G) + mM1(G) + m2

p 2

!

− q

!#

+ mn[(m + p − 1)(2q) + n(m + p − 1)p − M1(G) − n(2q)]

= m[M2(G) + nM1(G) + n2q]

+ n



M2(G) + mM1(G) + m2 p(p − 1) 2 − q



+ mn[2(m + p − 1)q + n(m + p − 1)p − M1(G) − 2nq].

(7)

Theorem 2.7. For any integer m ≥ 1, M2(Gcm,m) = m[M2(G) + M2(G) + 2M1(G) + 4 p2] + 4m[(p − 1)q + p(p + 1)].

Proof. In Gcm,m, deg(u) =





degG(u) + 2, where u is in a copy of G p + 1 − degG(u), where u is in a copy of G Therefore,

M2(Gcm,m) = X

uv∈E(Gcm,m)

[deg(u)deg(v)]

= X

uv∈an edge of a copy of G

[deg(u)deg(v)] + X

uv∈an edge of a copy of G

[deg(u)deg(v)]

+ X

uv∈an edge of a copy of C2m

[deg(u)deg(v)]

= X

uv∈an edge of a copy of G

[(degG(u) + 2)(degG(v) + 2)]

+ X

uv∈an edge of a copy of G

[(degG(u) + 2)(degG(v) + 2)] + 2m X

u∈V (G)

[deg(u)deg(u)]

= X

uv∈an edge of a copy of G

[(degG(u) + 2)(degG(v) + 2)]

+ X

uv∈an edge of a copy of G

[(degG(u) + 2)(degG(v) + 2)] + 2m X

u∈V (G)

[(degG(u) + 2)(p + 1 − degG(u))]

= m

 X

uv∈E(G)

[degG(u)degG(v)] + 2 X

uv∈E(G)

[degG(u) + degG(v)] + X

uv∈E(G)

4

+ m

 X

uv∈E(G)

[degG(u)degG(v)] + 2 X

uv∈E(G)

[degG(u) + degG(v)] + X

uv∈E(G)

4

+ 2m

 X

u∈V (G)

[(p + 1)deg(u)] + 2 X

u∈V (G)

(p + 1) − X

u∈V (G)

[deg(u)]2 −2 X

u∈V (G)

deg(u)

= m[M2(G) + 2M1(G) + 4q] + m[M2(G) + 2M1(G) + 4( p 2

!

− q)] + 2m[(p + 1)(2q) + 2(p + 1)p − M1(G) − 4q]

= m[M2(G) + M2(G) + 2M1(G) + 4 p 2

!

] + 2m[2(p − 1)q + 2p(p + 1)].

Proposition 2.8. For any integer m ≥ 1, M2(GPm,m) = m[M2(G) + M2(G)] + (2m − 1)M1(G) + (4m − 3) p2 + 4q(m − 1)(p + 1) + (4m − 5)p(p + 1) + 2pq + 2p2− 8mq + 6q.

Proof. In (Gpm,m),

deg(u) =

















degG(u) + 1, where u is in the first copy of G degG(u) + 2, where u is in the remaining copies of G degG(u) + 1, where u is in the mth copy of G degG(u) + 2, where u is in the remaining copies of G.

61

(8)

Therefore,

M2(GPm,m) = X

uv∈E(Gpm,m)

[deg(u)deg(v)]

= X

uv∈an edge of a copy of G

[deg(u)deg(v)] + X

uv∈an edge of a copy of G

[deg(u)deg(v)]

+ X

uv∈an edge of a copy of Pm,m

[deg(u)deg(v)]

= X

uv∈E(G)

[(degG(u) + 1)(degG(v) + 1)]

+ (m − 1) X

uv∈E(G)

[(degG(u) + 2)(degG(v) + 2)] + X

uv∈E(G)

[(degG(u) + 1)(degG(v) + 1)]

+ (m − 1) X

uv∈E(G)

[(degG(u) + 2)(degG(v) + 2)] + X

u∈V (G)

[(degG(u) + 1)(p + 1 − degG(u))]

+ (2m − 3) X

uv∈V (G)

[(degG(u) + 2)(p + 1 − degG(u))] + X

u∈V (G)

[(degG(u) + 2)(p − degG(u))]

= X

uv∈E(G)

[degG(u)degG(v)] + X

uv∈E(G)

(degG(u) + degG(v)) + X

uv∈E(G)

