• No results found

(R) 1 Phen­yl 1 ethyl­ammonium (R) 2 hy­droxy­meth­yl 2 (2 naphth­yl)propanoate

N/A
N/A
Protected

Academic year: 2020

Share "(R) 1 Phen­yl 1 ethyl­ammonium (R) 2 hy­droxy­meth­yl 2 (2 naphth­yl)propanoate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o1283–o1285 doi:10.1107/S1600536805010305 Ohbaet al. C

8H12N+C14H13O3

o1283

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(

R

)-1-Phenyl-1-ethylammonium (

R

)-2-hydroxymethyl-2-(2-naphthyl)propanoate

Shigeru Ohba,a* Tomomi Tsutsumi,bYosuke Terao,bKenji Miyamotoband Hiromichi Ohtab

aDepartment of Chemistry, Faculty of Letters,

Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, andbDepartment of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail: ohba@flet.keio.ac.jp

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.011 A˚ Disorder in main residue Rfactor = 0.048 wRfactor = 0.102 Data-to-parameter ratio = 7.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C8H12N+C14H13O3, is the less soluble

diastereomeric salt of

2-hydroxymethyl-2-(2-naphthyl)-propanoic acid with (R)-(+)-phenylethylamine. The

ammo-nium group of the cation and the carboxylate group of the

anion are linked via N—H O hydrogen bonds, forming

ribbons along thebaxis.

Comment

Arylmalonate decarboxylase (AMDase) catalyzes the

enan-tioselective decarboxylation of arylmethylmalonic acid.

Recently, Ijima et al. (2005) have succeeded in preparing a

mutant enzyme of arylmalonate decarboxylase, which gives the opposite enantiomer compared with the product of the native enzyme. To investigate the stereochemical course of the reaction catalyzed by the mutant enzyme, both enantiomers of

methyl-2-naphthylmalonic acid, which contain 13C in either

one of the two carboxyl groups, were prepared.

The aim of the present paper is to assign the absolute configuration of the enantiomers of the

methyl-2-naphthyl-malonic acid labeled with 13C. The title compound, (I), is a

diastereomeric salt of the optically resolved synthetic inter-mediate 2-hydroxymethyl-2-(2-naphthyl)propanoic acid with phenylethylamine. An X-ray structure analysis of (I) has been carried out to determine the absolute configuration of (+)-2-hydroxymethyl-2-(2-naphthyl)propanoic acid based on the

known absolute configuration of (R)-(+)-phenylethylamine.

As shown in Fig. 1, compound (I) consists of organic ions as the result of deprotonation of the carboxylic acid group. All three H atoms of the ammonium group are involved in hydrogen bonding to the carboxylate group (Table 2). The

cations and anions are arranged alternately and connectedvia

(2)

N—H O hydrogen bonds to form ribbons that extend along

the baxis (Fig. 2). The crystals of (I) grown from methanol,

ethanol or aqueous solutions are fiber-like. As expected, the elongated direction of the needle specimen is thebaxis.

Experimental

()-2-Hydroxymethyl-2-(2-naphthyl)propanoic acid was prepared as described previously (Miyamotoet al., 1992). The optical resolution was carried out with (R)-(+)- phenylethylamine in acetone solution. The less soluble diastereomeric salts were recrystallized several times and dissolved in 2M NaOH solution, each enantiomer being extracted by ethyl acetate (94–98% enantiomeric excess). Compound (I) is the less soluble diastereomeric salt, which consists of (R)-(+)-phenylethylamine and (+)-2-hydroxymethyl-2-(2-naphthyl)-propanoic acid. The specific rotation, []D, of

(+)-2-hydroxymethyl-2-(2-naphthyl)propanoic acid at 293 K is +27.7 (1)(c= 1.0, EtOH,

wherecis a concentration of units grams per 100 cm3). Crystals of (I) suitable for X-ray study were grown from an aqueous solution by slow evaporation.

