• No results found

3 Methyl 1 p tolyl 1H pyrazol 5 yl 2 chloro­benzoate

N/A
N/A
Protected

Academic year: 2020

Share "3 Methyl 1 p tolyl 1H pyrazol 5 yl 2 chloro­benzoate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o4080

Guoet al. C

18H15ClN2O2 doi:10.1107/S160053680503641X Acta Cryst.(2005). E61, o4080–o4081

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

3-Methyl-1-

p

-tolyl-1

H

-pyrazol-5-yl 2-chlorobenzoate

Zhi-Xiong Guo,aJiang-Sheng Lia* and Mei-Lian Fanb

a

School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, People’s Republic of China, andbCollege of Chemistry &

Chemical Engineering, Hunan University, Changsha, Hunan 410082, People’s Republic of China

Correspondence e-mail: jansenlee1103@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 294 K

Mean(C–C) = 0.005 A˚ Disorder in main residue

Rfactor = 0.045

wRfactor = 0.132

Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C18H15ClN2O2, contains planar pyrazole, tolyl and chlorophenyl rings. Intermolecular C—H O hydrogen bonds link the molecules into dimers. The carbonyl O atom is found to be disordered.

Comment

Benzoyl derivatives of 3-methylpyrazol-5-one possess herbi-cidal and growth-regulating activities (Vasilevet al., 1981), as well as anti-inflammatory properties (Terebeninaet al., 1980). As a continuation of research for new biologically active compounds in these areas, the title compound, (I), was obtained via 2-chlorobenzoylation of 1-p-tolylpyrazol-5-one. The crystal structure of a related compound, 1,3-diphenyl-1H -pyrazol-5-yl 4-chlorobenzoate, has been reported previously (Liet al., 2005).

The molecular structure of (I) is illustrated in Fig. 1. The dihedral angles between the pyrazole and the tolyl and chlorophenyl rings are 41.3 (1) and 104.3 (2), respectively. Bond lengths and angles are in agreement with reported literature values (Allenet al., 1987).

In the crystal structure, intermolecular C—H O hydrogen bonds (Table 1) link the molecules into dimers, which are stacked along theaaxis (Fig. 2).

Experimental

2-Chlorobenzoyl chloride (0.28 g, 1.6 mmol) in benzene (5 ml) was added dropwise to a suspension of 3-methyl-1-p-tolyl-1H -pyrazol-5-one (0.28 g, 1.5 mmol; Liu & Li, 2004), anhydrous sodium carbonate (0.08 g, 0.75 mmol) and a catalytic amount of tetrabutylammonium bromide in benzene (10 ml) and water (1 ml) over approximately 30 min at 283 K. The resultant solution was stirred at room temperature for an additional 1 h. The reaction was quenched by aqueous saturated sodium carbonate (10 ml) and the benzene layer

(2)

was collected and evaporated under reduced pressure. The crude product was recrystallized from ethyl acetate/petroleum ether (1:3

v/v) to give (I) as a colourless solid (yield: 0.38 g, 77.6%, m.p. 354– 355 K).1H NMR (CDCl

3, 500 MHz):7.90–7.88 (m, 1H), 7.52–7.48

(m, 2H), 7.47–7.44 (m, 2H), 7.38–7.33 (m, 1H), 7.27–7.21 (m, 2H), 6.28 (s, 1H), 2.37 (s, 3H), 2.36 (s, 3H);13C NMR (CDCl

3, 500 MHz):

X-ray analysis were obtained by slow evaporation of a solution in ethyl acetate/n-hexane (1:1v/v).

Crystal data

C18H15ClN2O2 Mr= 326.77

Triclinic,P1

a= 9.012 (3) A˚

b= 9.900 (3) A˚

c= 10.792 (3) A˚

= 69.323 (4)

= 68.705 (4)

= 72.115 (5) V= 821.5 (4) A˚3

Z= 2

Dx= 1.321 Mg m

3

MoKradiation Cell parameters from 1189

reflections

= 2.5–22.6

= 0.24 mm1 T= 294 (2) K Block, colourless 0.240.200.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.928,Tmax= 0.957

4187 measured reflections

2872 independent reflections 1646 reflections withI> 2(I)

Rint= 0.027

max= 25.0 h=10!9

k=9!11

l=12!11

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.045 wR(F2) = 0.132 S= 1.04 2872 reflections 220 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0552P)2

+ 0.0745P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.004

max= 0.16 e A˚ 3

min=0.16 e A˚ 3

Extinction correction:SHELXL97

[image:2.610.46.290.69.336.2]

Extinction coefficient: 0.083 (7)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C10—H10 O2i

0.93 2.54 3.459 (8) 172

Symmetry code: (i)x;yþ1;zþ1.

