• No results found

New characterizations of Besov and Triebel–Lizorkin spaces over spaces of homogeneous type

N/A
N/A
Protected

Academic year: 2021

Share "New characterizations of Besov and Triebel–Lizorkin spaces over spaces of homogeneous type"

Copied!
14
0
0

Loading.... (view fulltext now)

Full text

(1)

www.elsevier.com/locate/jmaa

New characterizations of Besov and Triebel–Lizorkin

spaces over spaces of homogeneous type

Yanchang Han

a,∗

, Yanbo Xu

b,c

aSchool of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China bDepartment of Mathematics, Zhongshan University, Guangzhou, 510275, China cDepartment of Mathematics and Physics, Huaihai Institute of Technology, Jiangsu, 222005, China

Received 4 October 2005 Available online 24 February 2006

Submitted by L. Grafakos

Abstract

Using theT1 theorem for the Besov and Triebel–Lizorkin spaces, we give new characterizations of Besov and Triebel–Lizorkin spaces with minimum regularity and cancellation conditions over spaces of homogeneous type.

©2006 Elsevier Inc. All rights reserved.

Keywords:T1 theorem; Besov and Triebel–Lizorkin spaces; Calderón reproducing formula; Plancherel–Pôlya inequalities

1. Introduction

The main purpose of this paper is to establish new characterizations of the Besov and Triebel– Lizorkin spaces on spaces of homogeneous type. To state main results, we first recall some definitions. Aquasi-metricρon a setXis a functionρ:X×X→ [0,)satisfying:

(i) ρ(x, y)=0 if and only ifx=y; (ii) ρ(x, y)=ρ(y, x)for allx, yX;

The authors are partially supported by the NNSF (No. 10571182) of China and Foundation of Zhongshan University Advanced Research Center.

* Corresponding author.

E-mail address:hanyc291scnu@hotmail.com (Y. Han).

0022-247X/$ – see front matter ©2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2006.01.068

(2)

(iii) There exists a constantA∈ [1,)such that for allx, y, zX,

ρ(x, y)Aρ(x, z)+ρ(z, y).

Any quasi-metric defines a topology, for which the ballsB(x, r)= {yX: ρ(y, x) < r}for all

xXand allr >0 form a basis.

The following spaces of homogeneous type are variants of those introduced by Coifman and Weiss in [1].

Definition 1.1.(See [2].) Letd >0 and 0< θ1.Aspace of homogeneous type(X, ρ, μ)d,θ is a setXtogether with a quasi-metricρand a nonnegative Borel measureμonXwith suppμ=X, and there exists a constant 0< C <∞such that for all 0< r <diamXand allx, x, yX,

μB(x, r)rd, (1.1)

ρ(x, y)ρ(x, y)Cρ(x, x)θρ(x, y)+ρ(x, y)1−θ. (1.2) Macías and Segovia have proved that spaces of homogeneous type introduced by Coifman and Weiss are equivalent to spaces(X, ρ, μ)d,θ ford=1 in [3].

To state the definition of the Besov and Triebel–Lizorkin spaces, we need the following defi-nitions.

Definition 1.2.(See [2,4].) A sequence{Sk}k∈Zof operators is said to be anapproximation to the identityifSk(x, y),the kernel ofSk,are functions fromX×XintoCsuch that for allk∈Z and allx, x, y andyinX,and some 0< θandC >0,

Sk(x, y)C 2−k (2−k+ρ(x, y))d+; (1.3) Sk(x, y)Sk(x, y)C ρ(x, x) 2−k+ρ(x, y) 2−k (2−k+ρ(x, y))d+ (1.4) forρ(x, x)2A1 (2−k+ρ(x, y)); Sk(x, y)Sk(x, y)C ρ(y, y) 2−k+ρ(x, y) 2−k (2−k+ρ(x, y))d+ (1.5) forρ(y, y)2A1 (2−k+ρ(x, y));

Sk(x, y)Sk(x, y)Sk(x, y)Sk(x, y) C ρ(x, x) 2−k+ρ(x, y) ρ(y, y) 2−k+ρ(x, y) 2−k (2−k+ρ(x, y))d+ (1.6) forρ(x, x)2A1 (2−k+ρ(x, y))andρ(y, y)2A1 (2−k+ρ(x, y));

