• No results found

4 Allyl 2 meth­­oxy 5 nitro­phenyl acetate

N/A
N/A
Protected

Academic year: 2020

Share "4 Allyl 2 meth­­oxy 5 nitro­phenyl acetate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1782

Carrasco-Altamiranoet al. C

12H13NO5 doi:10.1107/S1600536806012177 Acta Cryst.(2006). E62, o1782–o1784 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-Allyl-2-methoxy-5-nitrophenyl acetate

Hector Carrasco-Altamirano,a Luis Espinoza-Catala´n,bClaudio Gallardo-Araya,bWilson Cardona-Villada,aAndres Iban˜ezcand Luis Alvarez-Thond*

aDepartamento de Ciencias Quı´micas,

Univer-sidad Andre´s Bello, Campus Vin˜a del Mar, Los Fresnos 52, Vin˜a del Mar, Chile,bDepartamento de Quı´mica, Universidad Federico Santa Marı´a, Avenida Espan˜a 1680, Valparaı´so, Chile, c

CIMAT, Departamento de Fı´sica, Facultad de Ciencias Fı´sicas y Matema´ticas, Universidad de Chile, Casilla 487-3, Santiago de Chile, Chile, anddDepartamento de Ciencias Quı´micas, Universidad Andre´s Bello, Republica 275, Santiago de Chile, Chile

Correspondence e-mail: quaternionic@gmail.com

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.045 wRfactor = 0.113

Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 20 March 2006 Accepted 3 April 2006

#2006 International Union of Crystallography All rights reserved

Molecules of the title compound, C12H13NO5, are linked into

chainsviaweak C—H (allyl) interactions and these chains are linked into sheets via C—H O contacts; the sheets, in turn, are interconnected via carbonyl–carbonyl and nitro–

stacking interactions to form a three-dimensional crystal structure.

Comment

Polyphenolic acids found in wines have acquired great importance owing to their possible role in the prevention of cancer as well as their generation of a series of cellular responses to stress. These properties are thought to arise due to the capacity of these acids to participate in processes associated with the capture of free radicals (Borset al., 2002). It has been stated that the anti-oxidant capacity of these compounds increases with the number of hydroxyl groups present in the molecule. This observation led our research group to investigate other naturally occurring compounds possessing similar structural characteristics. A prominent example is that of a natural product, eugenol (4-allyl-2-methoxyphenol), which is known to possess anti-oxidant properties (Wieet al., 1997; Fujisawaet al., 2002). We report here the synthesis and crystal structure of the title compound, (I), which was obtained by treating 4-allyl-2-methoxiacetate with a mixture of sulfuric acid and nitric acid in dichloro-methane solution. It is important to emphasize that in the above reaction both isomers were formed, (I) and 4-allyl-2-methoxy-3-nitrophenylacetate, but that upon recrystallization from a mixture of ethyl acetate/n-hexane, we managed to separate completely one of the products, whose structure has been determined by NMR and X-ray diffraction.

(2)

nitro group is tilted towards atom C6, as seen in the N1—C1— C6 angle of 115.61 (19).

There are no conventional intermolecular hydrogen bonds in (I) and the entire supramolecular structure is constructed only by weak interactions. Chains along the [101] direction are formed via C—H (allyl) interactions (the distance from H12Bto the C7ii C8iibond is 2.79 A˚ ) and these chains are linkedviatwo C—H O contacts forming sheets parallel to the (101) plane (see Fig. 2). These sheets are connected into a three-dimensional networkviainteractions of the type shown in Fig. 3. Thus, a carbonyl–carbonyl interaction (Allenet al., 1998) exists where the C—O dipole is attracted by the C—O dipole at (2x, 2y, 2z). Furthermore, there are nitro–

stacking interactions, where the distance from atom O1vto the center of the phenyl ring at (1 x,1

2+ y, 3

2z) is 3.53 A˚

(symmetry code as in Fig. 3). This is another example where

the strong electron-withdrawing NO2group interacts with the system of a phenyl ring (Kaafaraniet al., 2003).