H atoms were positioned geometrically [C—H = 0.93 (CH) and 0.97 A˚ (CH3)] and constrained to ride on their parent atoms, with

Uiso(H) = 1.2 (CH) and 1.5Ueq(C) (CH3). The carbonyl O atom was

found to be disordered and the site occupancies were fixed at 0.6:0.4. Data collection:SMART(Bruker, 1997); cell refinement:SAINT

(Bruker, 1997); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (1997).SMART,SAINTandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, J.-S., Duan, X.-M., Huang, P.-M., Zeng, T. & Fan, M.-L. (2005).Acta Cryst.

E61, o3862–o3863.

Liu, W. D. & Li, J. S. (2004).Chin. J. Pestic. Sci.6, 17–21.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Terebenina, A., Petrov, N., Iordanov, B. & Stoimenov, G. (1980). German Patent No. 2836891.

Vasilev, G., Terebenina, A., Dimcheva, Z., Kostova, K., Yordanov, N., Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Both disorder components are shown.

Figure 2

[image:2.610.46.294.386.615.2]
(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o4080–o4081

supporting information

Acta Cryst. (2005). E61, o4080–o4081 [https://doi.org/10.1107/S160053680503641X]

3-Methyl-1-

p

-tolyl-1

H

-pyrazol-5-yl 2-chlorobenzoate

Zhi-Xiong Guo, Jiang-Sheng Li and Mei-Lian Fan

3-Methyl-1-p-tolyl-1H-pyrazol-5-yl 2-chlorobenzoate

Crystal data

C18H15ClN2O2

Mr = 326.77 Triclinic, P1 Hall symbol: -P 1

a = 9.012 (3) Å

b = 9.900 (3) Å

c = 10.792 (3) Å

α = 69.323 (4)°

β = 68.705 (4)°

γ = 72.115 (5)°

V = 821.5 (4) Å3

Z = 2

F(000) = 340

Dx = 1.321 Mg m−3

Melting point = 354–355 K Mo radiation, λ = 0.71073 Å Cell parameters from 1189 reflections

θ = 2.5–22.6°

µ = 0.24 mm−1

T = 294 K Block, colorless 0.24 × 0.20 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.928, Tmax = 0.957

4187 measured reflections 2872 independent reflections 1646 reflections with I > 2σ(I)

Rint = 0.027

θmax = 25.0°, θmin = 2.1°

h = −10→9

k = −9→11

l = −12→11

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.045

wR(F2) = 0.132

S = 1.04 2872 reflections 220 parameters 12 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0552P)2 + 0.0745P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.004

Δρmax = 0.16 e Å−3

Δρmin = −0.16 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Cl1 0.18660 (11) 0.50067 (9) 0.04323 (8) 0.0912 (4) O1 0.3754 (3) 0.4498 (2) 0.3887 (2) 0.0827 (7)

O2 0.1765 (7) 0.4148 (7) 0.3335 (7) 0.0896 (19) 0.60 O2′ 0.2591 (13) 0.3518 (9) 0.3119 (10) 0.093 (3) 0.40 N1 0.4556 (3) 0.2369 (2) 0.5550 (2) 0.0576 (6)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o4080–o4081