Sk(x, y) dμ(x)=1 (1.7)

for allk∈Z;

Sk(x, y) dμ(y)=1 (1.8)

(3)

Definition 1.3.(See [2,4].) Fix two exponents 0< βθandγ >0.A functionf defined onX

is said to be atest functionof type(β, γ )centered atx0∈X with widthd >0 iff satisfies the following conditions: f (x)C d γ (d+ρ(x, x0))d+γ; (1.9) f (x)f (x)C ρ(x, x) d+ρ(x, x0) β dγ (d+ρ(x, x0))d+γ (1.10) forρ(x, x)2A1 (d+ρ(x, x0)); X f (x) dμ(x)=0.

If f is a test function of type (β, γ ) centered at x0 with width d > 0, we write f

M(x0, d, β, γ ),and the norm off inM(x0, d, β, γ )is defined by

fM(x0,d,β,γ )=inf

C0: (1.9) and (1.10) hold.

We denote byM(β, γ )the class of allfM(x0,1, β, γ )for some fixedx0∈X.It is easy to see thatM(x1, d, β, γ )=M(β, γ )with the equivalent norms for allx1∈Xandd >0. Fur-thermore, it is also easy to check thatM(β, γ )is a Banach space with respect to the norm in

M(β, γ ). We denote by(M(β, γ )) the dual space ofM(β, γ )consisting of all linear func-tionalsLfromM(β, γ )toCwith the property that there exists a constantC such that for all

fM(β, γ ),

L(f )CfM(β,γ ).

We denote by h, f the natural pairing of elementsh(M(β, γ )) andfM(β, γ ).Since

M(x1, d, β, γ )=M(β, γ )with the equivalent norms for allx1∈X andd >0. Thus, for all

h(M(β, γ )), h, fis well defined for allfM(x1, d, β, γ )withx1∈Xandd >0.In what follows, we letM(β, γ )be the completion of the spaceM(θ, θ )inM(β, γ )when 0< β, γ < θ.

Now, we can introduce the homogeneous Besov spacesB˙pα,q(X)and Triebel–Lizorkin spaces

˙

Fpα,q(X)via approximations to the identity in [4,5].

Definition 1.4.Suppose that− < α < , andβandγ satisfy

max0,α+max0, d(1/p−1)< β < , 0< γ < . (1.11) Suppose{Sk}k∈Zis an approximation to the identity and letDk=SkSk−1.Thehomogeneous Besov spaceB˙pα,q(X)for max(dd+,d+d+α) < p∞, 0< q∞is the collection of allf

(M(β, γ ))such that fB˙α,q p (X)= k=−∞ 2kαDk(f )Lp(X) q 1 q <,

and the homogeneous Triebel–Lizorkin space F˙pα,q(X) for max(d+d,d+d+α) < p <∞ and max(dd+,d+d+α) < q∞is the collection off(M(β, γ ))such that

(4)

fF˙α,q p (X)= k=−∞ 2kαDk(f ) q 1 q Lp(X) <.

We also need the following construction of Christ in [6], which provides an analogue of the grid of Euclidean dyadic cubes on spaces of homogeneous type.

Lemma 1.5.LetX be a space of homogeneous type. Then there exists a collection{Qk

αX:

k∈Z, αIk} of open subsets, where Ik is some (possible finite) index set, and constants

δ(0,1)andC1, C2>0such that

(i) μ(X\αQkα)=0for each fixedkandQkαQkβ= ∅ifα=β; (ii) for anyα, β, k, lwithlk,eitherQlβQkαorQlβQkα= ∅; (iii) for each(k, α)and eachl < kthere is a uniqueβsuch thatQkαQlβ; (iv) diam(Qkα)C1δk;

(v) eachQkα contains some ballB(zkα, C2δk), wherezαkX.

In fact, we can think ofQkα as being a dyadic cube with a diameter roughlyδk and centered atzkα. In what follows, we always supposeδ=1/2. See [4] for how to remove this restriction. Also, in the following, fork∈Z,τIk,we will denote byQk,ντ ,ν=1, . . . , N (k, τ, M),the set of all cubesQkτ+ MQkτ, whereM is a fixed large positive integer. LetmQk,ν

τ (Ek(f ))be

averages ofEk(f )overQk,ντ .

