• No results found

μ Guanidinido bis­­[(ter­pyridine)­platinum(II)] tris­­(hexa­fluoro­phosphate) aceto­nitrile solvate

N/A
N/A
Protected

Academic year: 2020

Share "μ Guanidinido bis­­[(ter­pyridine)­platinum(II)] tris­­(hexa­fluoro­phosphate) aceto­nitrile solvate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m248

Masako Katoet al. [Pt2(C15H11N3)2(CH4N3)](PF6)32C2H3N DOI: 10.1107/S1600536802007468 Acta Cryst.(2002). E58, m248±m250 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

l

-Guanidinido-bis[(terpyridine)platinum(II)]

tris(hexafluorophosphate) acetonitrile solvate

Masako Kato,* Asami Toshikawa and Shinobu Kishi

Division of Material Science, Graduate School of Human Culture, Nara Women's University, Nara 630-8506, Japan

Correspondence e-mail: kato@cc.nara-wu.ac.jp

Key indicators

Single-crystal X-ray study

T= 296 K

Mean(C±C) = 0.020 AÊ

Rfactor = 0.058

wRfactor = 0.174

Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title cationic complex -guanidinido-bis[(2,20:60,200

-ter-pyridine)platinum(II)], [Pt2(C15H11N3)2(CH4N3)]3+, has a

twofold axis and shows a stacked dinuclear structure with a short Pt Pt distance of 3.0749 (6) AÊ. The complexes are further stacked to form a columnar structure in the crystal of the title compound.

Comment

The complex cation, [Pt2(gua)(tpy)2]3+ (tpy is 2,20:60,00

-ter-pyridine and gua is guanidinide), has a stacked dinuclear structure of the Pt-tpy moiety bridged by a guanidine anion (Fig. 1), (I).

There exists a crystallographic twofold axis through the C16ÐN5 bond of the guanidinide ligand. The Pt-tpy moiety is almost planar and the deviations of the atoms are within 0.13 AÊ of the least-squares plane. The two Pt-tpy planes in the dinuclear complex are not parallel, but slightly tilted, with a dihedral angle of 16.4 (1), clearly because of the repulsion

between the systems of tpy. The Pt Pt distance is 3.0749 (6) AÊ, which is short for divalent platinum, enabling the metal atoms to interact with each other electronically. In fact, the complex exhibits a very intense luminescence at around 630 nm, originating from the3MMLCT (metal-metal-to-ligand

charge transfer) state, both in solution and in the solid state, even at room temperature. The structure is essentially the same as that of the corresponding perchlorate salt (Yipet al., 1992), although the latter has a lower symmetry than that of the PF6ÿsalt. As shown in Fig. 2, the dinuclear complexes are

stacked to form a columnar structure along the c axis. The adjacent dinuclear complexes in the column are related by an inversion center, and thus the adjacent Pt-tpy planes are completely parallel to each other, with an interplanar spacing of 3.48 (1) AÊ. The Pt atoms in adjacent complexes in the column are separated by a distance of 4.725 (1) AÊ. The acetonitrile solvate molecule is linked to the guanidinide ligand by a hydrogen bond.

(2)

Experimental

[PtCl(tpy)]Cl was prepared according to the literature method (Howe-Grant & Lippard, 1980). The complex cation [Pt2(gua)(tpy)2]3+was synthesized in a similar way to that reported by

Yipet al.(1992). A mixture of [PtCl(tpy)]Cl2H2O (54 mg, 0.1 mmol)

and guanidine carbonate (9 mg, 0.05 mmol) in water was re¯uxed for 24 h. An excess of NH4PF6 was added to the red solution. The

resulting red precipitate was recrystallized from acetonitrile/ethanol to give red crystals of (I).

