• No results found

Bis­(hydrogen 5 nitro­isophthalato)(1,10 phenanthroline)­lead(II) monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "Bis­(hydrogen 5 nitro­isophthalato)(1,10 phenanthroline)­lead(II) monohydrate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m1501±m1503 doi: 10.1107/S1600536804023189 Xiao and Yuan [Pb(C8H4NO6)2(C12H8N2)]H2O

m1501

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(hydrogen

5-nitroisophthalato)(1,10-phenanthroline)lead(II) monohydrate

Hong-Ping Xiao* and Ji-Xin Yuan

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.021

wRfactor = 0.054

Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, [Pb(C8H4NO6)2(C12H8N2)]H2O, the

lead(II) ion lies on a twofold axis and exhibits an approximately tetrahedral con®guration. The water molecule also lies on a twofold rotation axis. OÐH O hydrogen bonds and CÐH interactions are involved in the formation of two-dimensional network structures which are interlinked by CÐH O hydrogen bonds.

Comment

Bi- or multidentate ligands containing carboxyl groups are often used to coordinate to metal centers to generate inter-esting coordination polymers (Huet al., 2004; Sunet al., 2003; Yaghiet al., 1998). The lead(II) ion usually shows a different coordination chemistry, due to the presence of the lone-pair electrons (Foreman, 2000; Yuan et al., 2004). Hence, it is of interest to study the crystal structures of lead(II) carboxylates. We report here the hydrothermal synthesis and crystal struc-ture of a mononuclear compound, namely bis(hydrogen 5-nitroisophthalato)(1,10-phenanthroline)lead(II) mono-hydrate, (I).

In (I), the coordination geometry of the PbIIatom is best

described as highly distorted tetrahedral, made up of two N atoms of a phenanthroline ligand and two O atoms from two hydrogen 5-nitroisophthalate anions (Fig. 1). The crystal structure analysis shows that a crystallographic twofold symmetry axis passes through the lead(II) ion and bisects the C13ÐC13i and C14ÐC14i bonds [symmetry code: (i) 1

2ÿx, 3

2ÿy, z]. The 1,10-phenanthroline system is almost

perpen-dicular to the benzene ring of the 5-nitroisophthalate anion, the dihedral angle between the planes being 83.80 (2). The

water molecule also lies on a twofold rotation axis.

O3ÐH3 O2iiand O7ÐH7A O4ii[symmetry code: (ii)

1ÿx, 1ÿy, 2ÿz] intermolecular hydrogen bonds (Table 2) link the molecules into a two-dimensional network structure. This network structure is further stabilized by ± stacking interactions between the N1-pyridine rings of the 1,10-phenanthroline moieties at (x, y, z) and (1

2ÿx, 12ÿy, z)

(2)

[centroid±centroid distance = 3.490 (2) AÊ]. The two-dimen-sional networks are interlinked by CÐH O interactions, as shown in Fig. 2.

Experimental

The title compound was synthesized by a hydrothermal method from a mixture of 5-nitroisophthalic acid (0.5 mmol), Pb(NO3)24H2O

(0.5 mmol), 1,10-phenanthroline (1.0 mol) and water (10.0 ml) in a 15 ml Te¯on-lined stainless steel reactor. The solution was heated at 403 K for 5 d and then cooled slowly to room temperature; colorless crystals of (I) were collected for X-ray analysis.