In this paper, we will prove the following results.

Theorem A. A sequence{Sk(x, y)}k∈Z of functions fromX×X into C satisfies (1.3), (1.4) and(1.8)of Definition1.2above andEk=SkSk−1. SupposefM(β, γ )withβ, γ satisfy-ing(1.11). If0< α < ,d+dα < pand0< q, then

k=−∞ 2kαEk(f )Lp(X) q 1 qfB˙α,q p (X); (1.12) if0< α < ,d+dα< p <and d+dα < q,then k=−∞ 2kαEk(f ) q 1 q Lp(X)fF˙α,q p (X). (1.13)

Theorem B. A sequence {Sk(x, y)}k∈Z of functions from X×X into C satisfies (1.3), (1.5) and(1.7)of Definition1.2above andEk=SkSk−1. Suppose thatM is a fixed large integer andfM(β, γ )withβ, γ satisfying(1.11). If− < α <0, d+dα+ < pand0< q, then k=−∞ τIk N (τ,k,M) ν=1 2kαp2−kdmQk,ν τ Ek(f )p q p 1 qfB˙α,q p (X); (1.14) if < α <0, d+dα+ < p <, d+dα+< q, then

(5)

k=−∞ τIk N (τ,k,M) ν=1 2kαmQk,ν τ Ek(f )χQk,ν τ q 1 q Lp(X)fF˙α,q p (X). (1.15)

Theorems A and B were proved in [4] for the Besov space when 0<|α|< , 1p, q

and for the Triebel–Lizorkin space when 0<|α|< , 1< p, q <∞. The main purpose of this paper is to give a uniform treatment. To be precise, to deal with the case where 0< α < and

p, q >1, the main tools used in [4] were the continuous Calderón reproducing formula and theT1 theorem. The proof of the case where− < α <0, andp, q >1 then follows from the duality argument. However, the continuous Calderón reproducing formula and duality argument do not work for the cases where eitherp or q, or bothp andq are less than or equal to 1. The key feature of the present paper is to use the discrete Calderón reproducing formula and the Plancherel–Pôlya characterization of the Besov and Triebel–Lizorkin spaces developed in [5,7], and theT1 theorem established in [8]. Moreover, we will provide variants of the discrete Calderón-type reproducing formula. SeeT˙N,MandTN,Mbelow. It is an interesting question that if the left-hand sides of expressions in (1.14) and (1.15) can be replaced by the left-hand side of expressions in (1.12) and (1.13).

A brief description of the contents of this paper is as follows. In Section 2 we prove Theo-rem A. The proof of TheoTheo-rem B will be given in Section 3.

2. New characterizations of Besov spacesB˙pα,q(X)and Triebel–Lizorkin spacesF˙ α,q

p (X)

with 0< α <

We recall the discrete Calderón reproducing formulae in [7].

Lemma 2.1. Let {Sk}k∈Z be as in Definition 1.2. Set Dk =SkSk−1. Then there exists a family of functions {Dk(x, y)}k∈Z such that for any fixed yτk,νQk,ντ , k∈ Z, τIk and

ν∈ {1, . . . , N (k, τ, M)}and allf(M(β, γ ))with0< β, γ < θ,

f (x)= k∈Z τIk N (k,τ,M) ν=1 μQk,ντ Dk x, yτk,νDk(f ) yτk,ν wherediam(Qk,ν

τ )∼2k+M for k∈ZIk,ν∈ {1, . . . , N (k, τ, M)},M∈Nis a fixed large integer, and the series converges in the norm of Lp(X),1< p <,and M, γ)for f

M(β, γ )withβ< βandγ< γ ,and(M(β, γ))forf(M(β, γ ))withθ > β> β and

θ > γ> γ .Moreover,Dk(x, y), k∈Z,satisfy the following estimates:for,0< < ,where

is the regularity exponent ofSk,there exists a constantC >0such that Dk(x, y)C 2−k (2−k+ρ(x, y))d+; (2.1) Dk(x, y)Dk(x, y)C ρ(x, x) 2−k+ρ(x, y) 2−k (2−k+ρ(x, y))d+ (2.2) forρ(x, x)2A1 (2−k+ρ(x, y)); Dk(x, y) dμ(y)= Dk(x, y) dμ(x)=0. (2.3)