Experimental

To a stirred solution of 4-allyl-2-methoxyphenyl acetate (200 mg, 0.97 mmol) in dichloromethane (5 ml) was added carefully, at 273 K, 2 ml of a mixture prepared by adding concentrated nitric acid (25 ml, 0.364 mol) to concentrated sulfuric acid (1 ml, 0.727 mol). The reac-tion was allowed to continue for 30 minutes and, after this period, the complete disappearance of the starting product was confirmed by means of thin layer chromatography (AcOEt:n-hexane 1:3). The reaction was stopped by adding water (15 ml). The organic layer was washed with water (320 ml) in order to extract excess acid and dried with Na2SO4. The solution was then filtered and the solvent

evaporated at low pressure to obtain an oily product, which was purified by flash chromatography (AcOEt:n-hexane), resulting in 89 mg (35%) of a mixture of pure isomers. The mixture of isomers was recrystallized from a mixture of AcOEt/n-hexane (1:3) and crystals of (I) suitable for X-ray analysis were obtained.1H NMR (400 MHz, CDCl3, p.p.m.):2.32 (s, 3H, CH3CO), 3.76 (d, 2H,J=

6.4 Hz, H9), 3.91 (s, 3H, OCH3), 5.14 (m, 2H, H7), 5.98 (ddt, 1H,J=

16.6, 10.3 and 6.4 Hz, H8), 6.85 (s, 1H, H6), 7.83 (s, 1H, H3);13C NMR (100 MHz, CDCl3, p.p.m.): 20.44 (C12), 37.70 (C9), 56.34 (C10),

114.17 (C3), 117.44 (C7), 120.66 (C6), 134.82 (C8), 136.05 (C2), 137.66 (C5), 140.88 (C1), 155.09 (C4), 168.36 (C11).

Crystal data

C12H13NO5 Mr= 251.23

Monoclinic,P21=c a= 10.209 (2) A˚

b= 15.651 (3) A˚

c= 7.8920 (17) A˚

= 104.822 (4)

V= 1219.0 (4) A˚3

Z= 4

Dx= 1.369 Mg m

3

MoKradiation

= 0.11 mm1

T= 298 K Polyhedral, yellow 0.370.360.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: none 9643 measured reflections

2482 independent reflections 1177 reflections withI> 2(I)

Rint= 0.068 max= 26.4

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.045 wR(F2) = 0.113 S= 0.81 2482 reflections 165 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0545P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.26 e A˚

3

min=0.12 e A˚

3

organic papers

Acta Cryst.(2006). E62, o1782–o1784 Carrasco-Altamiranoet al. C

[image:2.610.46.298.69.235.2]

12H13NO5

o1783

Figure 1

Molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level and showing the atom-labeling scheme.

Figure 2

Part of the crystal structure, showing the formation of sheets parallel to the (101) plane. C—H and C—H O interactions are shown as dotted and dashed lines, respectively. H atoms not involved in these interactions have been omitted. [Symmetry codes: (i) 1x,1

2+y, 3 2z;

[image:2.610.315.565.73.147.2]

(ii) 1 +x,y, 1 +z; (iii)1 +x,y,1 +z].

Figure 3

Detail of the carbonyl–carbonyl and the nitro--stacking interactions (dotted lines) linking sheets (see text). H atoms have been omitted. [Symmetry codes: (i) 1x,1

2+y, 3

2z; (iv) 2x, 2y, 2z; (v)x, 3 2 y,1

[image:2.610.46.294.281.469.2]
(3)
[image:3.610.44.298.96.189.2]

Table 1

Selected geometric parameters (A˚ ,).

O1—N1 1.219 (3) O2—N1 1.207 (3) O3—C4 1.346 (3) O3—C10 1.424 (2) O4—C11 1.185 (3)

O5—C5 1.388 (3) O5—C11 1.373 (3) N1—C1 1.465 (3) C7—C8 1.204 (4)

N1—C1—C2 122.36 (19) N1—C1—C6 115.61 (19)

C2—C1—C6 122.0 (2)

O2—N1—C1—C6 176.9 (2) O1—N1—C1—C2 175.2 (2)

O2—N1—C1—C2 4.8 (3) O1—N1—C1—C6 3.2 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C6—H6 O1 0.93 2.31 2.641 (3) 100 C8—H8 O2 0.93 2.58 3.035 (3) 111 C9—H9A O2 0.97 2.29 2.753 (3) 108 C10—H10A O2i

0.96 2.83 3.396 (3) 119 C3—H3 O1i

0.93 2.72 3.637 (3) 167

Symmetry code: (i)xþ1;y1 2;zþ

3 2.