Crystal data

[Pb(C8H4NO6)2(C12H8N2)]H2O

Mr= 825.65

Orthorhombic,Pccn a= 22.6083 (17) AÊ

b= 6.2232 (5) AÊ

c= 20.0394 (15) AÊ

V= 2819.5 (4) AÊ3

Z= 4

Dx= 1.945 Mg mÿ3

MoKradiation Cell parameters from 853

re¯ections

= 2.3±23.2

= 6.06 mmÿ1

T= 293 (2) K Prism, colorless 0.260.130.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.302,Tmax= 0.530

13880 measured re¯ections

2543 independent re¯ections 2003 re¯ections withI> 2(I)

Rint= 0.030

max= 25.2

h=ÿ20!27

k=ÿ7!7

l=ÿ23!24 Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.021

wR(F2) = 0.054

S= 1.04 2543 re¯ections 213 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0253P)2

+ 1.2381P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002

max= 0.64 e AÊÿ3

min=ÿ0.42 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Pb1ÐN1 2.434 (2) Pb1ÐO1 2.554 (2)

N1ÐPb1ÐN1i 68.27 (11)

N1ÐPb1ÐO1i 77.21 (8) N1ÐPb1ÐO1O1iÐPb1ÐO1 146.23 (11)74.96 (8)

Symmetry code: (i)1

2ÿx;32ÿy;z.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O7ÐH7A O4ii 0.81 (2) 2.09 (2) 2.860 (3) 157 (4)

O3ÐH3 O2ii 0.82 1.73 2.506 (3) 156

C3ÐH3A O3 0.93 2.34 2.676 (4) 101

C3ÐH3A O3ii 0.93 2.27 3.158 (4) 160

C9ÐH9 O1iii 0.93 2.45 3.099 (4) 127

C10ÐH10 O5iv 0.93 2.53 3.292 (4) 140

C11ÐH11 O4v 0.93 2.55 3.390 (4) 150

Symmetry codes: (ii) 1ÿx;1ÿy;2ÿz; (iii) x;yÿ1;z; (iv) 1ÿx;yÿ3 2;32ÿz; (v)

1ÿx;yÿ1 2;32ÿz.

The water H atom was located and re®ned with an OÐH distance restraint [OÐH = 0.82 (2) AÊ] and withUiso(H) = 1.5Ueq(O). The

other H atoms were placed in calculated positions (CÐH = 0.93 AÊ) and included in the re®nement in the riding-model approximation, withUiso(H) values set at 1.2Ueq(parent atom).

Data collection:SMART(Bruker, 2000); cell re®nement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

The authors acknowledge ®nancial support from the Wenzhou Science and Technology project of China (No. S2003A008).

References

Bruker (2000).SMART(Version 5.618),SAINT(Version 6.02a),SADABS

(Version 2.03) andSHELXTL(Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

m1502

Xiao and Yuan [Pb(C8H4NO6)2(C12H8N2)]H2O Acta Cryst.(2004). E60, m1501±m1503 Figure 2

The three-dimensional network in (I), formed by hydrogen bonds and± stacking interactions.

Figure 1

The coordination environment of the Pb atom in (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level. Unlabelled atoms are related to labelled atoms by1

(3)

Foreman, M. R. St J., Gelbrich, T., Hursthouse, M. B. & Plater, M. J. (2000).

Inorg. Chem. Commun.3, 234±238.

Hu, M. L., Xiao, H. P. & Yuan, J. X. (2004).Acta Cryst. C60, m112±m113. Sun, D. F., Cao, R., Sun, Y. Q., Bi, W. H., Yuan, D. Q., Shi, Q. & Li, X. (2003).

Chem. Commun.pp. 1528±1529.

Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. (1998).Acc. Chem. Res.31, 474±484.

Yuan, Y. P., Mao, J. G. & Song, J. L. (2004).J. Solid State Chem.177, 922± 927.

metal-organic papers

(4)

supporting information

sup-1 Acta Cryst. (2004). E60, m1501–m1503

supporting information

Acta Cryst. (2004). E60, m1501–m1503 [https://doi.org/10.1107/S1600536804023189]

Bis(hydrogen 5-nitroisophthalato)(1,10-phenanthroline)lead(II) monohydrate

Hong-Ping Xiao and Ji-Xin Yuan

Bis(hydrogen 5-nitroisophthalato)(1,10-phenanthroline)lead(II) monohydrate

Crystal data

[Pb(C8H4NO6)2(C12H8N2)]·H2O

Mr = 825.65

Orthorhombic, Pccn Hall symbol: -P 2ab 2ac a = 22.6083 (17) Å b = 6.2232 (5) Å c = 20.0394 (15) Å V = 2819.5 (4) Å3