Crystal data

[Pt2(C15H11N3)2(CH4N3)](PF6)3

-2C2H3N

Mr= 1431.78 Monoclinic,C2=c a= 17.000 (5) AÊ b= 20.351 (4) AÊ c= 13.915 (4) AÊ

= 108.87 (2) V= 4555 (1) AÊ3

Z= 4

Dx= 2.087 Mg mÿ3 Mo Kradiation Cell parameters from 24

re¯ections

= 14.9±15.0

= 6.33 mmÿ1

T= 296.2 K Plate, red

0.600.500.08 mm

Data collection

Rigaku AFC-7Rdiffractometer

!±2scans

Absorption correction: analytical (de Meulenaer & Tompa, 1965) Tmin= 0.418,Tmax= 0.999

6172 measured re¯ections 5243 independent re¯ections 3897 re¯ections withI> 2(I)

Rint= 0.038

max= 27.5

h=ÿ2!22 k= 0!26 l=ÿ18!17 3 standard re¯ections

every 150 re¯ections intensity decay: 5.6%

Re®nement Re®nement onF2

R[F2> 2(F2)] = 0.058

wR(F2) = 0.174

S= 1.02 3897 re¯ections 299 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.136P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.002

max= 2.69 e AÊÿ3

min=ÿ3.42 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Pt1ÐN1 2.024 (7) Pt1ÐN2 1.922 (7) Pt1ÐN3 2.018 (9)

Pt1ÐN4 1.987 (7) N4ÐC16 1.34 (1) N5ÐC16 1.35 (2)

N1ÐPt1ÐN2 82.0 (3) N1ÐPt1ÐN3 162.1 (3) N1ÐPt1ÐN4 99.4 (3) N2ÐPt1ÐN3 80.3 (3)

N2ÐPt1ÐN4 177.1 (4) N3ÐPt1ÐN4 98.4 (4) N4ÐC16ÐN4i 119 (1)

N4ÐC16ÐN5 120.5 (6)

Pt1 Pt1i 3.0749 (6)

Symmetry code: (i) 1ÿx;y;1 2ÿz.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N4ÐH13 F1 0.88 2.41 3.14 (1) 140 N5ÐH14 N6ii 0.87 3.00 3.16 (2) 93

N5ÐH14 F8iii 0.87 2.65 3.21 (1) 123

Symmetry codes: (i) 1ÿx;y;1

2ÿz; (ii)32ÿx;12ÿy;1ÿz; (iii)xÿ12;12‡y;z. The data collection was successfully performed by using a crystal in a sealed capillary. Atoms for the acetonitrile solvent molecule were re®ned isotropically, because their large displacement parameters suggested disorder, but the anisotropic ellipsoids were featureless,

Acta Cryst.(2002). E58, m248±m250 Masako Katoet al. [Pt2(C15H11N3)2(CH4N3)](PF6)32C2H3N

m249

metal-organic papers

Figure 2

The stacking arrangement of the [Pt2(gua)(tpy)2]3+complex cations. Figure 1

(3)

metal-organic papers

m250

Masako Katoet al. [Pt2(C15H11N3)2(CH4N3)](PF6)32C2H3N Acta Cryst.(2002). E58, m248±m250

showing no particular characteristics that might suggest the direction of the disorder or the existence of disordered sites.

Data collection: Rigaku/AFC Diffractometer Control Software (Rigaku, 1995); cell re®nement:Rigaku/AFC Diffractometer Control Software; data reduction:TEXSAN(Molecular Structure Corpora-tion and Rigaku, 2000); program(s) used to solve structure:SIR92 (Altomare et al., 1994); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

This work was partially supported by a Grant-in-Aid for Scienti®c Research (Nos. 13640559 and 14050066) from the

Ministry of Education, Culture, Sports, Science and Tech-nology, Japan.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Howe-Grant, M. & Lippard, S. J. (1980).Inorg. Synth.20, 101±102. Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National

Laboratory, Tennessee, USA.

Meulenaer, J. de & Tompa, H. (1965).Acta Cryst.19, 1014±1018.

Molecular Structure Corporation & Rigaku (2000).TEXSAN.Version 1.11. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.

Rigaku (1995).Rigaku/AFC Diffractometer Control Software. Version 5.32B. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Yip, H.-K., Che, C.-M., Zhou, Z.-Y. & Mak, T. C. W. (1992).J. Chem. Soc.

