• No results found

Crystal structure of 2 (4 chloro­benzamido)­benzoic acid

N/A
N/A
Protected

Academic year: 2020

Share "Crystal structure of 2 (4 chloro­benzamido)­benzoic acid"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Crystal structure of

2-(4-chloro-benzamido)benzoic acid

Rodolfo Moreno-Fuquen,a* Vanessa Meloaand Javier Ellenab

aDepartamento de Quı´mica - Facultad de Ciencias Naturales y Exactas, Universidad

del Valle, Apartado 25360, Santiago de Cali, Colombia, andbInstituto de Fı´sica de

Sa˜o Carlos, IFSC, Universidade de Sa˜o Paulo, USP, Sa˜o Carlos, SP, Brazil. *Correspondence e-mail: rodimo26@yahoo.es

Received 22 September 2015; accepted 23 September 2015

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

In the title molecule, C14H10ClNO3, the amide C O bond is antito theo-carboxy substituent in the adjacent benzene ring, a conformation that facilitates the formation of an intra-molecular amide-N—H O(carbonyl) hydrogen bond that closes anS(6) loop. The central amide segment is twisted away from the carboxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15), respectively. The most prominent supramolecular interactions in the crystal packing are carb-oxylic acid-H O(carboxyl) hydrogen bonds that lead to centrosymmetric dimeric aggregates connected by eight-membered { HOC O}2synthons.

Keywords:crystal structure; carboxylic acid; amide; hydrogen bonding.

CCDC reference:1427117

1. Related literature

For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Moreno-Fuquenet al. (2014, 2015). For benzanilide properties, see: Nuta et al. (2013); Leander (1992); Ahleset al.(2004). For related structures, see: Saeedet al. (2008, 2010); Rodrigues et al. (2011). For hydrogen bonding, see: Desiraju & Steiner (1999), Nardelli (1995).

2. Experimental

2.1. Crystal data

C14H10ClNO3

Mr= 275.69 MonoclinicC2=c a= 26.8843 (10) A˚

b= 5.0367 (2) A˚

c= 20.9264 (12) A˚

= 117.489 (2)

V= 2513.7 (2) A˚3

Z= 8

MoKradiation

= 0.31 mm1

T= 295 K

0.400.080.06 mm

2.2. Data collection

Nonius KappaCCD diffractometer 4248 measured reflections 2295 independent reflections

1049 reflections withI> 2(I)

Rint= 0.057

2.3. Refinement

R[F2> 2(F2)] = 0.043

wR(F2) = 0.132

S= 0.92 2295 reflections 176 parameters

H atoms treated by a mixture of independent and constrained refinement

max= 0.20 e A˚

3 min=0.19 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—NH1 O2 0.93 (3) 1.96 (3) 2.678 (3) 133 (3) O3—OH3 O2i

0.82 1.83 2.645 (3) 175

Symmetry code: (i)xþ3 2;yþ

3 2;zþ1.

Data collection:COLLECT (Nonius, 2000); cell refinement:HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction:HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics:ORTEP-3 for Windows(Farrugia, 2012) andMercury(Macraeet al., 2006); software used to prepare material for publication:SHELXL2014/7.

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5391).

data reports

(2)

References

Ahles, T. A., Herndon, J. E., Small, E. J., Vogelzang, N. J., Kornblith, A. B., Ratain, M. J., Stadler, W. S., Palchak, D., Marshall, E., Wilding, G., Petrylak, D. & Holland, C. (2004).Cancer,101, 2202–2208.

Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press, pp. 86-89.

Farrugia, L. J. (2012).J. Appl. Cryst.45, 849–854. Leander, J. D. (1992).Epilepsia,33, 705-711.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006).J. Appl. Cryst.39, 453–457. Moreno-Fuquen, R., Azca´rate, A. & Kennedy, A. R. (2014).Acta Cryst.E70,

o344.