Z = 4

F(000) = 1600 Dx = 1.945 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 853 reflections θ = 2.3–23.2°

µ = 6.06 mm−1

T = 293 K Prism, colourless 0.26 × 0.13 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.302, Tmax = 0.530

13880 measured reflections 2543 independent reflections 2003 reflections with I > 2σ(I) Rint = 0.030

θmax = 25.2°, θmin = 1.8°

h = −20→27 k = −7→7 l = −23→24

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.021

wR(F2) = 0.054

S = 1.04 2543 reflections 213 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0253P)2 + 1.2381P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.64 e Å−3

Δρmin = −0.42 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2004). E60, m1501–m1503

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Pb1 0.2500 0.7500 0.904950 (8) 0.03181 (8) O1 0.34422 (10) 0.9424 (4) 0.86794 (13) 0.0423 (6) O2 0.36931 (10) 0.6618 (4) 0.92858 (14) 0.0471 (6) O3 0.57389 (11) 0.5822 (5) 0.99528 (18) 0.0786 (11)

H3 0.5985 0.5322 1.0210 0.118*

O4 0.64384 (10) 0.8229 (4) 0.97585 (13) 0.0484 (6) O5 0.58348 (16) 1.4197 (6) 0.8245 (2) 0.1108 (15) O6 0.49290 (15) 1.4638 (5) 0.79860 (17) 0.0787 (10)

O7 0.2500 0.2500 0.9500 (2) 0.105 (2)

N1 0.28146 (11) 0.5626 (4) 0.80440 (12) 0.0272 (6) N2 0.53229 (17) 1.3657 (6) 0.82561 (19) 0.0614 (10) C1 0.38201 (15) 0.8328 (6) 0.89767 (17) 0.0348 (8) C2 0.44522 (14) 0.9112 (5) 0.89687 (16) 0.0334 (8) C3 0.48973 (15) 0.8019 (5) 0.93080 (19) 0.0358 (8)

H3A 0.4806 0.6756 0.9534 0.043*

C4 0.54736 (13) 0.8772 (5) 0.93168 (17) 0.0338 (8) C5 0.56154 (15) 1.0644 (6) 0.89802 (16) 0.0390 (8)

H5 0.5999 1.1186 0.8988 0.047*

C6 0.51765 (16) 1.1684 (6) 0.86338 (19) 0.0395 (8) C7 0.45961 (15) 1.0970 (5) 0.86251 (17) 0.0379 (8)

H7 0.4308 1.1728 0.8392 0.045*

C8 0.59368 (14) 0.7597 (5) 0.97018 (18) 0.0383 (8) C9 0.31253 (14) 0.3823 (5) 0.80486 (17) 0.0357 (8)

H9 0.3224 0.3210 0.8457 0.043*

C10 0.33097 (16) 0.2810 (5) 0.7468 (2) 0.0399 (9)

H10 0.3529 0.1548 0.7490 0.048*

C11 0.31675 (15) 0.3676 (5) 0.68679 (18) 0.0384 (8)

H11 0.3289 0.3007 0.6476 0.046*

C12 0.28363 (14) 0.5583 (5) 0.68380 (16) 0.0324 (7) C13 0.26705 (13) 0.6529 (5) 0.74480 (17) 0.0289 (7) C14 0.26590 (17) 0.6597 (6) 0.62321 (18) 0.0430 (9)

H14 0.2768 0.5984 0.5827 0.052*

H7A 0.2781 (15) 0.265 (6) 0.9750 (18) 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2004). E60, m1501–m1503

