• No results found

Bis­[2 (quinolin 3 yl­imino­methyl)­phenolato κ2N,O]copper(II)

N/A
N/A
Protected

Academic year: 2020

Share "Bis­[2 (quinolin 3 yl­imino­methyl)­phenolato κ2N,O]copper(II)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1552

Akitsu and Einaga [Cu(C16H11N2O)2] doi: 10.1107/S1600536804023591 Acta Cryst.(2004). E60, m1552±m1554 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis[2-(quinolin-3-yliminomethyl)phenolato-

j

2

N,O

]-copper(II)

Takashiro Akitsu* and Yasuaki Einaga

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail: akitsu@chem.keio.ac.jp

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.039

wRfactor = 0.112

Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title complex, [Cu(C16H11N2O)2], the CuIIatom lies on a

center of symmetry within a square-planar trans-N2O2

coordination geometry and adopts a stepped conformation with regard to the bulky Schiff base ligands.

Comment

Schiff base complexes have been studied extensively in the ®eld of coordination chemistry. For instance, it is well known that introduction of bulky groups or electronically appropriate substituents to NiIIor CuIIcomplexes leads to square-planar±

tetrahedral isomerism (Yamada, 1999); this property may be applied in supramolecular switching materials. However, the correlation between the steric or electronic factors of ligands and overall molecular structure remains unclear, thus demanding further investigation. In this context, it is impor-tant to investigate bulky ligands and, if possible, those that can form intermolecular interactions. Our studies in this ®eld have focused on catalytic applications (Akitsu et al., 2004) and a structural phase transition (Akitsu & Einaga, 2004). We describe here the crystal structure of bis[2-(quinolin-3-yl-iminomethyl)phenolato-2N,O]copper(II), (I).

Complex (I) is centrosymmetric with the central Cu atom located on a center of inversion (Fig. 1 and Table 1). The structure features a square-planar trans±N2O2 coordination

geometry. The distortions from the ideal square-planar geometry are minor, as seen in the CuÐN and CuÐO bond distances of 2.040 (2) and 1.898 (2) AÊ, respectively. Similarly, the O1ÐCu1ÐN1 and O1ÐCu1ÐN1i bond angles are

90.46 (9) and 89.54 (9), respectively [symmetry code: (i)

2ÿx,ÿy, 2ÿz]. The dihedral angle between the O1/Cu1/N1 and O1/C6/C1/C7/N1 planes is 26.79 (9), showing that there is

a signi®cant non-coplanarity of the CuN2O2plane and the

six-membered chelate ring. Thus, the molecule adopts a stepped conformation with respect to the arrangement of the ligands. In addition, there is a signi®cant twist between the chelate ring and the pendant quinolin-3-ylimino group, as seen in the dihedral angle between the O1/C6/C1/C7/N1 and C9/C8/N2/ C16/C11/C10 planes of 29.4 (1); the corresponding torsion

(2)

angles are C7ÐN1ÐC9ÐC8 =ÿ38.2 (4)and C7ÐN1ÐC9Ð

C10 = 143.6 (3).

Recently, we reported the crystal structure of the related square-planar and stepped CuII complex bis(5-chloro-N

-iso-propylsalicyldenaminato-2N,O)copper(II) (Akitsu & Einaga,

2004). In general, the introduction of electron-withdrawing substituents into the salicylaldehyde ring moiety plays a role in reducing the electronic distribution of d±p type coordin-ation bonds through the -conjugated system, which may cause a tetrahedral distortion and relatively long coordination bond distances.

The geometric parameters of the quinolin-3-ylimino moiety are comparable to those found in uncoordinated molecules (e.g.Leung & Nyburg, 1971; Lakset al., 1986) and in ligands in metal complexes (e.g. Garralda et al., 1999; Guo & Mayr, 1997).