Crystal data

C8H12N+C14H13O3 Mr= 351.44

Monoclinic,P21 a= 12.791 (2) A˚ b= 6.4448 (16) A˚ c= 12.068 (3) A˚

= 104.741 (16)

V= 962.1 (4) A˚3 Z= 2

Dx= 1.213 Mg m

3

MoKradiation Cell parameters from 25

reflections

= 10.1–11.8

= 0.08 mm1 T= 298 K Needle, colorless 0.90.10.05 mm

Data collection

Rigaku AFC-7Rdiffractometer

!–2scans

Absorption correction: integration (ABSCOR; Higashi, 1999) Tmin= 0.992,Tmax= 0.996

2165 measured reflections 1854 independent reflections 698 reflections withI> 2(I)

Rint= 0.024 max= 25.0

h=6!15 k= 0!7 l=14!13 3 standard reflections

every 150 reflections intensity decay: none

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.048 wR(F2) = 0.102 S= 0.97 1854 reflections 244 parameters

H-atom parameters constrained w= 1/[2

(Fo2) + (0.0179P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.016

max= 0.16 e A˚3

min=0.19 e A˚3

Table 1

Selected geometric parameters (A˚ ,).

O1—C6 1.255 (9) O2—C6 1.280 (8)

O1—C6—C5—C9 106.1 (7)

O3A—C7—C5—C9 170.3 (6)

O3B—C7—C5—C9 57 (1)

N4—C20—C21—C26 51.3 (9)

C6—C5—C9—C10 40.6 (8)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O3A—H3A O1 0.95 2.07 2.743 (9) 126

O3B—H3B O3Ai

0.95 1.82 2.71 (2) 154

N4—H4A O1 0.95 1.84 2.769 (7) 166

N4—H4B O2ii

0.95 1.86 2.801 (6) 172

N4—H4C O2iii

0.95 1.85 2.791 (7) 172

Symmetry codes: (i)xþ1;þy1

2;z; (ii)x;þyþ 1

2;z; (iii)x;yþ1;z.

Due to the low scattering power of the crystal, only 38% of the measured reflections were observed. There is a positional disorder of the alcohol atom O3, the site occupation factors of O3Aand O3B being 70 and 30%, respectively. H atoms bonded to C atoms were positioned with idealized geometry and were refined with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)] using a

organic papers

o1284

Ohbaet al. C

[image:2.610.47.296.70.269.2]

8H12N+C14H13O3 Acta Cryst.(2005). E61, o1283–o1285

Figure 1

Molecular structure of (I), with the atom-labeling scheme and displace-ment ellipsoids drawn at the 50% probability level. One of the two

possible positions of atom O3 has been omitted for clarity. Figure 2

(3)

riding model, with C—H = 0.95 A˚ . The positions of the N-bound H atoms were idealized on the basis of the position of one H atom, which was identified in a difference map. The O-bound H atoms were positioned with idealized geometry in the direction of the nearest appropriate hydrogen-bonding acceptor. The N- and O-bound H atoms were refined with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(parent atom)] using a riding model with bond

distances of 0.95 A˚ . The absolute configuration was assigned on the basis of the known absolute configuration of (R )-(+)-phenylethyl-amine (Eliel, 1962; Nassimbeniet al., 1986). Because of negligible anomalous scattering effects, Friedel pairs were averaged in the refinement.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction:TEXSAN(Molecular Structure Corpora-tion, 2001); program(s) used to solve structure:SIR92(Altomareet al., 1994); program(s) used to refine structure: SHELXL97 (Shel-drick, 1997); molecular graphics:ORTEPII(Johnson, 1976); software used to prepare material for publication:TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Eliel, E. L. (1962). Stereochemistry of Carbon Compounds. New York: McGraw-Hill.

Higashi, T. (1999).ABSCOR. Rigaku Corporation, Tokyo, Japan.

Ijima, Y., Matoishi, K., Terao, Y., Doi, N., Yanagawa, H. & Ohta, H. (2005).J. Chem. Soc. Chem. Commun.pp. 877–879.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Nassimbeni, L. R., Niven, M. L. & Zemke, K. J. (1986).Acta Cryst.B42, 453– 461.

Miyamoto, K., Tsuchiya, S. & Ohta, H. (1992).J. Am. Chem. Soc.114, 6256– 6257.