(4)

supporting information

sup-1

Acta Cryst. (2002). E58, m248–m250

supporting information

Acta Cryst. (2002). E58, m248–m250 [https://doi.org/10.1107/S1600536802007468]

µ

-Guanidinido-bis[(terpyridine)platinum(II)] tris(hexafluorophosphate)

aceto-nitrile solvate

Masako Kato, Asami Toshikawa and Shinobu Kishi

(I)

Crystal data

[Pt2(C15H11N3)2(CH4N3)](PF6)3·2C2H3N

Mr = 1431.78 Monoclinic, C2/c a = 17.000 (5) Å b = 20.351 (4) Å c = 13.915 (4) Å β = 108.87 (2)° V = 4555 (1) Å3

Z = 4

Dx = 2.087 Mg m−3

Mo radiation, λ = 0.7107 Å Cell parameters from 24 reflections θ = 14.9–15.0°

µ = 6.33 mm−1

T = 296 K Plate, red

0.60 × 0.50 × 0.08 mm

Data collection

Rigaku AFC-7R diffractometer ω–2θ scans

Absorption correction: analytical (de Meulenaer & Tompa, 1965) Tmin = 0.418, Tmax = 0.999

6172 measured reflections 5243 independent reflections

3897 reflections with I > 2σ(I) Rint = 0.038

θmax = 27.5°

h = −2→22 k = 0→26 l = −18→17

3 standard reflections every 150 reflections intensity decay: 5.6%

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.058

wR(F2) = 0.174

S = 1.02 3897 reflections 299 parameters

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.136P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = −0.002

Δρmax = 2.69 e Å−3

Δρmin = −3.42 e Å−3

Special details

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are

based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor

(gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2

Acta Cryst. (2002). E58, m248–m250

(6)

supporting information

sup-3

Acta Cryst. (2002). E58, m248–m250

H16 0.9882 0.0948 0.4062 0.2022* H17 1.0181 0.1499 0.3492 0.2022* H18 1.0805 0.1171 0.4441 0.2022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Pt1 0.0503 (2) 0.0392 (2) 0.0321 (2) −0.0001 (1) 0.0162 (1) −0.0005 (1) P1 0.113 (3) 0.077 (2) 0.089 (2) −0.050 (2) 0.039 (2) −0.014 (2) P2 0.048 (2) 0.077 (3) 0.082 (3) 0.0000 0.011 (2) 0.0000 F1 0.123 (8) 0.104 (7) 0.26 (2) −0.052 (6) 0.084 (9) −0.007 (8) F2 0.164 (9) 0.096 (6) 0.122 (8) −0.046 (6) 0.043 (7) 0.010 (5) F3 0.31 (2) 0.136 (9) 0.120 (8) −0.03 (1) 0.13 (1) 0.000 (7) F4 0.162 (10) 0.154 (9) 0.105 (7) −0.044 (8) 0.039 (7) −0.054 (7) F5 0.167 (10) 0.092 (6) 0.147 (9) −0.039 (6) 0.043 (8) 0.002 (6) F6 0.126 (7) 0.138 (8) 0.136 (8) −0.077 (7) 0.019 (6) −0.010 (7) F7 0.077 (5) 0.114 (7) 0.18 (1) 0.014 (5) 0.033 (6) 0.036 (7) F8 0.080 (5) 0.113 (7) 0.166 (9) −0.024 (5) 0.004 (6) 0.000 (7) F9 0.20 (1) 0.19 (1) 0.124 (9) 0.01 (1) 0.088 (9) −0.009 (9) N1 0.048 (3) 0.042 (3) 0.033 (3) −0.006 (3) 0.014 (3) −0.001 (3) N2 0.053 (4) 0.050 (4) 0.029 (3) −0.002 (3) 0.013 (3) 0.000 (3) N3 0.061 (5) 0.080 (6) 0.034 (4) 0.016 (4) 0.014 (3) −0.003 (4) N4 0.069 (4) 0.033 (3) 0.051 (4) 0.002 (3) 0.029 (4) 0.009 (3) N5 0.13 (1) 0.024 (5) 0.12 (1) 0.0000 0.06 (1) 0.0000 C1 0.053 (5) 0.058 (5) 0.048 (5) −0.015 (4) 0.021 (4) −0.008 (4) C2 0.047 (5) 0.095 (9) 0.061 (6) −0.014 (5) 0.021 (4) −0.002 (6) C3 0.059 (6) 0.088 (8) 0.061 (6) 0.019 (5) 0.020 (5) 0.008 (5) C4 0.071 (6) 0.055 (5) 0.051 (5) 0.014 (5) 0.021 (5) 0.007 (4) C5 0.057 (5) 0.037 (4) 0.037 (4) 0.002 (3) 0.018 (3) 0.002 (3) C6 0.064 (5) 0.043 (4) 0.037 (4) −0.003 (4) 0.027 (4) −0.003 (3) C7 0.100 (8) 0.045 (5) 0.066 (6) −0.012 (5) 0.043 (6) −0.001 (5) C8 0.104 (9) 0.060 (6) 0.059 (6) −0.043 (6) 0.028 (6) −0.016 (5) C9 0.071 (6) 0.084 (8) 0.053 (5) −0.038 (6) 0.028 (5) −0.015 (5) C10 0.061 (5) 0.075 (6) 0.037 (4) −0.027 (5) 0.019 (4) −0.014 (4) C11 0.049 (5) 0.102 (9) 0.039 (4) −0.006 (5) 0.015 (4) −0.019 (5) C12 0.051 (6) 0.17 (2) 0.065 (7) 0.001 (8) 0.018 (5) −0.024 (9) C13 0.049 (6) 0.23 (2) 0.069 (9) 0.04 (1) −0.004 (6) −0.03 (1) C14 0.088 (9) 0.17 (2) 0.063 (8) 0.06 (1) −0.006 (7) −0.021 (9) C15 0.075 (7) 0.087 (8) 0.057 (6) 0.035 (6) 0.016 (5) −0.005 (5) C16 0.081 (8) 0.042 (6) 0.049 (6) 0.0000 0.031 (6) 0.0000