(6)

Proof of Theorem A. First we prove that if 0< α < , d+dα < p∞, 0< q∞, andfM(β, γ )withβ, γ satisfying (1.11), k=−∞ 2kαEk(f )Lp(X) q 1 q CfB˙α,q p (X); (2.4)

and if 0< α < and d+dα < p <, d+dα < q, andfM(β, γ ) withβ, γ satisfy-ing (1.11), k=−∞ 2kαEk(f ) q 1 q Lp(X) CfF˙α,q p (X). (2.5)

To prove (2.4), by Lemma 2.1 and the basic estimate ofEkDk(x, y)(see [4, p. 76]), we obtain 2kαpEk(f ) p Lp(X)Ck=−∞ τIk N (k,τ,M) ν=1 2−kd(p∧1)2(kk)∧1p∧12(kk)α(p∧1) ×2−(kk)d(1(p∧1))2kαpDk(f ) yτk,νp.

Using the Hölder inequality forqp>1 and(a+b)

q p a q p+b q p for q p1, it follows that k=−∞ 2kαEk(f )Lp(X) q 1 q C k=−∞ ∞ k=−∞ 2kd2−kd(p∧1)2(kk)∧1p∧1 ×2(kk)α(p∧1)2−(kk)d(1(p∧1)) q p∧1 × τIk N (k,τ,M) ν=1 μQkτα d+ 1 p sup zQk,ν τ Dk(f )(z) p q p1q C k=−∞ τIk N (k,τ,M) ν=1 μQkτα d+ 1 p sup zQk,ν τ Dk(f )(z) p q pq1 CfB˙α,q p (X),

where the first and the second inequalities follow from the fact that forα < , p >d+dα, sup kk=−∞ 2kd2−kd(p∧1)2(kk)∧1p∧12(kk)α(p∧1)2−(kk)d(1(p∧1))C, (2.6) sup kk=−∞ 2kd2−kd(p∧1)2(kk)∧1p∧12(kk)α(p∧1)2−(kk)d(1(p∧1)) q p∧1C, (2.7)

and the last inequality follows from the Plancherel–Pôlya characterization of the Besov spaces [5].

(7)

To verify (2.5), using Lemma 2.1 and Lemma A.2 in [9, pp. 147–148], it follows that Ek(f )(x)Ck=−∞ 2−kd2−2(kk)∧12(kk)d2[k(kk)]d/r × M τIk N (k,τ,M) ν=1 μQkτα dD k(f ) yτk,νχ Qk,ν τ r1r (x), whered+dα < r <min(1, p, q).

By the Hölder inequality forq >1 and(a+b)qaq+bq forq1, the Fefferman–Stein vector-valued maximal function inequality in [10] and the Plancherel–Pôlya characterization of the Triebel–Lizorkin spaces [5], we obtain

k=−∞ 2kαEk(f ) q 1 q Lp(X) C k=−∞k=−∞ 2(kk)α2(kk)∧12−kd2(kk)d2[k(kk)]d/rq∧1 × M τIk N (k,τ,M) ν=1 μQkταdD k(f ) ykτ,νχ Qk,ν τ rqr 1 q Lp(X) C k=−∞ M τIk N (k,τ,M) ν=1 μQkτα dD k(f ) yτk,νχ Qk,ν τ rqr 1 q Lp(X) CfF˙α,q p (X),

where the first and the second inequalities follow from the estimates sup kk=−∞ 2(kk)α2(kk)∧12−kd2(kk)d2[k(kk)]d/rC (2.8) and sup kk=−∞ 2(kk)α2(kk)∧12−kd2(kk)d2[k(kk)]d/rq∧1C. (2.9) The proofs of the other half of (1.12) and (1.13) will use a new decomposition of the identity operator andT1 theorem. More precisely, by the conditions on Ek, the identity operator can be written byI= ˙RN+ ˙TN, whereR˙N=

k=−∞

j:|jk|>NEjEk, whereN is a fixed large integer. Furthermore, for some large fixedM∈N, letEkN=j:|jk|NEj, we decomposeT˙N byT˙N= ˙RN,M+ ˙TN,M, where ˙ RN,M(f )(x)= ∞ k=−∞ τIk N (τ,k,M) ν=1 Qk,ντ EkN(x, y)Ek(f )(y)Ek(f ) yk,ντ dμ(y),