O3 0.0313 (14) 0.077 (2) 0.128 (3) −0.0167 (14) −0.0275 (16) 0.069 (2) O4 0.0268 (13) 0.0628 (15) 0.0556 (17) −0.0085 (11) −0.0058 (12) 0.0191 (14) O5 0.062 (2) 0.098 (3) 0.172 (4) −0.021 (2) 0.010 (2) 0.085 (3) O6 0.076 (2) 0.0595 (19) 0.101 (3) 0.0011 (16) −0.0095 (18) 0.0459 (19) O7 0.033 (3) 0.240 (8) 0.041 (3) 0.030 (3) 0.000 0.000 N1 0.0242 (14) 0.0261 (13) 0.0311 (15) 0.0066 (11) 0.0003 (11) 0.0035 (12) N2 0.058 (2) 0.048 (2) 0.078 (3) −0.0034 (19) 0.010 (2) 0.031 (2) C1 0.0279 (18) 0.0378 (18) 0.039 (2) 0.0009 (16) −0.0022 (14) 0.0058 (16) C2 0.0258 (17) 0.0352 (19) 0.039 (2) −0.0011 (14) −0.0031 (14) 0.0087 (15) C3 0.0292 (18) 0.0342 (19) 0.044 (2) −0.0014 (13) 0.0012 (16) 0.0142 (15) C4 0.0269 (17) 0.036 (2) 0.0380 (19) 0.0006 (14) 0.0022 (15) 0.0096 (16) C5 0.0279 (18) 0.043 (2) 0.046 (2) −0.0059 (15) 0.0049 (15) 0.0082 (17) C6 0.042 (2) 0.0322 (17) 0.044 (2) −0.0032 (17) 0.0046 (17) 0.0141 (17) C7 0.0330 (19) 0.037 (2) 0.044 (2) 0.0051 (15) −0.0017 (15) 0.0117 (16) C8 0.0272 (18) 0.047 (2) 0.041 (2) −0.0021 (15) −0.0014 (15) 0.0129 (18) C9 0.0338 (19) 0.0318 (19) 0.041 (2) 0.0084 (14) 0.0016 (15) 0.0051 (15) C10 0.038 (2) 0.0299 (19) 0.052 (2) 0.0137 (14) 0.0071 (17) −0.0030 (16) C11 0.041 (2) 0.038 (2) 0.036 (2) 0.0093 (16) 0.0069 (16) −0.0053 (16) C12 0.0333 (19) 0.0355 (18) 0.0283 (18) 0.0032 (15) 0.0060 (14) −0.0037 (15) C13 0.0238 (16) 0.0282 (15) 0.0349 (19) −0.0007 (13) −0.0040 (13) 0.0053 (15) C14 0.055 (2) 0.051 (2) 0.0237 (18) 0.0092 (17) 0.0027 (16) −0.0030 (17)

Geometric parameters (Å, º)

Pb1—N1 2.434 (2) C3—H3A 0.93

Pb1—N1i 2.434 (2) C4—C5 1.384 (4)

Pb1—O1i 2.554 (2) C4—C8 1.492 (4)

Pb1—O1 2.554 (2) C5—C6 1.373 (5)

O1—C1 1.245 (4) C5—H5 0.93

O2—C1 1.264 (5) C6—C7 1.385 (5)

O3—C8 1.294 (4) C7—H7 0.93

O3—H3 0.82 C9—C10 1.388 (5)

O4—C8 1.206 (4) C9—H9 0.93

O5—N2 1.205 (4) C10—C11 1.356 (5)

O6—N2 1.208 (4) C10—H10 0.93

O7—H7A 0.81 (2) C11—C12 1.405 (4)

N1—C9 1.324 (4) C11—H11 0.93

N1—C13 1.359 (4) C12—C13 1.407 (4)

N2—C6 1.480 (5) C12—C14 1.426 (5)

C1—C2 1.510 (5) C13—C13i 1.434 (6)

C2—C7 1.385 (4) C14—C14i 1.334 (7)

C2—C3 1.392 (4) C14—H14 0.93

C3—C4 1.385 (4)