Moreno-Fuquen, R., Azca´rate, A. & Kennedy, A. R. (2015).Acta Cryst.E71, o389–o390.

Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Nonius (2000).COLLECT. Nonius BV, Delft, The Netherlands.

Nuta, D. C., Chifiriuc, A. C., Draghici, C., Limban, C., Missir, A. V. & Morusciag, L. (2013).Farmacia (Bucarest),61, 966–974.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Rodrigues, V. Z., Kuckova´, L., Gowda, B. T. & Kozˇı´sˇek, J. (2011).Acta Cryst.

E67, o3171.

Saeed, A., Khera, R. A., Abbas, N., Gotoh, K. & Ishida, H. (2008).Acta Cryst.

E64, o2043.

Saeed, A., Khera, R. A. & Simpson, J. (2010).Acta Cryst.E66, o214. Sheldrick, G. M. (2008).Acta Cryst.A64, 112–122.

(3)

supporting information

sup-1 Acta Cryst. (2015). E71, o856–o857

supporting information

Acta Cryst. (2015). E71, o856–o857 [https://doi.org/10.1107/S2056989015017879]

Crystal structure of 2-(4-chlorobenzamido)benzoic acid

Rodolfo Moreno-Fuquen, Vanessa Melo and Javier Ellena

S1. Comment

The crystal structure determination of 2-(4-chlorobenzamido)benzoic acid, (I), was investigated in a continuation of our

studies on substituted N-phenyl benzamides which have been synthesized from picryl esters. This study was also

performed to study the effect of substituents on the structures of benzanilides (Moreno-Fuquen et al., 2014, 2015).

Benzanilide systems are used as antimicrobial drugs (Nuta et al., 2013), as anticonvulsants (Leander, 1992) or as

treatment for patients with prostate carcinoma (Ahles et al., 2004). Structures of similar molecules were compared with

(I), i.e. 4-chloro-N-(2-methoxyphenyl)benzamide (Saeed et al., 2010), 4-chloro-N-phenylbenzamide (Rodrigues et al.,

2011) and 4-chloro-N-(o-tolyl)benzamide (Saeed et al., 2008). The molecular structure of (I) is shown in Fig. 1. The C═O

bond is anti to the o-carboxy substituent in the benzoyl ring. The N—H and C=O bonds in the central amide group are

also anti to each other. Comparing (I) with the three aforementioned structures reveals that significant differences in bond

lengths and bond angles are not observed. The central amide segment (C1-C7(O1)-N1-C8) is twisted away from the

carb-oxy- and chloro-substituted benzene rings by 13.93 (17) and 15.26 (15)°, respectively. Molecules of (I) are held together

by intermolecular O—H···O hydrogen bonds of moderate strength (Desiraju & Steiner, 1999). The O3 atom is linked to

O2i atom (i = -x+3/2, -y+3/2, -z+1) with O···O distances of 2.645 (2), (see Table 1, Nardelli, 1995). Except for the

presence of hydrogen bonding in the formation of dimer, no other significant intermolecular interactions are observed in

the structure.

S2. Experimental

2,4,6-Trinitrophenyl 4-chlorobenzoate (0.060 g, 0.163 mmol) and 2-carboxyaniline (0.045 g, 0.328 mmol) were dissolved

in toluene (15 ml) and stirred for 6 h under reflux. On completion of the reaction part of the solvent was evaporated and a

crystalline yellow solid was obtained; m.p. 470 (1) K.

S3. Refinement

All H-atoms were located in difference Fourier maps and were positioned geometrically [C—H = 0.93 Å] and were

refined using a riding-model approximation with Uiso(H) constrained to 1.2Ueq(C). The O-bound H atoms was similarly

fixed with O—H = 0.82 Å, and with Uiso(H) constrained to 1.5Ueq(O). The N-bound H atom was found from the Fourier

(4)
[image:4.610.129.476.77.274.2]

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as

spheres of arbitrary radius.