(8)

whereyk,ν

τ are any fixed points inQk,ντ .We will show that limN→∞limM→∞T˙N,M=I in the norm ofB˙pα,q(X)and F˙pα,q(X)for the range of α, p andq indicated in (1.12) and (1.13) of Theorem A. Assuming, for the moment, that this has been done, then whenN andMare large enough,T˙N,M−1 exists and is bounded onB˙pα,q(X)andF˙pα,q(X)for the same range ofα, pandq. Therefore, to finish the proof of the other half of (1.12) and (1.13), we only need to verify the following claims. For 0< α < andd+dα < p∞, 0< q∞,

T˙N,M(f )B˙α,q p (X)C k=−∞ 2kαEk(f )Lp(X) q 1 q ; (2.10) for 0< α < andd+dα < p <,d+dα < q, T˙N,M(f )F˙α,q p (X)C k=−∞ 2kαEk(f ) q 1 q Lp(X) . (2.11)

Since the right-hand side of the expression ofT˙N,M(f )is similar to the expression off in the discrete Calderón reproducing formula in Lemma 2.1, the proofs of (2.10) and (2.11) are same as in the proofs of (2.4) and (2.5), respectively. In fact, to see the proof of (2.10), since

DkT˙N,M(f )(x) Ck=−∞ τIk N (τ,k,M) ν=1 μQk,ντ (2 (kk)1)2(kk) (2−(kk)+ρ(x, yk,ν τ ))d+ Ek(f ) yτk,ν,

then, by the similar proof we have done for (2.4), T˙N,M(f )B˙α,q p (X) C k=−∞ ∞ k=−∞ 2(kk)α(p∧1)2(kk)∧1p∧12−(kk)d(1(p∧1))2kd ×2−kd(p∧1) q p∧1 τIk N (τ,k,M) ν=1 μQk,ντα d+p1E k(f ) yτk,νp q p 1 q C k=−∞ 2kαEk(f )Lp(X) q 1 q ,

where we used the arbitrariness ofyτk,νand the estimates of (2.6) and (2.7). To prove (2.11), similarly, T˙N,M(f )F˙α,q p (X) C k=−∞ τIk N (τ,k,M) ν=1 k=−∞ 2(kk)∧12(kk)α2−kd2(kk)d2[k(kk)]d/r × M τIk N (τ,k,M) ν=1 μQk,νταr d E k(f ) yτk,νrχ Qk,ντ 1 r χ Qk,ν τ qq1 Lp(X)

(9)

C k=−∞ 2kαEk(f ) q 1 q Lp(X) ,

where d+dα < r <min(1, p, q)and we used the arbitrariness ofyτk,ν and the estimates of (2.8) and (2.9).

It remains to show limN→∞limM→∞T˙N,M=Iin the norm ofB˙pα,q(X)andF˙ α,q

p (X)for the range ofα, pandq indicated in (1.12) and (1.13) of Theorem A. To do this, we need the T1 theorems for the Besov spacesB˙pα,q(X)and Triebel–Lizorkin spacesF˙pα,q(X)for the range of

α, pandqindicated in (1.12) and (1.13) of Theorem A.

Suppose thatT is a continuous linear mapping fromC0η(X)to(C0η(X)), associated to a kernel

K(x, y)in the following sense that

Tf, g =

g(x)K(x, y)f (y) dμ(x) dμ(y)

for all test functionsf andginC0η(X)with disjoint supports. Assume thatK(x, y)satisfies the pointwise conditions

K(x, y)Cρ(x, y)d, (2.12)

K(x, y)K(x, y)Cρ(x, x)ρ(x, y)d forρ(x, x)ρ(x, y)/(2A), (2.13) K(x, y)K(x, y)Cρ(y, y)ρ(x, y)d forρ(y, y)ρ(x, y)/(2A). (2.14) Assume also thatT satisfies the Weak Boundedness Property, denote this byTWBP,

Tf, gCrd+2ηfCη 0(X)gC

η 0(X)

for allf andginC0η(X)with diameters of supports not greater thanr.