C16 0.4319 (4) 0.8129 (3) −0.0623 (3) 0.0809 (9) H16 0.4630 0.8884 −0.1409 0.097* C17 0.3442 (4) 0.7217 (3) −0.0633 (3) 0.0743 (8) H17 0.3163 0.7359 −0.1426 0.089* C18 0.2974 (3) 0.6090 (3) 0.0528 (3) 0.0611 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.1087 (8) 0.0952 (7) 0.0838 (6) −0.0277 (5) −0.0429 (5) −0.0193 (4) O1 0.0993 (17) 0.0752 (13) 0.0718 (13) −0.0452 (12) −0.0473 (12) 0.0288 (11) O2 0.091 (4) 0.110 (5) 0.073 (3) −0.056 (3) −0.034 (3) 0.010 (3) O2′ 0.164 (10) 0.072 (6) 0.060 (4) −0.072 (6) −0.037 (6) 0.007 (4) N1 0.0774 (17) 0.0504 (13) 0.0454 (13) −0.0234 (12) −0.0273 (12) 0.0053 (10) N2 0.0850 (19) 0.0585 (14) 0.0408 (12) −0.0200 (13) −0.0200 (12) 0.0018 (11) C1 0.070 (2) 0.0679 (19) 0.0419 (14) −0.0268 (16) −0.0253 (14) −0.0029 (13) C2 0.085 (2) 0.080 (2) 0.0607 (18) −0.0400 (18) −0.0233 (18) −0.0005 (15) C3 0.089 (3) 0.129 (3) 0.0541 (19) −0.056 (3) −0.0207 (19) 0.002 (2) C4 0.077 (2) 0.136 (3) 0.0513 (19) −0.023 (2) −0.0258 (18) −0.024 (2) C5 0.091 (3) 0.097 (3) 0.079 (2) −0.009 (2) −0.037 (2) −0.032 (2) C6 0.081 (2) 0.068 (2) 0.0691 (19) −0.0231 (17) −0.0331 (18) −0.0104 (15) C7 0.088 (3) 0.208 (4) 0.077 (2) −0.019 (3) −0.019 (2) −0.045 (3) C8 0.098 (3) 0.103 (2) 0.0569 (19) −0.015 (2) −0.0039 (18) −0.0007 (17) C9 0.081 (2) 0.0625 (18) 0.0544 (17) −0.0147 (16) −0.0195 (16) −0.0095 (15) C10 0.080 (2) 0.0585 (18) 0.070 (2) −0.0142 (15) −0.0283 (18) 0.0028 (15) C11 0.084 (2) 0.0551 (17) 0.0555 (17) −0.0288 (16) −0.0328 (17) 0.0101 (14) C12 0.071 (2) 0.062 (2) 0.0547 (17) −0.0248 (16) −0.0194 (16) −0.0028 (14) C13 0.0566 (17) 0.0468 (15) 0.0496 (15) −0.0074 (13) −0.0177 (13) −0.0018 (12) C14 0.083 (2) 0.0546 (17) 0.0614 (18) −0.0180 (15) −0.0279 (16) 0.0035 (14) C15 0.093 (2) 0.0594 (18) 0.079 (2) −0.0253 (17) −0.0322 (19) 0.0127 (16) C16 0.084 (2) 0.065 (2) 0.063 (2) −0.0127 (17) −0.0179 (17) 0.0131 (15) C17 0.080 (2) 0.073 (2) 0.0522 (17) 0.0019 (17) −0.0241 (16) −0.0055 (15) C18 0.0588 (17) 0.0604 (16) 0.0553 (17) −0.0053 (13) −0.0170 (14) −0.0107 (13)

Geometric parameters (Å, º)

(6)

C2—H2 0.9300 C14—C15 1.372 (4) C3—C4 1.379 (5) C14—H14 0.9300 C3—H3 0.9300 C15—C16 1.364 (4) C4—C5 1.380 (5) C15—H15 0.9300 C4—C7 1.509 (5) C16—C17 1.375 (4) C5—C6 1.373 (4) C16—H16 0.9300 C5—H5 0.9300 C17—C18 1.382 (4)