2-(4-Chlorobenzamido)benzoic acid

Crystal data

C14H10ClNO3 Mr = 275.69

Monoclinic, C2/c a = 26.8843 (10) Å

b = 5.0367 (2) Å

c = 20.9264 (12) Å

β = 117.489 (2)°

V = 2513.7 (2) Å3

Z = 8

F(000) = 1136

Dx = 1.457 Mg m−3 Melting point: 470(1) K Mo radiation, λ = 0.71073 Å Cell parameters from 2553 reflections

θ = 3.1–25.4°

µ = 0.31 mm−1 T = 295 K Needle, yellow 0.40 × 0.08 × 0.06 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

CCD rotation images, thick slices scans 4248 measured reflections

2295 independent reflections

1049 reflections with I > 2σ(I)

Rint = 0.057

θmax = 25.4°, θmin = 3.1°

h = −31→32

k = −6→6

l = −25→24

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.043 wR(F2) = 0.132 S = 0.92

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

(5)

supporting information

sup-3 Acta Cryst. (2015). E71, o856–o857

w = 1/[σ2(F

o2) + (0.0632P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.20 e Å−3 Δρmin = −0.19 e Å−3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.74640 (9) −0.2731 (4) 0.30942 (12) 0.0824 (7)

C5 0.90834 (14) −0.0840 (7) 0.34839 (18) 0.0786 (9)

H5 0.9265 −0.1847 0.3282 0.094*

C10 0.58970 (13) −0.0955 (6) 0.29315 (17) 0.0739 (9)

H10 0.5647 −0.2205 0.2623 0.089*

C9 0.64347 (12) −0.0846 (5) 0.30083 (15) 0.0623 (8)

H9 0.6543 −0.2008 0.2750 0.075*

C2 0.85453 (13) 0.2133 (6) 0.40771 (18) 0.0766 (9)

H2 0.8366 0.3155 0.4280 0.092*

C11 0.57224 (13) 0.0750 (6) 0.33029 (18) 0.0754 (9)

H11 0.5357 0.0667 0.3242 0.090*

C6 0.85319 (14) −0.1349 (6) 0.33124 (17) 0.0730 (9)

H6 0.8344 −0.2716 0.2993 0.088*

C3 0.90974 (14) 0.2649 (6) 0.42543 (18) 0.0801 (10)

H3 0.9289 0.4004 0.4577 0.096*

C4 0.93606 (13) 0.1173 (7) 0.39566 (17) 0.0701 (9)

NH1 0.7536 (13) 0.280 (6) 0.3758 (17) 0.102 (11)*

Cl1 1.00534 (4) 0.1835 (2) 0.41722 (6) 0.1062 (4)

N1 0.73632 (10) 0.1205 (5) 0.35559 (12) 0.0592 (7)

O3 0.67865 (8) 0.6206 (3) 0.46790 (10) 0.0688 (6)

OH3 0.7015 0.7286 0.4949 0.103*

O2 0.75129 (8) 0.5079 (3) 0.45041 (10) 0.0641 (6)

C14 0.70192 (12) 0.4755 (5) 0.43671 (14) 0.0548 (7)

C8 0.68169 (11) 0.1015 (5) 0.34751 (14) 0.0529 (7)

C7 0.76554 (12) −0.0609 (6) 0.33845 (15) 0.0599 (7)

C13 0.66432 (11) 0.2748 (5) 0.38605 (14) 0.0535 (7)

C1 0.82537 (12) 0.0120 (5) 0.36030 (15) 0.0568 (7)

C12 0.60946 (12) 0.2573 (6) 0.37640 (15) 0.0664 (8)

(6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0839 (16) 0.0631 (13) 0.1073 (17) −0.0111 (11) 0.0502 (14) −0.0225 (12)

C5 0.075 (2) 0.090 (2) 0.083 (2) 0.0100 (19) 0.047 (2) −0.004 (2)

C10 0.063 (2) 0.071 (2) 0.072 (2) −0.0093 (16) 0.0174 (18) 0.0023 (17)