Neither intermolecular hydrogen bonds nor± or weak CÐH interactions within the sum of ionic radii (Bondi, 1964) were observed in the crystal structure of (I). In parti-cular, atom N2 of the quinolin-3-ylimino rings is not involved in either coordination or intermolecular hydrogen bonds. In this way, the crystal packing of (I) is dominated by weak van der Waals forces (Fig. 2).

Experimental

Treatment of equimolar quantities of 3-aminoquinoline (1.44 g, 10.0 mmol), salicylaldehyde (1.22 g, 10.0 mmol) and copper(II) acetate (0.91 g, 5.00 mmol) in ethanol (100 ml) at 318 K for 2 h gave rise to the brown title compound, (I). Block-like crystals were grown from the resulting solution over a period of several days.

Crystal data

[Cu(C16H11N2O)2]

Mr= 558.09

Monoclinic,P21=a

a= 12.767 (3) AÊ

b= 7.346 (2) AÊ

c= 13.133 (5) AÊ

= 90.66 (3) V= 1231.6 (6) AÊ3

Z= 2

Dx= 1.505 Mg mÿ3

MoKradiation Cell parameters from 25

re¯ections

= 10.0±13.3

= 0.93 mmÿ1

T= 298 (1) K Block, brown 0.400.300.20 mm

Data collection

Rigaku AFC-7Rdiffractometer

!±2scans

Absorption correction: scan (Northet al., 1968)

Tmin= 0.724,Tmax= 0.831

3539 measured re¯ections 2832 independent re¯ections 1784 re¯ections withI> 2(I)

Rint= 0.028

max= 27.5

h=ÿ6!16

k=ÿ9!3

l=ÿ17!17 3 standard re¯ections

every 150 re¯ections intensity decay: 0.2%

Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.039

wR(F2) = 0.112

S= 1.00 1784 re¯ections 179 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0388P)2

+ 0.6777P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.30 e AÊÿ3

min=ÿ0.32 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Cu1ÐO1 1.898 (2)

Cu1ÐN1 2.040 (2)

O1ÐC6 1.306 (4)

N1ÐC7 1.296 (4)

N1ÐC9 1.429 (4)

C1ÐC7 1.427 (4)

O1ÐCu1ÐN1 90.46 (9)

O1ÐCu1ÐN1i 89.54 (9)

Cu1ÐO1ÐC6 125.6 (2)

Cu1ÐN1ÐC7 120.6 (2)

Cu1ÐN1ÐC9 122.9 (2)

C7ÐN1ÐC9 115.9 (3)

O1ÐC6ÐC1 123.1 (3)

O1ÐC6ÐC5 119.7 (3)

N1ÐC9ÐC8 120.2 (3)

N1ÐC9ÐC10 122.0 (3)

Symmetry code: (i) 2ÿx;ÿy;2ÿz.

H atoms were placed in calculated positions, with CÐH = 0.95 AÊ, and re®ned using a riding model, withUiso(H) = 1.2Ueq(parent atom). Data collection: WinAFC Diffractometer Control Software

(Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software; data reduction:TEXSAN(Molecular Structure Corpora-tion, 2001); program(s) used to solve structure:SIR92 (Altomareet al., 1994); program(s) used to re®ne structure:SHELXL97

(Shel-metal-organic papers

Acta Cryst.(2004). E60, m1552±m1554 Akitsu and Einaga [Cu(C16H11N2O)2]

m1553

Figure 2

The packing of (I), viewed down the crystallographicaaxis. H atoms have been omitted for clarity.

Figure 1

(3)

drick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:TEXSAN.

This work was supported by Grant-in-Aid for the 21st Century COE Programme `KEIO Life Conjugate Chemistry' from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

Akitsu, T. & Einaga, Y. (2004).Acta Cryst.E60, m436±m438.

Akitsu, T., Iwakura, I., Tanaka, H., Ikeno, T., Einaga, Y. & Yamada, T. (2004).

Acta Cryst.E60, m149±m150.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Bondi, A. (1964).J. Phys. Chem.68, 441±445.