C6—H6 0.9300 C17—H17 0.9300

C7—H7A 0.9600

C12—O1—C11 118.9 (2) H8B—C8—H8C 109.5 C11—N1—N2 108.9 (2) N2—C9—C10 111.6 (3) C11—N1—C1 130.4 (2) N2—C9—C8 120.4 (3) N2—N1—C1 120.7 (2) C10—C9—C8 128.0 (3) C9—N2—N1 105.3 (2) C11—C10—C9 104.3 (3) C2—C1—C6 119.8 (3) C11—C10—H10 127.8 C2—C1—N1 120.7 (3) C9—C10—H10 127.8 C6—C1—N1 119.6 (2) C10—C11—N1 109.9 (2) C3—C2—C1 119.1 (3) C10—C11—O1 131.1 (3) C3—C2—H2 120.4 N1—C11—O1 118.9 (3) C1—C2—H2 120.4 O2′—C12—O2 40.1 (4) C2—C3—C4 122.9 (3) O2′—C12—O1 112.5 (5) C2—C3—H3 118.6 O2—C12—O1 121.4 (4) C4—C3—H3 118.6 O2′—C12—C13 130.0 (5) C3—C4—C5 116.4 (3) O2—C12—C13 124.8 (4) C3—C4—C7 121.8 (4) O1—C12—C13 110.8 (2) C5—C4—C7 121.8 (4) C14—C13—C18 118.2 (2) C6—C5—C4 122.7 (3) C14—C13—C12 119.8 (2) C6—C5—H5 118.7 C18—C13—C12 122.0 (2) C4—C5—H5 118.7 C15—C14—C13 121.1 (3) C5—C6—C1 119.2 (3) C15—C14—H14 119.4 C5—C6—H6 120.4 C13—C14—H14 119.4 C1—C6—H6 120.4 C16—C15—C14 120.1 (3) C4—C7—H7A 109.5 C16—C15—H15 120.0 C4—C7—H7B 109.5 C14—C15—H15 120.0 H7A—C7—H7B 109.5 C15—C16—C17 120.3 (3) C4—C7—H7C 109.5 C15—C16—H16 119.8 H7A—C7—H7C 109.5 C17—C16—H16 119.8 H7B—C7—H7C 109.5 C16—C17—C18 120.4 (3) C9—C8—H8A 109.5 C16—C17—H17 119.8 C9—C8—H8B 109.5 C18—C17—H17 119.8 H8A—C8—H8B 109.5 C17—C18—C13 119.9 (3) C9—C8—H8C 109.5 C17—C18—Cl1 117.4 (2) H8A—C8—H8C 109.5 C13—C18—Cl1 122.7 (2)

(7)

supporting information

sup-5

Acta Cryst. (2005). E61, o4080–o4081

N2—N1—C1—C2 −138.2 (2) C12—O1—C11—N1 118.7 (3) C11—N1—C1—C6 −138.4 (3) C11—O1—C12—O2′ −31.1 (7) N2—N1—C1—C6 40.5 (3) C11—O1—C12—O2 13.1 (6) C6—C1—C2—C3 1.4 (4) C11—O1—C12—C13 174.5 (2) N1—C1—C2—C3 −179.8 (2) O2′—C12—C13—C14 −159.0 (7) C1—C2—C3—C4 −0.5 (4) O2—C12—C13—C14 150.3 (5) C2—C3—C4—C5 −1.2 (5) O1—C12—C13—C14 −10.4 (4) C2—C3—C4—C7 179.8 (3) O2′—C12—C13—C18 21.1 (8) C3—C4—C5—C6 2.0 (4) O2—C12—C13—C18 −29.6 (6) C7—C4—C5—C6 −179.0 (3) O1—C12—C13—C18 169.7 (2) C4—C5—C6—C1 −1.1 (4) C18—C13—C14—C15 −0.1 (4) C2—C1—C6—C5 −0.7 (4) C12—C13—C14—C15 −180.0 (3) N1—C1—C6—C5 −179.5 (2) C13—C14—C15—C16 −1.0 (5) N1—N2—C9—C10 −0.2 (3) C14—C15—C16—C17 1.1 (5) N1—N2—C9—C8 178.9 (2) C15—C16—C17—C18 −0.1 (5) N2—C9—C10—C11 0.3 (3) C16—C17—C18—C13 −1.1 (4) C8—C9—C10—C11 −178.6 (3) C16—C17—C18—Cl1 179.5 (2) C9—C10—C11—N1 −0.3 (3) C14—C13—C18—C17 1.1 (4) C9—C10—C11—O1 −177.6 (3) C12—C13—C18—C17 −179.0 (3) N2—N1—C11—C10 0.2 (3) C14—C13—C18—Cl1 −179.5 (2) C1—N1—C11—C10 179.2 (2) C12—C13—C18—Cl1 0.4 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C10—H10···O2i 0.93 2.54 3.459 (8) 172

Figure

Table 1

References

Related documents

(Bruker, 2002); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008);

(Bruker, 2004); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 2000); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 1999); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 2003); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 1999); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 2000); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 2002); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);