C9 0.063 (2) 0.0595 (17) 0.0591 (19) −0.0054 (15) 0.0242 (16) −0.0031 (15)

C2 0.066 (2) 0.081 (2) 0.090 (2) −0.0010 (17) 0.0417 (18) −0.0156 (19)

C11 0.056 (2) 0.083 (2) 0.083 (2) −0.0118 (18) 0.0279 (18) −0.0009 (19)

C6 0.080 (2) 0.072 (2) 0.074 (2) 0.0010 (17) 0.0420 (19) −0.0089 (16)

C3 0.066 (2) 0.085 (2) 0.089 (2) −0.0102 (17) 0.035 (2) −0.0121 (19)

C4 0.0581 (19) 0.083 (2) 0.073 (2) 0.0059 (17) 0.0343 (17) 0.0122 (18)

Cl1 0.0657 (6) 0.1390 (9) 0.1189 (8) 0.0021 (5) 0.0469 (6) 0.0093 (6)

N1 0.0576 (16) 0.0555 (15) 0.0681 (16) −0.0068 (13) 0.0322 (13) −0.0118 (13)

O3 0.0622 (13) 0.0726 (12) 0.0763 (13) −0.0053 (10) 0.0360 (11) −0.0183 (11)

O2 0.0560 (13) 0.0685 (12) 0.0694 (13) −0.0070 (10) 0.0304 (11) −0.0138 (10)

C14 0.0581 (19) 0.0553 (17) 0.0522 (18) 0.0026 (15) 0.0264 (16) 0.0028 (14)

C8 0.0513 (17) 0.0527 (15) 0.0506 (16) −0.0041 (13) 0.0202 (14) 0.0055 (14)

C7 0.068 (2) 0.0570 (18) 0.0555 (18) 0.0000 (16) 0.0298 (16) 0.0024 (15)

C13 0.0515 (17) 0.0564 (16) 0.0514 (17) −0.0007 (14) 0.0228 (14) 0.0040 (14)

C1 0.0608 (19) 0.0581 (17) 0.0554 (18) 0.0033 (15) 0.0302 (16) 0.0025 (14)

C12 0.0564 (19) 0.074 (2) 0.071 (2) −0.0005 (16) 0.0314 (16) 0.0024 (16)

Geometric parameters (Å, º)

O1—C7 1.219 (3) C6—H6 0.9300

C5—C4 1.371 (4) C3—C4 1.360 (4)

C5—C6 1.379 (4) C3—H3 0.9300

C5—H5 0.9300 C4—Cl1 1.734 (3)

C10—C11 1.378 (4) N1—C7 1.357 (3)

C10—C9 1.380 (4) N1—C8 1.402 (3)

C10—H10 0.9300 N1—NH1 0.93 (3)

C9—C8 1.401 (4) O3—C14 1.315 (3)

C9—H9 0.9300 O3—OH3 0.8200

C2—C3 1.378 (4) O2—C14 1.233 (3)

C2—C1 1.382 (4) C14—C13 1.476 (4)

C2—H2 0.9300 C8—C13 1.406 (4)

C11—C12 1.373 (4) C7—C1 1.501 (4)

C11—H11 0.9300 C13—C12 1.396 (4)

C6—C1 1.377 (4) C12—H12 0.9300

C4—C5—C6 119.1 (3) C5—C4—Cl1 119.4 (3)

C4—C5—H5 120.5 C7—N1—C8 128.6 (3)

C6—C5—H5 120.5 C7—N1—NH1 118 (2)

C11—C10—C9 121.4 (3) C8—N1—NH1 113 (2)

(7)

supporting information

sup-5 Acta Cryst. (2015). E71, o856–o857

C10—C9—H9 120.0 O3—C14—C13 114.3 (3)

C8—C9—H9 120.0 C9—C8—N1 121.3 (3)