1

+ (m − 1)

 X

uv∈E(G)

[degG(u)degG(v)] + 2 X

uv∈E(G)

[degG(u) + degG(v)] + X

uv∈E(G)

4

+ X

uv∈E(G)

[degG(u)degG(v)] + X

uv∈E(G)

[degG(u) + degG(v)] + X

uv∈E(G)

1

+ (m − 1)

 X

uv∈E(G)

[degG(u)degG(v)] + 2 X

uv∈E(G)

[degG(u) + degG(v)] + X

uv∈E(G)

4

+ X

u∈V (G)

[(p + 1)degG(u)] + X

u∈V (G)

(p + 1) − X

u∈V (G)

[degG(u)]2− X

u∈V (G)

[degG(u)]

+ (2m − 3)

 X

u∈V (G)

[(p + 1)degG(u)] + X

u∈V (G)

[2(p + 1)] − X

u∈V (G)

[degG(u)]2 −2 X

u∈V (G)

degG(u)

+ X

u∈V (G)

[p degG(u)] + X

u∈V (G)

[2p] − X

u∈V (G)

[degG(u)]2− 2 X

u∈V (G)

degG(u)

= M2(G) + M1(G) + q + (m − 1)[M2(G) + 2M1(G) + 4q] + M2(G) + M1(G) + ( p 2

!

− q)

+ (m − 1)[M2(G) + 2M1(G) + 4( p 2

!

− q)] + 2(p + 1)q + p(p + 1) − M1(G) − 2q

+ (2m − 3)[2(p + 1)q + 2p(p + 1) − M1(G) − 4q] + 2pq + 2p2− M1(G) − 4q

= m[M2(G) + M2(G)] + (2m − 1)M1(G) + (4m − 3) p 2

!

+ 4q(m − 1)(p + 1) + (4m − 5)p(p + 1) + 2pq + 2p2− 8mq + 6q.

(9)

Corollary 2.9. For any graph G, M1(GG) = 2M1(G) + p3− 4pq + p + 4q and M2(GG) = M1(G) + M2(G) + M2(G) + (p − 1)3p

2 + 2q.

Proof. By taking m = 1 in Propositions 2.4 and 2.8, the result follows.

References

[1] S.Arockiaraj and N.Nagajothi, The first and second Zagreb indices for some hypergraph operations, (Communicated).

[2] G.H.Fath-Tabar, Old and New Zagreb Indices of Graphs, MATCH Commun. Math. Comput. Chem., (65)(2011), 79–84.

[3] I.Gutman, B.Ruscic, N.Trinajstic and C.F.Wikox, Graph Theory and molecular orbitals XII. Acyclic Polyenes, J. Chem.

Phys., (62)(1975), 3399–3405.

[4] I.Gutman and N.Trinajstic, Graph theory and molecular orbitals. Total π-electron enery of altermant hydrocarbons, Chem.

Phys. Lett., (17)(1972), 535–538.

[5] K.M.Kathiresan and S.Arockiaraj, On the wiener index of generalised complimentary prism, Bull. Inst. Combin. Appl., (59)(2010), 31–45.

[6] M.H. Khalifeh, H.Yousefi-Azari and A.R.Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math., (157)(2009), 804–811.

[7] L.Sun and T.Chen, Comparing the Zagreb indices for graphs with small difference between the maximum and minimum degrees, Discrete Appl. Math., (157)(2009), 1650–1654.

63

References

Related documents

Using an incorrect technique, including use of inappropriate needle length, failure to rotate the injection sites, as well as the reuse of needles, can lead to injectable therapies

linear regression model will all yield the same predicted value for that particular weld.

The Chair shall preside at meetings; shall serve as the Workforce Board’s chief spokesperson and signatory; shall appoint committee chairs and committee members subject to these

The Cardiology Enterprise Viewer is a viewing component for cardiology images and reports that can be accessed from IntelliSpace

Test – 1 Age of the Customers and Overall Satisfaction on E- Banking Services Null hypothesis (H0). There is no significant relationship between age of the customers and

This paper describes the design and test of analog front ends for multiple wavelength, multiple detector free-space optical measurements. Commodity optical and

The current account balance further has two components, the balance on merchandise account and the balance on invisibles. The most important item in the current account is

While taking account of all energy sources used in a country, both renewable and non- renewable, the basic ingredients of the risk indicator are: (1) a