N1—Pb1—N1i 68.27 (11) C4—C5—H5 120.8

N1—Pb1—O1i 77.21 (8) C5—C6—C7 122.7 (3)

N1i—Pb1—O1i 74.96 (8) C5—C6—N2 119.2 (3)

(7)

supporting information

sup-4 Acta Cryst. (2004). E60, m1501–m1503

N1i—Pb1—O1 77.21 (8) C2—C7—C6 119.0 (3)

O1i—Pb1—O1 146.23 (11) C2—C7—H7 120.5

C1—O1—Pb1 100.2 (2) C6—C7—H7 120.5

C8—O3—H3 109.5 O4—C8—O3 124.5 (3)

C9—N1—C13 118.9 (3) O4—C8—C4 123.3 (3)

C9—N1—Pb1 123.7 (2) O3—C8—C4 112.1 (3)

C13—N1—Pb1 117.3 (2) N1—C9—C10 122.6 (3)

O5—N2—O6 124.0 (4) N1—C9—H9 118.7

O5—N2—C6 117.1 (3) C10—C9—H9 118.7

O6—N2—C6 118.9 (3) C11—C10—C9 119.5 (3)

O1—C1—O2 122.7 (3) C11—C10—H10 120.3

O1—C1—C2 117.8 (3) C9—C10—H10 120.3

O2—C1—C2 119.5 (3) C10—C11—C12 120.0 (3)

C7—C2—C3 118.8 (3) C10—C11—H11 120.0

C7—C2—C1 119.9 (3) C12—C11—H11 120.0

C3—C2—C1 121.4 (3) C11—C12—C13 117.3 (3)

C4—C3—C2 121.4 (3) C11—C12—C14 124.1 (3)

C4—C3—H3A 119.3 C13—C12—C14 118.7 (3)

C2—C3—H3A 119.3 N1—C13—C12 121.8 (3)

C5—C4—C3 119.8 (3) N1—C13—C13i 118.50 (17)

C5—C4—C8 120.1 (3) C12—C13—C13i 119.72 (19)

C3—C4—C8 120.1 (3) C14i—C14—C12 121.6 (2)

C6—C5—C4 118.4 (3) C14i—C14—H14 119.2

C6—C5—H5 120.8 C12—C14—H14 119.2

Symmetry code: (i) −x+1/2, −y+3/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O7—H7A···O4ii 0.81 (2) 2.09 (2) 2.860 (3) 157 (4)

O3—H3···O2ii 0.82 1.73 2.506 (3) 156

C3—H3A···O3 0.93 2.34 2.676 (4) 101

C3—H3A···O3ii 0.93 2.27 3.158 (4) 160

C9—H9···O1iii 0.93 2.45 3.099 (4) 127

C10—H10···O5iv 0.93 2.53 3.292 (4) 140

C11—H11···O4v 0.93 2.55 3.390 (4) 150

References

Related documents

For robustness purposes, taking the fifth model in Table 3 as benchmark, we also run the regressions involving real capital flows per capita as the dependent

We have presented an approach for generating rel- evant, deep questions that are broad in scope and apply to a wide range of documents, all without constructing a

In this section, feasibility studies of covering these risks have been investigated that damage coefficient indicators and profit margin of oil and energy insurance have been

between carbon emissions and economic growth for Canada, France, Germany, Italy, U.K. and

The odds of patients with good knowledge of diabetes having good practice patterns regarding retinopathy were 3.9 (1.97-7.94) times those of patients with poor knowledge

to taking care of children and elderly. Still domestic work is not accorded the value it ought to. There are many other care services that are professionalized, for

We have presented an approach to the automatic identification of triggers of causal discourse rela- tions in biomedical scientific text.. The task has proven to be a highly complex

The lexical simplification dataset from Task 1 at SemEval 2012 (De Belder and Moens, 2012) was used to compare several measures of word frequency as shown in Table 1.. Candidate