Molecular Structure Corporation (2001).TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Rigaku (1999).WinAFC Diffractometer Control Software. Rigaku Corpora-tion, Tokyo, Japan.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany.

organic papers

Acta Cryst.(2005). E61, o1283–o1285 Ohbaet al. C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o1283–o1285

supporting information

Acta Cryst. (2005). E61, o1283–o1285 [https://doi.org/10.1107/S1600536805010305]

(

R

)-1-Phenyl-1-ethylammonium (

R

)-2-hydroxymethyl-2-(2-naphthyl)propanoate

Shigeru Ohba, Tomomi Tsutsumi, Yosuke Terao, Kenji Miyamoto and Hiromichi Ohta

(R)-1-Phenyl-1-ethylammonium (R)-2-hydroxymethyl-2-(2-naphthyl)propanoate

Crystal data

C8H12N+·C14H13O3−

Mr = 351.44

Monoclinic, P21

Hall symbol: P 2yb a = 12.791 (2) Å b = 6.4448 (16) Å c = 12.068 (3) Å β = 104.741 (16)° V = 962.1 (4) Å3

Z = 2

F(000) = 376 Dx = 1.213 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections θ = 10.1–11.8°

µ = 0.08 mm−1

T = 298 K Needle, colorless 0.9 × 0.1 × 0.05 mm

Data collection

Rigaku AFC-7R diffractometer ω–2θ scans

Absorption correction: integration (ABSCOR; Higashi, 1999) Tmin = 0.992, Tmax = 0.996

2165 measured reflections 1854 independent reflections

698 reflections with I > 2σ(I) Rint = 0.024

θmax = 25.0°

h = −6→15 k = 0→7 l = −14→13

3 standard reflections every 150 reflections intensity decay: none

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.048

wR(F2) = 0.102

S = 0.97 1854 reflections 244 parameters

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0179P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.016

Δρmax = 0.16 e Å−3

Δρmin = −0.19 e Å−3

Absolute structure: see text

Special details

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R

-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for

calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o1283–o1285

O2 0.1292 (3) −0.1683 (7) 0.0477 (3) 0.049 (1)

O3A 0.4034 (5) 0.088 (1) −0.0053 (6) 0.082 (3) 0.70 O3B 0.522 (1) −0.151 (3) 0.144 (2) 0.103 (7) 0.30 N4 0.0723 (4) 0.4311 (8) 0.0981 (4) 0.043 (1)

C5 0.3239 (5) −0.182 (1) 0.1008 (6) 0.042 (2) C6 0.2165 (6) −0.062 (1) 0.0704 (5) 0.038 (2) C7 0.4176 (5) −0.030 (1) 0.1003 (6) 0.061 (2) C8 0.3199 (5) −0.351 (1) 0.0109 (6) 0.063 (2) C9 0.3413 (5) −0.265 (1) 0.2237 (7) 0.051 (2) C10 0.3167 (5) −0.142 (1) 0.3064 (7) 0.051 (2) C11 0.3321 (6) −0.208 (1) 0.4203 (7) 0.058 (2) C12 0.3048 (6) −0.087 (1) 0.5040 (7) 0.070 (2) C13 0.3165 (6) −0.155 (2) 0.6126 (8) 0.085 (3) C14 0.3594 (7) −0.353 (2) 0.6449 (7) 0.086 (3) C15 0.3879 (7) −0.479 (2) 0.5663 (9) 0.084 (3) C16 0.3742 (6) −0.411 (1) 0.4509 (8) 0.056 (2) C17 0.4001 (6) −0.532 (1) 0.3665 (9) 0.070 (3) C18 0.3836 (6) −0.463 (1) 0.2566 (7) 0.059 (2) C19 0.0365 (7) 0.181 (1) 0.2359 (6) 0.076 (3) C20 0.0757 (5) 0.396 (1) 0.2216 (6) 0.051 (2) C21 0.0135 (5) 0.560 (1) 0.2682 (6) 0.048 (2) C22 0.0582 (5) 0.643 (1) 0.3732 (6) 0.053 (2) C23 −0.0007 (7) 0.777 (1) 0.4241 (6) 0.063 (2) C24 −0.1056 (7) 0.826 (1) 0.3710 (6) 0.067 (2) C25 −0.1506 (6) 0.745 (1) 0.2639 (7) 0.078 (3) C26 −0.0922 (6) 0.612 (2) 0.2137 (6) 0.071 (2)