Geometric parameters (Å, º)

(7)

supporting information

sup-4

Acta Cryst. (2002). E58, m248–m250

P1—F2 1.58 (1) C4—C5 1.39 (1) P1—F3 1.57 (1) C4—H5 0.984 P1—F4 1.58 (1) C5—C6 1.47 (1) P1—F5 1.60 (1) C6—C7 1.40 (1) P1—F6 1.57 (1) C7—C8 1.38 (2) P2—F7 1.567 (10) C7—H6 0.984 P2—F7i 1.567 (10) C8—C9 1.38 (2)

P2—F8 1.593 (10) C8—H7 0.972 P2—F8i 1.593 (10) C9—C10 1.38 (2)

P2—F9 1.55 (2) C9—H8 0.977 P2—F9i 1.55 (2) C10—C11 1.47 (2)

N1—C1 1.34 (1) C11—C12 1.39 (2) N1—C5 1.37 (1) C12—C13 1.37 (3) N2—C6 1.37 (1) C12—H9 0.985 N2—C10 1.36 (1) C13—C14 1.36 (3) N3—C11 1.36 (2) C13—H10 0.963 N3—C15 1.35 (2) C14—C15 1.37 (2) N4—C16 1.34 (1) C14—H11 0.982 N4—H13 0.877 C15—H12 1.001 N5—C16 1.35 (2) C17—C18 1.43 (5) N5—H14 0.868 C18—H16 0.952 N5—H14ii 0.868 C18—H17 0.913

N6—C17 1.14 (3) C18—H18 1.015 C1—C2 1.37 (1)

Pt1···Pt1ii 3.0749 (6) F7···C13iii 3.58 (2)

Pt1···C6iii 3.548 (10) F8···C13iii 3.12 (2)

F1···C8iii 3.32 (2) F8···N5vii 3.21 (1)

F2···C9iv 3.18 (2) F9···C13iii 3.56 (2)

F2···C4v 3.19 (1) N1···C10iii 3.49 (1)

F2···C8iv 3.36 (2) N1···N2iii 3.553 (9)

F2···C3v 3.40 (2) N3···C4iii 3.55 (1)

F2···F4vi 3.57 (2) N4···N6viii 3.30 (2)

F3···C4v 3.30 (2) N5···N6ix 3.16 (2)

F4···C9iii 3.30 (2) N5···N6viii 3.16 (2)

F4···F4vi 3.41 (2) N6···C7v 3.47 (2)

F4···C8iii 3.53 (2) C1···C9iii 3.50 (2)

F4···C8iv 3.58 (2) C1···C10iii 3.53 (1)

F6···C8iv 3.22 (2) C2···C12iii 3.57 (2)

F6···C7v 3.42 (1) C3···C12iii 3.44 (2)

F6···C4v 3.51 (2) C3···C11iii 3.57 (2)

F7···C12iii 3.47 (2) C4···C11iii 3.59 (2)