H atoms were placed in geometrically idealized positions and constrained to ride on their parents atoms, with C—H = 0.93–0.97 A˚ , and withUiso(H) equal to 1.2 (1.5 for methyl) timesUeqof the parent

atom.

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:XPin

SHELXTL-PC(Sheldrick, 1994); software used to prepare material for publication:PLATON(Spek, 2003) andMERCURY (Brunoet al., 2002).

The authors thank Andre´s Bello University (grants DI-UNAB 12-04 and DI-DI-UNAB 13-04) for financial support and also thank CIMAT for the use of the diffractometer. We also thank Dr Victor Ca´rdenas for his valuable contribution in the preparation of this paper.

References

Allen, F. H., Baalham, C., Lommerse, J. P. M. & Raithby, P. R. (1998).Acta Cryst.B54, 320–329.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bors, W., Kazazic, S. P., Michel, C., Kortenska, V. D., Stettmaier, K. & Klasinc, L. (2002).Int. J. Quantum Chem.90, 969–979.

Bruker (2000).SAINT.Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001).SMART.Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002).Acta Cryst.B58, 389–397.

Fujisawa, S., Atsumi, T., Kadoma, Y. & Sakagami, H. (2002).Toxicology,177, 39–54.

Kaafarani, B. R., Wex, B., Oliver, A. G., Krause-Bauer, J. A. & Neckers, D. C. (2003).Acta Cryst.E59, o227–o229.

Sheldrick, G. M. (1994).SHELXTL-PC. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Wie, M.-B. W., Won, M.-H., Lee, K.-H., Shin, J.-H., Suh, H.-W., Song, D.-K. & Kim, Y.-H. K. (1997).Neurosci. Lett.225, 93–96.

organic papers

o1784

Carrasco-Altamiranoet al. C

(4)

supporting information

sup-1

Acta Cryst. (2006). E62, o1782–o1784

supporting information

Acta Cryst. (2006). E62, o1782–o1784 [https://doi.org/10.1107/S1600536806012177]

4-Allyl-2-methoxy-5-nitrophenyl acetate

Hector Carrasco-Altamirano, Luis Espinoza-Catal

á

n, Claudio Gallardo-Araya, Wilson

Cardona-Villada, Andres Iba

ñ

ez and Luis Alvarez-Thon

4-allyl-2-methoxy-5-nitrophenylacetate

Crystal data

C12H13NO5 Mr = 251.23 Monoclinic, P21/c Hall symbol: -P 2ybc

a = 10.209 (2) Å

b = 15.651 (3) Å

c = 7.8920 (17) Å

β = 104.822 (4)°

V = 1219.0 (4) Å3 Z = 4

F(000) = 528

Dx = 1.369 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 822 reflections

θ = 2.1–26.4°

µ = 0.11 mm−1 T = 298 K

Polyhedron, yellow 0.37 × 0.36 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer

φ and ω scans

9643 measured reflections 2482 independent reflections 1177 reflections with I > 2σ(I)

Rint = 0.068

θmax = 26.4°, θmin = 2.1° h = −12→12

k = −19→19

l = −9→9

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.045 wR(F2) = 0.113 S = 0.81 2482 reflections 165 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0545P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

Δρmax = 0.26 e Å−3 Δρmin = −0.12 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, o1782–o1784

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.52732 (18) 1.09009 (11) 0.7496 (2) 0.0999 (8)

O2 0.37817 (19) 1.00379 (11) 0.6098 (2) 0.1077 (8)

O3 0.81043 (14) 0.76771 (8) 1.11320 (18) 0.0657 (5)

O4 1.00686 (14) 0.89882 (10) 1.0131 (2) 0.0759 (6)

O5 0.86427 (14) 0.93270 (8) 1.17710 (17) 0.0630 (6)

N1 0.4828 (2) 1.01789 (13) 0.7185 (3) 0.0692 (8)

C1 0.5604 (2) 0.94721 (14) 0.8176 (3) 0.0554 (8)

C2 0.52360 (19) 0.86248 (14) 0.7831 (2) 0.0548 (8)

C3 0.6084 (2) 0.80148 (13) 0.8837 (3) 0.0566 (8)

C4 0.72362 (19) 0.82280 (13) 1.0112 (3) 0.0522 (8)

C5 0.7545 (2) 0.90877 (13) 1.0417 (3) 0.0533 (7)