C3—C2—C1 121.0 (3) C9—C8—C13 119.0 (3)

C3—C2—H2 119.5 N1—C8—C13 119.7 (2)

C1—C2—H2 119.5 O1—C7—N1 124.0 (3)

C12—C11—C10 119.1 (3) O1—C7—C1 120.8 (3)

C12—C11—H11 120.5 N1—C7—C1 115.1 (3)

C10—C11—H11 120.5 C12—C13—C8 119.1 (3)

C1—C6—C5 121.5 (3) C12—C13—C14 118.3 (3)

C1—C6—H6 119.2 C8—C13—C14 122.6 (3)

C5—C6—H6 119.2 C6—C1—C2 117.9 (3)

C4—C3—C2 119.8 (3) C6—C1—C7 117.3 (3)

C4—C3—H3 120.1 C2—C1—C7 124.9 (3)

C2—C3—H3 120.1 C11—C12—C13 121.5 (3)

C3—C4—C5 120.7 (3) C11—C12—H12 119.2

C3—C4—Cl1 119.9 (3) C13—C12—H12 119.2

C11—C10—C9—C8 0.4 (4) N1—C8—C13—C14 −1.4 (4)

C9—C10—C11—C12 −0.7 (5) O2—C14—C13—C12 179.1 (3)

C4—C5—C6—C1 0.2 (5) O3—C14—C13—C12 −0.2 (3)

C1—C2—C3—C4 0.4 (5) O2—C14—C13—C8 −0.8 (4)

C2—C3—C4—C5 −0.4 (5) O3—C14—C13—C8 179.9 (2)

C2—C3—C4—Cl1 179.4 (2) C5—C6—C1—C2 −0.2 (4)

C6—C5—C4—C3 0.1 (5) C5—C6—C1—C7 −179.6 (3)

C6—C5—C4—Cl1 −179.7 (2) C3—C2—C1—C6 −0.1 (4)

C10—C9—C8—N1 −178.9 (2) C3—C2—C1—C7 179.3 (3)

C10—C9—C8—C13 0.1 (4) O1—C7—C1—C6 15.5 (4)

C7—N1—C8—C9 −18.7 (4) N1—C7—C1—C6 −166.6 (2)

C7—N1—C8—C13 162.3 (3) O1—C7—C1—C2 −163.9 (3)

C8—N1—C7—O1 3.2 (5) N1—C7—C1—C2 14.0 (4)

C8—N1—C7—C1 −174.6 (2) C10—C11—C12—C13 0.4 (4)

C9—C8—C13—C12 −0.3 (4) C8—C13—C12—C11 0.1 (4)

N1—C8—C13—C12 178.7 (2) C14—C13—C12—C11 −179.8 (2)

C9—C8—C13—C14 179.6 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—NH1···O2 0.93 (3) 1.96 (3) 2.678 (3) 133 (3)

O3—OH3···O2i 0.82 1.83 2.645 (3) 175

Figure

Figure 1The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level

References

Related documents

Lastly, the study provides strong evidence that fathers’ financial burden associated with child support arrears are likely to affect fathers’ residential union formation with a

The main objective of this paper is to determine the natural frequency and mode shape of a single rectangular cantilever beam condition and to compare the results obtained

Step 4: Adjust the calculated infiltration rate from Step 3 so that it can be correctly used as EnergyPlus input by multiplying it by the ratio of the wind speed at the roof line

Since the choice between systems is vague, it is up to the energy modeling and life cycle cost analysis to determine the system to be used.. The life cycle cost analysis is a study

The model also shows that if a government can credibly commit itself to an announced two-step reform in which it first uses a transaction tax temporarily and then replaces it with

In order to critically evaluate the relationship existing between fiscal policy instruments and economic growth in Nigeria for the period 1970-2015, the following selected

227: Published in: Journal of Comparative Economics, “Ownership Concentration and Corporate Performance in the Czech Republic” 27(3), September 1999, pp. 226: Unemployment