(8)

supporting information

sup-5

Acta Cryst. (2002). E58, m248–m250

N3—Pt1—N4 98.4 (4) C2—C3—H4 120.7 F1—P1—F2 90.6 (6) C4—C3—H4 119.1 F1—P1—F3 91.3 (9) C3—C4—C5 118 (1) F1—P1—F4 89.7 (8) C3—C4—H5 122.2 F1—P1—F5 89.9 (6) C5—C4—H5 119.7 F1—P1—F6 177.8 (8) N1—C5—C4 121.7 (8) F2—P1—F3 88.6 (7) N1—C5—C6 114.9 (7) F2—P1—F4 92.1 (7) C4—C5—C6 123.4 (8) F2—P1—F5 179.0 (6) N2—C6—C5 113.3 (7) F2—P1—F6 88.2 (6) N2—C6—C7 117.3 (9) F3—P1—F4 178.8 (8) C5—C6—C7 129.4 (9) F3—P1—F5 90.5 (7) C6—C7—C8 119 (1) F3—P1—F6 90.4 (8) C6—C7—H6 120.0 F4—P1—F5 88.8 (7) C8—C7—H6 120.0 F4—P1—F6 88.5 (7) C7—C8—C9 120 (1) F5—P1—F6 91.3 (6) C7—C8—H7 119.6 F7—P2—F7i 91.9 (7) C9—C8—H7 120.2

F7—P2—F8 90.0 (5) C8—C9—C10 119 (1) F7—P2—F8i 177.3 (6) C8—C9—H8 119.8

F7—P2—F9 90.3 (8) C10—C9—H8 120.2 F7—P2—F9i 90.6 (8) N2—C10—C9 118.9 (10)

F7i—P2—F8 177.3 (6) N2—C10—C11 111.3 (9)

F7i—P2—F8i 90.0 (5) C9—C10—C11 129.8 (10)

F7i—P2—F9 90.6 (8) N3—C11—C10 115.2 (9)

F7i—P2—F9i 90.3 (8) N3—C11—C12 121 (1)

F8—P2—F8i 88.1 (7) C10—C11—C12 122 (1)

F8—P2—F9 91.4 (8) C11—C12—C13 117 (1) F8—P2—F9i 87.7 (8) C11—C12—H9 121.5

F8i—P2—F9 87.7 (8) C13—C12—H9 121.0

F8i—P2—F9i 91.4 (8) C12—C13—C14 120 (1)

F9—P2—F9i 178 (1) C12—C13—H10 121.7

PT1—N1—C1 128.3 (6) C14—C13—H10 117.6 PT1—N1—C5 112.7 (5) C13—C14—C15 121 (1) C1—N1—C5 118.9 (8) C13—C14—H11 119.3 PT1—N2—C6 116.9 (6) C15—C14—H11 119.5 PT1—N2—C10 119.5 (7) N3—C15—C14 119 (1) C6—N2—C10 123.6 (8) N3—C15—H12 120.1 PT1—N3—C11 113.6 (7) C14—C15—H12 120.6 PT1—N3—C15 126.7 (8) N4—C16—N4ii 119 (1)

C11—N3—C15 119.6 (9) N4—C16—N5 120.5 (6) PT1—N4—C16 125.8 (7) N4ii—C16—N5 120.5 (6)

PT1—N4—H13 117.1 N6—C17—C18 168 (1) C16—N4—H13 117.1 C17—C18—H16 110.6 C16—N5—H14 119.8 C17—C18—H17 114.2 C16—N5—H14ii 119.8 C17—C18—H18 107.7

H14—N5—H14ii 120.4 H16—C18—H17 112.5

(9)

supporting information

sup-6

Acta Cryst. (2002). E58, m248–m250

PT1—N1—C1—C2 178.5 (8) N3—PT1—N2—C10 −1.9 (7) PT1—N1—C5—C4 −176.4 (8) N3—PT1—N4—C16 63.6 (6) PT1—N1—C5—C6 1.3 (9) N3—C11—C10—C9 177 (1) PT1—N2—C6—C5 −4 (1) N3—C11—C12—C13 0 (1) PT1—N2—C6—C7 177.5 (8) N3—C15—C14—C13 −1 (2) PT1—N2—C10—C9 −176.7 (8) N4—PT1—N1—C1 −5.0 (8) PT1—N2—C10—C11 2 (1) N4—PT1—N1—C5 174.7 (6) PT1—N3—C11—C10 0 (1) N4—PT1—N2—C6 −115 (5) PT1—N3—C11—C12 180.0 (9) N4—PT1—N2—C10 61 (5) PT1—N3—C15—C14 −179.6 (10) N4—PT1—N3—C11 −176.2 (7) PT1—N4—C16—N4ii 23.0 (3) N4—PT1—N3—C15 4.8 (10)