Garralda, M. A., Hernandez, R., Pinilla, E. & Torres, M. R. (1999). J. Organomet. Chem.586, 150±158.

Guo, J. & Mayr, A. (1997).Inorg. Chim. Acta,261, 141±146.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Laks, P. E., Rettig, S. J. & Trotter, J. (1986). Acta Cryst. C42, 1799± 1800.

Leung, F. & Nyburg, S. C. (1971).Can. J. Chem.49, 167±172.

Molecular Structure Corporation (2001).TEXSAN.Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381±5209, USA.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Rigaku (1999).WinAFC Diffractometer Control Software. Rigaku Corpora-tion, 3-9-12, Akishima, Tokyo Japan.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Yamada, S. (1999).Coord. Chem. Rev.190±192, 537±555.

metal-organic papers

(4)

supporting information

sup-1 Acta Cryst. (2004). E60, m1552–m1554

supporting information

Acta Cryst. (2004). E60, m1552–m1554 [https://doi.org/10.1107/S1600536804023591]

Bis[2-(quinolin-3-yliminomethyl)phenolato-

κ

2

N,O

]copper(II)

Takashiro Akitsu and Yasuaki Einaga

(I)

Crystal data

[Cu(C16H11N2O)2] Mr = 558.09

Monoclinic, P21/a

Hall symbol: -P 2yab

a = 12.767 (3) Å

b = 7.346 (2) Å

c = 13.133 (5) Å

β = 90.66 (3)°

V = 1231.6 (6) Å3 Z = 2

F(000) = 574.0

Dx = 1.505 Mg m−3

Mo radiation, λ = 0.7107 Å Cell parameters from 25 reflections

θ = 10.0–13.3°

µ = 0.93 mm−1 T = 298 K Plate, brown

0.40 × 0.30 × 0.20 mm

Data collection

Rigaku AFC-7R diffractometer

ω–2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.724, Tmax = 0.831 3539 measured reflections 2832 independent reflections

1784 reflections with I > 2σ(I)

Rint = 0.028

θmax = 27.5°

h = −6→16

k = −9→3

l = −17→17

3 standard reflections every 150 reflections intensity decay: 0.2%

Refinement

Refinement on F2 R[F2 > 2σ(F2)] = 0.039 wR(F2) = 0.112 S = 1.00 1784 reflections 179 parameters

H-atom parameters not refined

w = 1/[σ2(F

o2) + (0.0388P)2 + 0.6777P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.30 e Å−3

Δρmin = −0.32 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 1.0000 0.0000 1.0000 0.0320 (2)

O1 1.0809 (2) −0.1032 (3) 0.8944 (2) 0.0345 (5)

N1 0.9096 (2) −0.2287 (3) 1.0051 (2) 0.0319 (6)

N2 0.6716 (2) −0.3774 (4) 1.1406 (2) 0.0393 (6)

C1 0.9551 (2) −0.3191 (4) 0.8324 (2) 0.0337 (7)

C2 0.9194 (3) −0.4253 (5) 0.7492 (3) 0.0452 (8)

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, m1552–m1554

C4 1.0601 (3) −0.3201 (5) 0.6485 (3) 0.0483 (9)

C5 1.0983 (3) −0.2181 (5) 0.7282 (3) 0.0405 (8)

C6 1.0452 (2) −0.2089 (4) 0.8219 (2) 0.0311 (6)

C7 0.8995 (2) −0.3324 (4) 0.9258 (2) 0.0377 (7)

C8 0.7373 (2) −0.3260 (5) 1.0701 (2) 0.0397 (7)

C9 0.8428 (2) −0.2698 (4) 1.0885 (2) 0.0320 (6)

C10 0.8757 (2) −0.2527 (4) 1.1874 (2) 0.0352 (7)

C11 0.8062 (2) −0.2980 (4) 1.2661 (2) 0.0343 (7)

C12 0.8325 (3) −0.2761 (5) 1.3705 (2) 0.0441 (8)