C6 0.6750 (2) 0.97034 (13) 0.9450 (3) 0.0566 (8)

C7 0.2012 (3) 0.7791 (2) 0.7397 (4) 0.1385 (17)

C8 0.2749 (2) 0.83573 (19) 0.7175 (4) 0.0937 (11)

C9 0.3999 (2) 0.82926 (15) 0.6513 (3) 0.0713 (9)

C10 0.8003 (2) 0.67947 (13) 1.0676 (3) 0.0758 (9)

C11 0.9906 (2) 0.92169 (13) 1.1494 (3) 0.0606 (8)

C12 1.0950 (2) 0.94373 (15) 1.3109 (3) 0.0879 (10)

H3 0.58650 0.74400 0.86420 0.0680*

H6 0.69770 1.02770 0.96450 0.0680*

H7A 0.21930 0.72290 0.71480 0.1660*

H7B 0.12620 0.79150 0.78180 0.1660*

H8 0.25130 0.89050 0.74480 0.1130*

H9A 0.38660 0.86170 0.54350 0.0860*

H9B 0.41450 0.77000 0.62520 0.0860*

H10A 0.71100 0.65920 1.06450 0.1140*

H10B 0.86590 0.64760 1.15320 0.1140*

H10C 0.81740 0.67210 0.95440 0.1140*

H12A 1.18230 0.94530 1.28620 0.1320*

H12B 1.09540 0.90150 1.39920 0.1320*

H12C 1.07520 0.99870 1.35210 0.1320*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.1105 (15) 0.0648 (11) 0.1144 (15) 0.0097 (11) 0.0105 (12) 0.0177 (11)

O2 0.0919 (13) 0.0989 (14) 0.1074 (13) 0.0147 (11) −0.0199 (12) 0.0163 (11)

O3 0.0672 (10) 0.0537 (9) 0.0678 (9) 0.0014 (8) 0.0020 (8) 0.0059 (7)

(6)

supporting information

sup-3

Acta Cryst. (2006). E62, o1782–o1784

O5 0.0600 (10) 0.0652 (10) 0.0595 (9) −0.0076 (7) 0.0073 (8) −0.0060 (7)

N1 0.0728 (14) 0.0680 (14) 0.0681 (13) 0.0132 (12) 0.0202 (11) 0.0112 (12)

C1 0.0540 (13) 0.0582 (14) 0.0556 (13) 0.0094 (11) 0.0170 (11) 0.0041 (11)

C2 0.0485 (12) 0.0650 (15) 0.0511 (12) 0.0018 (11) 0.0129 (10) 0.0017 (11)

C3 0.0570 (13) 0.0527 (13) 0.0606 (13) −0.0058 (11) 0.0160 (11) −0.0022 (11)

C4 0.0504 (13) 0.0528 (13) 0.0532 (13) 0.0011 (11) 0.0128 (11) 0.0036 (11)

C5 0.0518 (13) 0.0563 (13) 0.0514 (12) −0.0040 (11) 0.0124 (11) −0.0032 (11)

C6 0.0625 (14) 0.0506 (13) 0.0581 (13) 0.0006 (11) 0.0182 (12) −0.0026 (11)

C7 0.098 (3) 0.141 (3) 0.177 (3) 0.003 (2) 0.036 (2) 0.052 (3)

C8 0.0551 (16) 0.114 (2) 0.100 (2) −0.0099 (15) −0.0023 (15) 0.0122 (17)

C9 0.0594 (15) 0.0818 (16) 0.0668 (15) −0.0004 (12) 0.0055 (13) 0.0001 (12)

C10 0.0868 (17) 0.0549 (14) 0.0837 (16) 0.0098 (13) 0.0182 (13) 0.0068 (12)

C11 0.0581 (15) 0.0504 (13) 0.0679 (16) −0.0034 (11) 0.0064 (13) 0.0105 (12)

C12 0.0690 (16) 0.100 (2) 0.0812 (17) −0.0148 (14) −0.0056 (14) −0.0010 (14)

Geometric parameters (Å, º)

O1—N1 1.219 (3) C8—C9 1.501 (3)

O2—N1 1.207 (3) C11—C12 1.478 (3)