PT1—N4—C16—N5 −157.0 (3) C1—N1—C5—C4 3 (1) N1—PT1—N2—C6 3.8 (6) C1—N1—C5—C6 −179.0 (8) N1—PT1—N2—C10 −179.3 (7) C1—C2—C3—C4 0 (1) N1—PT1—N3—C11 9 (1) C2—C1—N1—C5 −1 (1) N1—PT1—N3—C15 −169.5 (9) C2—C3—C4—C5 1 (1) N1—PT1—N4—C16 −118.1 (6) C3—C4—C5—C6 179 (1) N1—C1—C2—C3 0 (1) C4—C5—C6—C7 −2 (1) N1—C5—C4—C3 −3 (1) C5—C6—N2—C10 179.2 (8) N1—C5—C6—N2 1 (1) C5—C6—C7—C8 −179 (1) N1—C5—C6—C7 179 (1) C6—N2—C10—C9 0 (1) N2—PT1—N1—C1 177.6 (8) C6—N2—C10—C11 178.8 (8) N2—PT1—N1—C5 −2.7 (6) C6—C7—C8—C9 0 (1) N2—PT1—N3—C11 1.2 (7) C7—C6—N2—C10 0 (1) N2—PT1—N3—C15 −177.8 (10) C7—C8—C9—C10 0 (1) N2—PT1—N4—C16 0 (5) C8—C9—C10—C11 −179 (1) N2—C6—C5—C4 179.3 (9) C9—C10—C11—C12 −2 (1) N2—C6—C7—C8 0 (1) C10—C11—N3—C15 178.7 (10) N2—C10—C9—C8 0 (1) C10—C11—C12—C13 −179 (1) N2—C10—C11—N3 −1 (1) C11—N3—C15—C14 1 (1) N2—C10—C11—C12 178 (1) C11—C12—C13—C14 0 (2) N3—PT1—N1—C1 169 (1) C12—C11—N3—C15 0 (1) N3—PT1—N1—C5 −11 (1) C12—C13—C14—C15 1 (2) N3—PT1—N2—C6 −178.8 (7) C12—C13—C14—C15 1 (2)

Symmetry codes: (i) −x+2, y, −z+1/2; (ii) −x+1, y, −z+1/2; (iii) −x+1, −y, −z; (iv) x+1/2, y+1/2, z; (v) −x+3/2, y+1/2, −z+1/2; (vi) −x+3/2, −y+1/2, −z; (vii)

x+1/2, y−1/2, z; (viii) x−1/2, −y+1/2, z−1/2; (ix) −x+3/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N4—H13···F1 0.88 2.41 3.14 (1) 140 N5—H14···N6ix 0.87 3.00 3.16 (2) 93

N5—H14···F8x 0.87 2.65 3.21 (1) 123

References

Related documents

The study concluded by emphasizing the relevance of queuing theory to the effective service delivery of the banking sector in Nigeria and strongly recommends

PWYW for several products (cinema tickets, DVD, digital album, flight tickets, hotel, rental car, opera, wine), online survey which varied social distance, product value, external

Analyzed interrelated problems are: (i) stability of interfirm R&D cooperation, (ii) organization of interfirm R&D cooperation, (iii) asymmetries between

The standard mean deviation of the studied variables for Gonion- Gnathion/Sella Nasion(Go-Gn/SN), Infradental-Menton (vertical), Lower Facial Height (ANS-Menton) showed higher

Also, unlike in Tsionas and Kumbhakar (2014) we find that a posteriori persistent inefficiency distribution

number of available beds among all Polish Euro 2012 host cities / regions (figure 6).

Although both domains contain a large number of English in- clusions, their type-token ratio amounts to 0.29 in the internet data and 0.15 in the space travel data (Table 1),

The table reports the daily average gross return (i.e. before transaction costs) obtained by the each portfolio policy alongside each covariance model over the out-of-sample