The T1 theorems for the Besov and Triebel–Lizorkin spaces given in [8] can be stated as follows.

Lemma 2.2.Let0< θ,0< α < .Suppose thatT1=0,TWBP,andK(x, y),the kernel ofT ,satisfies(2.12)and(2.13), thenT is bounded onB˙pα,q(X),for d+dα< p,0< q, and onF˙pα,q(X),for d+dα < p <,d+dα < q.

We now show thatR˙N,M andR˙N satisfy the conditions in Lemma 2.2. More precisely, we will prove the following two lemmas.

Lemma 2.3.Suppose0< θ,0< α < , M∈N, Mis large enough. Then there existC >0 andδ1>0independent ofM, Nandf such that

R˙N,M(f )B˙α,q p (X)C2 −1f ˙ Bα,qp (X) for d+dα< p,0< qand R˙N,M(f )F˙α,q p (X)C2 −1f ˙ Fpα,q(X) for d+dα< p <, d+dα < q.

(10)

Lemma 2.4.With the same notation as in TheoremA,R˙N=

k=−∞

j:|jk|>NEjEk. Sup-pose 0< α < ,0< θ, N ∈N, N is large enough. Then there exist C >0 and δ2>0 independent ofN andf such that

R˙N(f )B˙α,q p (X)C2 −N δ2f ˙ Bpα,q(X) (2.15) for d+dα < p,0< qand R˙N(f )F˙α,q p (X)C2 −N δ2f ˙ Fpα,q(X) (2.16) for d+dα < p <,d+dα< q. Proof. We write ˙ RN= ∞ k=−∞j=k+N EjEk+ ∞ k=−∞ kN j=−∞ EjEk= ˙. RNI + ˙RIIN.

Similar to Lemma 2.3 or Lemma 5.24 in [4], using Lemma 2.2, there existC >0 andδ2>0 independent ofNandf such that when 0< α < ,

R˙NI(f )B˙α,q p (X)C2 −N δ2f ˙ Bpα,q(X) for d+dα < p∞, 0< q∞and R˙NI(f )F˙α,q p (X)C2 −N δ2f ˙ Fpα,q(X) for d+dα < p <∞,d+dα< q∞.

To prove the inequalities (2.15) and (2.16), we only need to show: if 0< α < , then there existC >0 andδ2, δ2 >0 independent ofNandf such that

R˙NII(f )B˙α,q p (X)C2 −N δ2f ˙ Bα,qp (X) (2.17) for d+dα < p∞, 0< q∞and R˙NII(f )F˙α,q p (X)C2 −N δ2f ˙ Fpα,q(X) (2.18) for d+dα < p <∞,d+dα< q∞.

First we prove the inequality (2.17). Applying Lemma 2.1 for fM(β, γ ) and the Plancherel–Pôlya characterizations ofB˙pα,q(X)in [5], we have

R˙NII(f )B˙α,q p (X) C l=−∞ τIl N (l,τ,M) ν=1 inf zQl,ντk=−∞ kN j=−∞ ∞ k=−∞ τIk N (k,τ,M) ν=1 ×μQτk,νμQl,ντα d+ 1 pD lEjEkDk ·, yτk,ν(z)Dk(f ) yτk ppq1q ,

(11)

DlEjEkDk(x, y)C 2(jl)∧12(kk)∧1 2 −(ljkk) (2−(ljkk)+ρ(x, y))d+ (2.19) for any,0< < . Thus R˙NII(f )B˙α,q p (X) C l=−∞ τIl N (l,τ,M) ν=1 ∞ k=−∞ kN j=−∞k=−∞ τIk N (k,τ,M) ν=1 ×2(jl)∧1p∧12(kk)∧1p∧12(lk)α(p∧1)2−ld2−kd(p∧1) × 2−(ljkk) (2−(ljkk)+ρ(yl,ν τ , yk τ ))d+ p∧1 2kαpDk(f ) yτk,νp q pq1 .