H3A 0.3381 0.1653 −0.0189 0.0978* 0.70

H3B 0.5263 −0.2562 0.0899 0.1231* 0.30

H4A 0.1214 0.3393 0.0758 0.0517*

H4B 0.0012 0.4060 0.0524 0.0517*

H4C 0.0922 0.5704 0.0878 0.0517*

H7A1 0.4826 −0.1078 0.1119 0.0729* 0.70

H7A2 0.4235 0.0651 0.1618 0.0729* 0.70

H7B1 0.4155 0.0844 0.1494 0.0729* 0.30

H7B2 0.4121 0.0190 0.0248 0.0729* 0.30

H8A 0.2614 −0.4421 0.0099 0.0757*

H8B 0.3100 −0.2882 −0.0624 0.0757*

H8C 0.3858 −0.4264 0.0291 0.0757*

H10 0.2882 −0.0071 0.2858 0.0609*

H12 0.2770 0.0485 0.4844 0.0836*

H13 0.2955 −0.0690 0.6671 0.1022*

H14 0.3687 −0.3988 0.7216 0.1028*

H15 0.4169 −0.6128 0.5886 0.1009*

H17 0.4300 −0.6664 0.3858 0.0842*

H18 0.4011 −0.5512 0.2008 0.0707*

H19A −0.0362 0.1668 0.1920 0.0915*

H19B 0.0806 0.0829 0.2104 0.0915*

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o1283–o1285

H20 0.1492 0.4039 0.2641 0.0615*

H22 0.1304 0.6087 0.4122 0.0639*

H23 0.0323 0.8361 0.4967 0.0759*

H24 −0.1464 0.9142 0.4072 0.0809*

H25 −0.2224 0.7818 0.2244 0.0939*

H26 −0.1249 0.5542 0.1406 0.0847*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.052 (3) 0.034 (3) 0.070 (4) 0.004 (3) 0.015 (2) 0.006 (3) O2 0.033 (3) 0.044 (3) 0.065 (3) −0.005 (3) 0.004 (2) 0.005 (3) O3A 0.046 (4) 0.091 (7) 0.115 (6) −0.012 (5) 0.034 (4) 0.028 (6) O3B 0.07 (1) 0.09 (2) 0.15 (2) −0.03 (1) 0.04 (1) −0.04 (2) N4 0.039 (3) 0.032 (4) 0.061 (4) 0.003 (3) 0.017 (3) 0.002 (4) C5 0.032 (4) 0.038 (5) 0.062 (5) 0.001 (4) 0.022 (4) 0.001 (5) C6 0.043 (5) 0.042 (5) 0.032 (4) 0.016 (5) 0.014 (4) 0.001 (5) C7 0.045 (5) 0.050 (6) 0.089 (6) 0.002 (4) 0.020 (5) 0.008 (5) C8 0.061 (5) 0.050 (5) 0.082 (6) 0.003 (5) 0.025 (4) −0.013 (5) C9 0.031 (4) 0.035 (5) 0.086 (6) 0.006 (4) 0.014 (4) −0.001 (5) C10 0.043 (4) 0.042 (5) 0.066 (5) 0.011 (4) 0.012 (4) 0.001 (5) C11 0.040 (4) 0.064 (7) 0.068 (7) −0.015 (5) 0.013 (4) −0.015 (6) C12 0.067 (6) 0.081 (6) 0.055 (5) 0.006 (5) 0.003 (5) 0.001 (6) C13 0.057 (5) 0.13 (1) 0.069 (7) 0.002 (7) 0.015 (5) 0.004 (7) C14 0.059 (6) 0.124 (10) 0.067 (7) −0.004 (7) 0.004 (5) 0.044 (8) C15 0.062 (6) 0.094 (8) 0.089 (7) −0.006 (6) 0.006 (6) 0.015 (8) C16 0.046 (5) 0.044 (6) 0.073 (7) 0.004 (5) 0.007 (4) 0.011 (5) C17 0.057 (5) 0.045 (6) 0.097 (7) 0.009 (5) −0.001 (6) 0.011 (6) C18 0.050 (5) 0.042 (6) 0.079 (6) 0.015 (5) 0.006 (5) −0.001 (5) C19 0.118 (7) 0.040 (6) 0.086 (7) 0.016 (6) 0.054 (6) 0.022 (5) C20 0.050 (4) 0.056 (6) 0.048 (5) 0.007 (4) 0.013 (4) 0.009 (5) C21 0.053 (5) 0.047 (5) 0.047 (5) 0.002 (5) 0.019 (4) −0.005 (5) C22 0.062 (5) 0.057 (5) 0.042 (5) 0.004 (5) 0.016 (4) 0.015 (5) C23 0.081 (6) 0.059 (6) 0.053 (5) −0.004 (5) 0.023 (5) −0.003 (5) C24 0.084 (6) 0.053 (6) 0.073 (6) 0.005 (6) 0.033 (5) −0.008 (6) C25 0.044 (5) 0.102 (8) 0.087 (6) 0.025 (5) 0.013 (5) −0.010 (6) C26 0.046 (5) 0.092 (7) 0.064 (5) 0.007 (5) −0.003 (4) −0.023 (6)