O3—C4 1.346 (3) C3—H3 0.9300

O3—C10 1.424 (2) C6—H6 0.9300

O4—C11 1.185 (3) C7—H7A 0.9300

O5—C5 1.388 (3) C7—H7B 0.9300

O5—C11 1.373 (3) C8—H8 0.9300

N1—C1 1.465 (3) C9—H9A 0.9700

C1—C2 1.386 (3) C9—H9B 0.9700

C1—C6 1.382 (3) C10—H10A 0.9600

C2—C3 1.393 (3) C10—H10B 0.9600

C2—C9 1.508 (3) C10—H10C 0.9600

C3—C4 1.379 (3) C12—H12A 0.9600

C4—C5 1.389 (3) C12—H12B 0.9600

C5—C6 1.361 (3) C12—H12C 0.9600

C7—C8 1.204 (4)

O2···C8 3.035 (3) C3···H10A 2.7100

O2···C10i 3.396 (3) C6···H12Aiii 2.9200

O2···C12ii 3.364 (3) C8···H12Bii 2.8900

O2···C9 2.753 (3) C10···H12Cx 3.1000

O3···C11 3.001 (3) C10···H3 2.5600

O3···O5 2.6613 (19) C12···H7Axi 3.0800

O3···O4 3.109 (2) H3···C10 2.5600

O4···C4 3.123 (3) H3···H9B 2.2600

O4···C11iii 3.091 (3) H3···H10A 2.2000

O4···O3 3.109 (2) H3···H10C 2.5400

O4···O4iii 3.175 (2) H3···O1viii 2.7200

O5···O3 2.6613 (19) H6···O1 2.3100

O1···H3i 2.7200 H6···H8vi 2.5600

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, o1782–o1784

O1···H6 2.3100 H7A···C12xii 3.0800

O2···H10Ai 2.8300 H8···O2 2.5800

O2···H9A 2.2900 H8···H6vi 2.5600

O2···H8 2.5800 H9A···O2 2.2900

O3···H10Cv 2.8400 H9A···N1 2.8600

O5···H10Cv 2.8700 H9A···O1iv 2.7800

N1···C6vi 3.445 (3) H9B···H3 2.2600

N1···H9A 2.8600 H9B···H7A 2.3900

C3···C10vii 3.557 (3) H10A···C3 2.7100

C4···O4 3.123 (3) H10A···H3 2.2000

C6···N1vi 3.445 (3) H10A···O2viii 2.8300

C8···O2 3.035 (3) H10A···C2v 2.9100

C9···O2 2.753 (3) H10A···C3v 3.0300

C10···C3v 3.557 (3) H10B···H12Cx 2.4100

C10···O2viii 3.396 (3) H10C···C3 2.8900

C11···C11iii 3.441 (3) H10C···H3 2.5400

C11···O3 3.001 (3) H10C···O3vii 2.8400

C11···O4iii 3.091 (3) H10C···O5vii 2.8700

C12···O2ix 3.364 (3) H12A···C6iii 2.9200

C2···H10Avii 2.9100 H12B···C8ix 2.8900

C3···H10Avii 3.0300 H12C···C10xiii 3.1000

C3···H10C 2.8900 H12C···H10Bxiii 2.4100

C4—O3—C10 118.42 (16) C4—C3—H3 119.00

C5—O5—C11 116.74 (16) C1—C6—H6 120.00

O1—N1—O2 121.9 (2) C5—C6—H6 120.00

O1—N1—C1 118.0 (2) C8—C7—H7A 120.00

O2—N1—C1 120.05 (19) C8—C7—H7B 120.00

N1—C1—C2 122.36 (19) H7A—C7—H7B 120.00

N1—C1—C6 115.61 (19) C7—C8—H8 116.00

C2—C1—C6 122.0 (2) C9—C8—H8 116.00

C1—C2—C3 116.50 (18) C2—C9—H9A 109.00

C1—C2—C9 127.03 (19) C2—C9—H9B 109.00

C3—C2—C9 116.46 (19) C8—C9—H9A 109.00

C2—C3—C4 122.67 (19) C8—C9—H9B 109.00

O3—C4—C3 126.13 (18) H9A—C9—H9B 108.00

O3—C4—C5 115.56 (19) O3—C10—H10A 110.00

C3—C4—C5 118.31 (19) O3—C10—H10B 109.00

O5—C5—C4 119.85 (18) O3—C10—H10C 109.00

O5—C5—C6 119.27 (18) H10A—C10—H10B 109.00

C4—C5—C6 120.8 (2) H10A—C10—H10C 110.00

C1—C6—C5 119.7 (2) H10B—C10—H10C 109.00

C7—C8—C9 128.3 (3) C11—C12—H12A 109.00

C2—C9—C8 111.9 (2) C11—C12—H12B 109.00

O4—C11—O5 122.5 (2) C11—C12—H12C 109.00

O4—C11—C12 128.0 (2) H12A—C12—H12B 109.00

O5—C11—C12 109.45 (18) H12A—C12—H12C 109.00

(8)