Furthermore, by Hölder inequality for qp>1 and(a+b)

q pa q p+b q p for q p1, we obtain R˙NII(f )B˙α,q p (X) C k=−∞ ∞ l=−∞ ∞ k=−∞ kN j=−∞ 2(jl)∧1p∧12(kk)∧1p∧1 ×2(lk)α(p∧1)2−kd(p∧1)2kd2(klj )d((p∧1)−1) q p∧1 × τIk N (k,τ,M) ν=1 μQkτα d+ 1 pD k(f ) yτk,νp q p1q C2−N δ2 k=−∞ τIk N (k,τ,M) ν=1 μQkτα d+p1 sup zQk,ν τ Dk(f )(z) p q p 1 q C2−N δ2f˙ Bpα,q(X),

where in the penultimate estimate we use: sup kl=−∞k=−∞ kN j=−∞ 2(jl)∧1p∧12(kk)∧1p∧1 ×2(lk)α(p∧1)2−kd(p∧1)2kd2(klj )d((p∧1)−1) q p∧1C2N δ2q, whereδ2=[α(p∧1)−d+d(p∧1)]( q p∧1) q , when 0< α < andp > d d+α.

Returning to (2.18), using Lemma 2.1 and (2.19), forfM(β, γ )we have R˙NII(f )˙ Fpα,q(X) C l=−∞ k=−∞ kN j=−∞ ∞ k=−∞ τIk N (k,τ,M) ν=1 2(lk)α2−kd2(jl)∧1

(12)

× (2(k k) ∧1)2−(ljkk) (2−(ljkk)+ρ(yl,ν τ , yk τ ))d+ 2 D k(f ) yτk q1q Lp(X) .

By Lemma A.2 in [9] and the Hölder inequality forq >1 and(a+b)qaq+bqforq1,

we obtain R˙NII(f )F˙α,q p (X) C l=−∞ ∞ k=−∞ kN j=−∞ ∞ k=−∞ 2(lk)α2−kd2(jl)∧12(kk)∧1 ×2(ljkk)d2[k(ljkk)]d/rq∧1 × M τIk N (k,τ,M) ν=1 μQkταdD k(f ) yτk,νχ Qk,ν τ rqrq1 Lp(X) C2−N δ2 × k=−∞ M τIk N (k,τ,M) ν=1 μQkτα dD k(f ) yτk,νχ Qk,ν τ rqrq1 Lp(X) C2−N δ2f˙ Fpα,q(X),

where we used the fact that for a fixedr, with min(1, p, q) > r >d+dα, then

sup lk=−∞ kN j=−∞ ∞ k=−∞ 2(lk)α2−kd2(jl)∧12(kk)∧1 ×2(ljkk)d2[k(ljkk)]d/r<, sup kl=−∞ ∞ k=−∞ kN j=−∞ 2(lk)α2−kd2(jl)∧12(kk)∧1 ×2(ljkk)d2[k(ljkk)]d/rq∧1 1 q C2−N δ2, whereδ2 =min((α)(qq1), (α+dd/r)(qq1)).

Combining estimates ofR˙NI (f )andR˙IIN(f ), takingδ2=min2, δ2, δ2), this shows (2.17) and (2.18). The proof of Lemma 2.4 is completed. 2

Using Lemmas 2.3 and 2.4, we show that limN→∞limM→∞T˙N,M =I in the norm of

˙

Bpα,q(X)andF˙ α,q

p (X)for the range ofα, pandq indicated in (1.12) and (1.13) of Theorem A. Moreover,T˙N,M−1 exists and is bounded on B˙pα,q(X)and F˙pα,q(X)for the same range of α, p andq. This completes the proof of Theorem A. 2

(13)

3. New characterizations of Besov spacesB˙pα,q(X)and Triebel–Lizorkin spacesF˙pα,q(X)

with− < α <0

As mentioned above, the proof of Theorem B cannot be obtained by the duality argument which was used in [4]. The idea of the proof, however, is similar to Theorem A with necessary modifications.

Proof of Theorem B. Notice first that under the conditions of Theorem B, it is easy to check the following estimate: EkDk ·, yτk,ν(z)C2(kk)∧1 2 −(kk) (2−(kk)+ρ(z, yk,ν τ ))d+

which together with the same proofs of Theorem A shows

k=−∞ τIk N (τ,k,M) ν=1 2kαp2−kdm Qk,ντ Ek(f ) p q p 1 q CfB˙α,q p (X) (3.1) for− < α <0 and d+dα+ < p∞, 0< q∞; k=−∞ τIk N (τ,k,M) ν=1 2kαmQk,ν τ Ek(f )χQk,ν τ q 1 q Lp(X) CfF˙α,q p (X) (3.2) for− < α <0 and d+dα+ < p <∞, d+dα+< q.