Geometric parameters (Å, º)

O1—C6 1.255 (9) C12—H12 0.950

O2—C6 1.280 (8) C13—C14 1.40 (2)

O3A—C7 1.46 (1) C13—H13 0.950

O3A—H3A 0.950 C14—C15 1.37 (2)

O3B—C7 1.52 (2) C14—H14 0.950

O3B—H3B 0.950 C15—C16 1.43 (1)

N4—C20 1.497 (9) C15—H15 0.950

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o1283–o1285

N4—H4B 0.950 C17—C18 1.36 (1)

N4—H4C 0.950 C17—H17 0.950

C5—C6 1.539 (9) C18—H18 0.950

C5—C7 1.551 (10) C19—C20 1.50 (1)

C5—C8 1.53 (1) C19—H19A 0.950

C5—C9 1.54 (1) C19—H19B 0.950

C7—H7A1 0.950 C19—H19C 0.950

C7—H7A2 0.950 C20—C21 1.51 (1)

C7—H7B1 0.950 C20—H20 0.950

C7—H7B2 0.950 C21—C22 1.362 (10)

C8—H8A 0.950 C21—C26 1.386 (9)

C8—H8B 0.950 C22—C23 1.39 (1)

C8—H8C 0.950 C22—H22 0.950

C9—C10 1.37 (1) C23—C24 1.37 (1)

C9—C18 1.41 (1) C23—H23 0.950

C10—C11 1.40 (1) C24—C25 1.38 (1)

C10—H10 0.950 C24—H24 0.950

C11—C12 1.39 (1) C25—C26 1.38 (1)

C11—C16 1.42 (1) C25—H25 0.950

C12—C13 1.35 (1) C26—H26 0.950

C7—O3A—H3A 109.5 C12—C13—C14 120.2 (10)

C7—O3B—H3B 109.5 C12—C13—H13 119.9

C20—N4—H4A 109.5 C14—C13—H13 119.9

C20—N4—H4B 109.5 C13—C14—C15 120.1 (9)

C20—N4—H4C 109.5 C13—C14—H14 119.9

H4A—N4—H4B 109.5 C15—C14—H14 119.9

H4A—N4—H4C 109.5 C14—C15—C16 120.3 (9)

H4B—N4—H4C 109.5 C14—C15—H15 119.9

C6—C5—C7 108.8 (6) C16—C15—H15 119.9

C6—C5—C8 108.9 (5) C11—C16—C15 118.7 (9)

C6—C5—C9 107.8 (6) C11—C16—C17 118.1 (8)

C7—C5—C8 109.5 (6) C15—C16—C17 123.2 (8)

C7—C5—C9 107.4 (5) C16—C17—C18 121.4 (7)