C13 0.7636 (3) −0.3277 (6) 1.4442 (3) 0.0507 (9)

C14 0.6672 (3) −0.4064 (5) 1.4171 (3) 0.0480 (9)

C15 0.6381 (3) −0.4254 (5) 1.3178 (3) 0.0433 (8)

C16 0.7059 (2) −0.3679 (4) 1.2397 (2) 0.0342 (7)

H1 0.8592 −0.5001 0.7567 0.0547*

H2 0.9431 −0.4932 0.6029 0.0614*

H3 1.0960 −0.3202 0.5856 0.0583*

H4 1.1618 −0.1527 0.7204 0.0491*

H5 0.8493 −0.4278 0.9305 0.0463*

H6 0.7126 −0.3268 1.0016 0.0481*

H7 0.9445 −0.2108 1.2033 0.0427*

H8 0.8983 −0.2250 1.3895 0.0534*

H9 0.7807 −0.3104 1.5142 0.0616*

H10 0.6213 −0.4475 1.4686 0.0580*

H11 0.5721 −0.4780 1.3004 0.0525*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2004). E60, m1552–m1554

Geometric parameters (Å, º)

Cu1—O1 1.898 (2) C5—C6 1.413 (4)

Cu1—O1i 1.898 (2) C5—H4 0.950

Cu1—N1 2.040 (2) C7—H5 0.950

Cu1—N1i 2.040 (2) C8—C9 1.426 (4)

O1—C6 1.306 (4) C8—H6 0.950

N1—C7 1.296 (4) C9—C10 1.367 (4)

N1—C9 1.429 (4) C10—C11 1.409 (4)

N2—C8 1.312 (4) C10—H7 0.950

N2—C16 1.371 (4) C11—C12 1.416 (4)

C1—C2 1.414 (5) C11—C16 1.420 (4)

C1—C6 1.415 (4) C12—C13 1.369 (5)

C1—C7 1.427 (4) C12—H8 0.950

C2—C3 1.359 (5) C13—C14 1.402 (5)

C2—H1 0.950 C13—H9 0.950

C3—C4 1.393 (5) C14—C15 1.359 (5)

C3—H2 0.950 C14—H10 0.950

C4—C5 1.372 (5) C15—C16 1.414 (5)

C4—H3 0.950 C15—H11 0.950

O1—Cu1—O1i 180.0 N1—C7—H5 116.2

O1—Cu1—N1 90.46 (9) C1—C7—H5 116.7

O1—Cu1—N1i 89.54 (9) N2—C8—C9 125.0 (3)

O1i—Cu1—N1 89.54 (9) N2—C8—H6 117.2

O1i—Cu1—N1i 90.46 (9) C9—C8—H6 117.7

N1—Cu1—N1i 180.0 N1—C9—C8 120.2 (3)

Cu1—O1—C6 125.6 (2) N1—C9—C10 122.0 (3)

Cu1—N1—C7 120.6 (2) C8—C9—C10 117.8 (3)

Cu1—N1—C9 122.9 (2) C9—C10—C11 119.1 (3)

C7—N1—C9 115.9 (3) C9—C10—H7 120.7

C8—N2—C16 117.1 (3) C11—C10—H7 120.2

C2—C1—C6 119.7 (3) C10—C11—C12 122.6 (3)

C2—C1—C7 117.9 (3) C10—C11—C16 118.7 (3)

C6—C1—C7 122.5 (3) C12—C11—C16 118.7 (3)

C1—C2—C3 121.6 (3) C11—C12—C13 120.4 (3)

C1—C2—H1 119.5 C11—C12—H8 119.8

C3—C2—H1 118.9 C13—C12—H8 119.7

C2—C3—C4 119.1 (3) C12—C13—C14 120.2 (3)

C2—C3—H2 120.3 C12—C13—H9 120.3

C4—C3—H2 120.6 C14—C13—H9 119.5

C3—C4—C5 121.0 (3) C13—C14—C15 121.1 (3)