In order to give the other side’s proofs of Theorem B, similar to Lemma 2.2, it is easy to verify the following lemma.

Lemma 3.1.Let0< θ, < α <0. Suppose thatT∗1=0,TWBP,and K(x, y),the kernel ofT ,satisfies(2.12)and (2.14), thenT is bounded onB˙pα,q(X),for d+dα+ < p, 0< q,and onF˙pα,q(X),for d+αd+< p <, d+dα+< q.

To see the other side’s proofs, we decompose the identity operator by

I= ∞ k=−∞j=k+N EjEk+ ∞ k=−∞ kN j=−∞ EjEk+RN,M+TN,M . =RNI +RIIN+RN,M+TN,M, where TN,M(f )(x)= ∞ k=−∞ τIk N (τ,k,M) ν=1 μQk,ντ EkNx, yτk,νm Qk,ντ Ek(f ) and RN,M(f )(x)= ∞ k=−∞ τIk N (τ,k,M) ν=1 Qk,ντ EkN(x, y)EkNx, yτk,νEk(f )(y) dμ(y)

(14)

withN, Mare fixed large positive integers andEkN=j:|jk|NEj. It, again, is easy to see that

TN,M(f )has the same expression as the discrete Calderón reproducing formula in Lemma 2.1, 23R

N,Mand 2N δ4RNIIsatisfy conditions of Lemma 3.1 for someδ3, δ4>0 andN, Mare large positive integers. Repeating the same proofs as we have done for Theorem A gives the other half proofs of Theorem B. We leave the details to the reader. 2

References

[1] R.R. Coifman, G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogenes, Lecture Notes in Math., vol. 242, Springer, Berlin, 1971.

[2] Y.S. Han, D.C. Yang, New characterizations and applications of inhomogeneous Besov and Triebel–Lizorkin space on spaces of homogeneous type and fractals, Dissertationes Math. (Rozprawy Mat.) 403 (2002) 1–102.

[3] R.A. Macías, C. Segovia, Lipschitz function on spaces of homogeneous type, Adv. Math. 33 (1979) 257–270. [4] Y.S. Han, E.T. Sawyer, Littlewood–Paley theory on spaces of homogeneous type and classical function spaces,

Mem. Amer. Math. Soc. 110 (1994) 1–126.

[5] Y.S. Han, Plancherel–Pôlya type inequality on spaces of homogeneous type and its applications, Proc. Amer. Math. Soc. 126 (1998) 3315–3327.

[6] M. Christ, AT (b)theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990) 601–628.

[7] Y.S. Han, Discrete Calderón-type reproducing formula, Acta Math. Sin. (Engl. Ser.) 16 (2000) 277–294. [8] D.G. Deng, Y.S. Han,T1 Theorem for Besov and Triebel–Lizorkin spaces, Sci. China Ser. A Math. 34 (6) (2004)

657–664.

[9] M. Frazier, B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990) 34–170.

References

Related documents

El supuesto sobre el que se asienta esta política de promoción de los permisos parentales para hombres es que durante el permiso, el padre no se involucra solamente de

Of particular relevance to a discussion of impacts of cognitive biases and subjectivity within the forensic and investigative sciences, then, is the question of whether those persons

One of two operators commenced dental treatment using the approach selected by the respondent. This led to the following situations: 1) The selected treatment could be performed

In Table 5 and also in Figure 3 (see the illustrative comparison of forecasts using the level of TS), there is little evidence that Markov-switching models perform better in

We can do this at the quarterly frequency because, while ocial estimates of quarterly regional output growth for the English regions and Wales are limited (they are only available

“ Market Disruption Event ” means, in respect of an Index, the occurrence or existence on any Scheduled Trading Day of a Trading Disruption or an Exchange Disruption which in

available via the Associate Director of IT, or IT and Telecoms Infrastructure Development Manager (contact details in Appendix. 1) for urgent business

• End-user developed applications as collaboration content: our ultimate vision is to build an infrastructure that enables end users to collaborate through complex