C8—C5—C9 114.3 (6) C16—C17—H17 119.3

O1—C6—O2 123.2 (6) C18—C17—H17 119.3

O1—C6—C5 119.6 (6) C9—C18—C17 121.7 (8)

O2—C6—C5 117.2 (6) C9—C18—H18 119.1

O3A—C7—O3B 118.2 (10) C17—C18—H18 119.1

O3A—C7—C5 114.2 (5) C20—C19—H19A 109.5

O3A—C7—H7A1 108.3 C20—C19—H19B 109.5

O3A—C7—H7A2 108.3 C20—C19—H19C 109.5

O3B—C7—C5 106.6 (9) H19A—C19—H19B 109.5

O3B—C7—H7B1 110.2 H19A—C19—H19C 109.5

O3B—C7—H7B2 110.2 H19B—C19—H19C 109.5

C5—C7—H7A1 108.3 N4—C20—C19 109.2 (5)

C5—C7—H7A2 108.3 N4—C20—C21 112.3 (5)

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, o1283–o1285

C5—C7—H7B2 110.2 C19—C20—C21 112.2 (6)

H7A1—C7—H7A2 109.5 C19—C20—H20 107.6

H7B1—C7—H7B2 109.5 C21—C20—H20 107.6

C5—C8—H8A 109.5 C20—C21—C22 119.0 (6)

C5—C8—H8B 109.5 C20—C21—C26 122.3 (6)

C5—C8—H8C 109.5 C22—C21—C26 118.3 (7)

H8A—C8—H8B 109.5 C21—C22—C23 120.7 (6)

H8A—C8—H8C 109.5 C21—C22—H22 119.6

H8B—C8—H8C 109.5 C23—C22—H22 119.6

C5—C9—C10 119.9 (6) C22—C23—C24 120.9 (6)

C5—C9—C18 122.5 (7) C22—C23—H23 119.5

C10—C9—C18 117.6 (8) C24—C23—H23 119.5

C9—C10—C11 122.4 (7) C23—C24—C25 118.6 (8)

C9—C10—H10 118.8 C23—C24—H24 120.7

C11—C10—H10 118.8 C25—C24—H24 120.7

C10—C11—C12 122.8 (8) C24—C25—C26 120.3 (7)

C10—C11—C16 118.8 (8) C24—C25—H25 119.8

C12—C11—C16 118.3 (8) C26—C25—H25 119.8

C11—C12—C13 122.3 (9) C21—C26—C25 121.1 (6)

C11—C12—H12 118.8 C21—C26—H26 119.5

C13—C12—H12 118.8 C25—C26—H26 119.5

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, o1283–o1285

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O3A—H3A···O1 0.95 2.07 2.743 (9) 126

O3B—H3B···O3Ai 0.95 1.82 2.71 (2) 154

N4—H4A···O1 0.95 1.84 2.769 (7) 166

N4—H4B···O2ii 0.95 1.86 2.801 (6) 172

N4—H4C···O2iii 0.95 1.85 2.791 (7) 172

Figure

Figure 1

References

Related documents

The comparison of autoregressive ADF model with linear trend model (Table 1) demonstrates similarity of results for most of the economies: Australia and Sweden

In this work, we further extend this line of exploration and propose a novel but simple approach, which utilizes a ranking model based on word or- der precedence in the target

Setting n = 10 , for each source sentence we re-rank the ten best sentences as scored by the decoder according to the Leven- shtein Distance (or edit distance) measure (Leven-

In general, Result 3 provides contradictory evidence to the conventional wisdom that market competition will divert decision rights to individuals who are better able to utilise

companies with low investment opportunities experience a stronger market reaction. FCF : Free cash flow per share. DIVINC : A binary variable taking the value of 1 if on the date

The reduction of the rank of a LCFRS , called binarization, is a process very similar to the reduction of a context-free grammar into Chomsky normal form.. While in the special case

PWYW for several products (cinema tickets, DVD, digital album, flight tickets, hotel, rental car, opera, wine), online survey which varied social distance, product value, external

For elsewhere he states (1978b: 356), “The socialist essential, it must always be remembered, is not the plan; it is the democratic power of the people over the plan and the