supporting information

sup-5

Acta Cryst. (2006). E62, o1782–o1784

C10—O3—C4—C3 12.8 (3) N1—C1—C2—C3 178.2 (2)

C10—O3—C4—C5 −168.14 (18) C3—C2—C9—C8 99.8 (2)

C11—O5—C5—C4 75.6 (2) C9—C2—C3—C4 −178.8 (2)

C5—O5—C11—C12 −175.49 (17) C1—C2—C9—C8 −78.7 (3)

C5—O5—C11—O4 5.3 (3) C1—C2—C3—C4 −0.2 (3)

C11—O5—C5—C6 −107.1 (2) C2—C3—C4—C5 1.1 (3)

O2—N1—C1—C6 −176.9 (2) C2—C3—C4—O3 −179.9 (2)

O1—N1—C1—C2 −175.2 (2) O3—C4—C5—O5 −3.6 (3)

O2—N1—C1—C2 4.8 (3) C3—C4—C5—O5 175.51 (19)

O1—N1—C1—C6 3.2 (3) C3—C4—C5—C6 −1.7 (3)

C6—C1—C2—C3 −0.1 (3) O3—C4—C5—C6 179.1 (2)

N1—C1—C2—C9 −3.3 (3) C4—C5—C6—C1 1.5 (3)

C6—C1—C2—C9 178.4 (2) O5—C5—C6—C1 −175.74 (19)

C2—C1—C6—C5 −0.6 (3) C7—C8—C9—C2 −120.2 (3)

N1—C1—C6—C5 −179.0 (2)

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x−1, y, z−1; (iii) −x+2, −y+2, −z+2; (iv) −x+1, −y+2, −z+1; (v) x, −y+3/2, z+1/2; (vi) −x+1, −y+2, −z+2; (vii) x, −y+3/2, z−1/2; (viii) −x+1, y−1/2, −z+3/2; (ix) x+1, y, z+1; (x) −x+2, y−1/2, −z+5/2; (xi) x+1, −y+3/2, z+1/2; (xii) x−1, −y+3/2, z−1/2; (xiii) −x+2, y+1/2, −z+5/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C6—H6···O1 0.93 2.31 2.641 (3) 100

C8—H8···O2 0.93 2.58 3.035 (3) 111

C9—H9A···O2 0.97 2.29 2.753 (3) 108

C10—H10A···O2viii 0.96 2.83 3.396 (3) 119

C3—H3···O1viii 0.93 2.72 3.637 (3) 167

Figure

Figure 3
Table 1

References

Related documents

As shown in Figure 2A, 2B, the mRNA and protein expression levels of PTTG1 were significantly decreased in EC-1 and Eca-109 cells transfected with PTTG1 siRNA compared

It was found that for certn.in isoJated bond types" like C-Hand C-C" the charge in the orbital on either of the atoms involved in bond fornntion can be expressed as a

Ook zullen de resultaten vooraf berekend worden, waarna deze in hoofdstuk vier met de resultaten vergeleken kunnen worden.. De proefopstelling en onderdelen ervan zijn

Kingshook Biswas and Mahan Mj, Pattern rigidity in hyperbolic spaces: Duality and PD subgroups, Groups Geom. Hadi Bigdely and

By combining the drift-based models for shear and axial failure in conjunction with yield drift for the section Elwood and Moehle (2006) proposed an empirical backbone model to

A major determinant of overdispersion is the spatial clumping of infective stages (Anderson. However, amongst thelastomatids of cockroaches. clumping of infective

Given that the signal model in (1) is identical to that of a narrow-band system, b k and z k can be chosen to independently maximize the SNR for each subcarrier using the principles

This article will describe the different types, structures, catalytic properties of inorganic pyrophosphatases and their involvement in cellular metabolism..