C3—C4—H3 119.4 C13—C14—H10 119.8

C5—C4—H3 119.6 C15—C14—H10 119.2

C4—C5—C6 121.4 (3) C14—C15—C16 120.2 (3)

C4—C5—H4 119.4 C14—C15—H11 120.2

C6—C5—H4 119.3 C16—C15—H11 119.7

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, m1552–m1554

O1—C6—C5 119.7 (3) N2—C16—C15 118.8 (3)

C1—C6—C5 117.2 (3) C11—C16—C15 119.3 (3)

N1—C7—C1 127.2 (3)

Cu1—O1—C6—C1 −26.3 (4) C2—C1—C6—C5 −2.9 (4)

Cu1—O1—C6—C5 154.6 (2) C2—C3—C4—C5 −0.9 (6)

Cu1—N1—C7—C1 7.8 (4) C3—C2—C1—C6 −0.3 (5)

Cu1—N1—C9—C8 132.8 (3) C3—C2—C1—C7 −178.4 (3)

Cu1—N1—C9—C10 −45.5 (4) C3—C4—C5—C6 −2.4 (5)

O1—Cu1—N1—C7 −25.6 (2) C5—C6—C1—C7 175.1 (3)

O1—Cu1—N1—C9 163.9 (2) C7—N1—C9—C8 −38.2 (4)

O1—C6—C1—C2 177.9 (3) C7—N1—C9—C10 143.6 (3)

O1—C6—C1—C7 −4.1 (5) C8—N2—C16—C11 2.8 (5)

O1—C6—C5—C4 −176.5 (3) C8—N2—C16—C15 −178.8 (3)

N1—Cu1—O1—C6 35.4 (2) C8—C9—C10—C11 2.6 (5)

N1—C7—C1—C2 −169.1 (3) C9—C8—N2—C16 3.2 (5)

N1—C7—C1—C6 12.8 (5) C9—C10—C11—C12 −177.0 (3)

N1—C9—C8—N2 175.7 (3) C9—C10—C11—C16 2.8 (5)

N1—C9—C10—C11 −179.1 (3) C10—C11—C12—C13 −177.8 (3)

N2—C8—C9—C10 −6.0 (5) C10—C11—C16—C15 175.8 (3)

N2—C16—C11—C10 −5.8 (5) C11—C12—C13—C14 1.3 (6)

N2—C16—C11—C12 174.0 (3) C11—C16—C15—C14 2.9 (5)

N2—C16—C15—C14 −175.6 (3) C12—C11—C16—C15 −4.4 (5)

C1—C2—C3—C4 2.3 (6) C12—C13—C14—C15 −3.0 (6)

C1—C6—C5—C4 4.2 (5) C13—C12—C11—C16 2.4 (5)

C1—C7—N1—C9 179.0 (3) C13—C14—C15—C16 0.9 (6)

References

Related documents

Setting n = 10 , for each source sentence we re-rank the ten best sentences as scored by the decoder according to the Leven- shtein Distance (or edit distance) measure (Leven-

In general, Result 3 provides contradictory evidence to the conventional wisdom that market competition will divert decision rights to individuals who are better able to utilise

companies with low investment opportunities experience a stronger market reaction. FCF : Free cash flow per share. DIVINC : A binary variable taking the value of 1 if on the date

The reduction of the rank of a LCFRS , called binarization, is a process very similar to the reduction of a context-free grammar into Chomsky normal form.. While in the special case

PWYW for several products (cinema tickets, DVD, digital album, flight tickets, hotel, rental car, opera, wine), online survey which varied social distance, product value, external

For elsewhere he states (1978b: 356), “The socialist essential, it must always be remembered, is not the plan; it is the democratic power of the people over the plan and the

number of available beds among all Polish Euro 2012 host cities / regions (figure 6).

In Clark and Curran (2004a) we described a novel approach to integrating the supertagger and parser: start with a very restrictive supertagger set- ting, so that only a small number