• No results found

2 {(E) 3 [(E) 4 Bromo­phenyl­imino­meth­yl] 4 hy­droxy­phenyl­diazen­yl}benzoic acid toluene hemisolvate

N/A
N/A
Protected

Academic year: 2020

Share "2 {(E) 3 [(E) 4 Bromo­phenyl­imino­meth­yl] 4 hy­droxy­phenyl­diazen­yl}benzoic acid toluene hemisolvate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2566

Lindenet al. C

20H14BrN3O30.5C7H8 doi:10.1107/S1600536806019556 Acta Cryst.(2006). E62, o2566–o2568 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-{(

E

)-3-[(

E

)-4-Bromophenyliminomethyl]-4-hydroxyphenyldiazenyl}benzoic acid

toluene hemisolvate

Anthony Linden,a* Tushar S. Basu Baulband Keisham S. Singhb

aInstitute of Organic Chemistry, University of

Zu¨rich, Winterthurerstrasse 190, CH-8057 Zu¨rich, Switzerland, andbDepartment of

Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India

Correspondence e-mail: alinden@oci.unizh.ch

Key indicators

Single-crystal X-ray study T= 160 K

Mean(C–C) = 0.003 A˚ Disorder in solvent or counterion Rfactor = 0.037

wRfactor = 0.098

Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 19 May 2006 Accepted 24 May 2006

#2006 International Union of Crystallography All rights reserved

The polyaromatic title compound, C20H14BrN3O30.5C7H8,

has an extended and reasonably flat conformation. The hydroxy H atoms are involved in intramolecular hydrogen bonds only, while C—H O and C—H Br interactions link the molecules into two-dimensional networks.

Comment

Polyaromatic compounds containing an azo and a Schiff base linkage, such as the title compound, (I), are potential meso-gens (Revannasiddaiah et al., 1997). The coordination beha-viour of such compounds towards organotin(IV) has also been investigated (Basu Baul et al., 2004; Basu Baul, Singh, Holcˇapek, Jira´sko, Linden et al., 2005; Basu Baul, Singh, Holcˇapek, Jira´sko, Rivarola & Linden, 2005; Basu Baul, Singh, Lycˇkaet al., 2005; Lindenet al., 2005). In particular, complexes with tri-n-butyltin(IV) exhibit significant biological activity towards Aedes aegypti and Anopheles stephensi mosquito larvae (Basu Baul et al., 2004; Basu Baul, Singh, Holcˇapek, Jira´sko, Linden et al., 2005) and sea urchin (Paracentrotus

lividus and Sphaerechinus granularis) early development

stages (Basu Baul, Rynjahet al., 2005). The crystal structures of the 4-methylphenyl and 4-chlorophenyl analogues of (I) have already been reported (Basu Baul, Singh, Holcˇapek, Jira´sko, Rivarola & Linden, 2005; Butcheret al., 2005) and are now complemented by a description of the 4-bromo deriva-tive, (I).

The asymmetric unit in (I) contains one molecule of the carboxylic acid plus one half of a toluene molecule which is disordered about a centre of inversion. The three-ring system of (I) has an extended and reasonably flat conformation (Fig. 1). The angles between the plane of the central ring and those of the benzoic acid and 4-bromophenyl rings are 6.01 (11) and 27.78 (11), respectively. The carboxylic acid group is coplanar

with its parent benzene ring [O1—C1—C2—C7 =

(2)

The carboxylic acid H atom forms an intramolecular hydrogen bond with the nearer N atom of the adjacent diazo group, while the phenolic H atom forms an intramolecular hydrogen bond with the adjacent imine N atom. Both of these interactions result in six-membered hydrogen-bonded rings.

The molecules of (I) pack in a way that facilitates several C—H O and C—H Br interactions (Table 1). These interactions link the solvent and substrate molecules together into two-dimensional networks, which lie parallel to the (101) plane (Fig. 2). The C—H O angles are consistent with the most probable value of 160 for two-centre interactions

(Jeffreyet al., 1985).

Experimental

The title compound was prepared as described by Basu Baulet al. (2004). Orange crystals of (I) were obtained by slow evaporation of a solution of the compound in toluene (m.p. 487–489 K). Elemental analysis, found: C 60.04, H 3.78, N 8.97%; calculated for C23.5H18BrN3O3: C 60.01, H 3.85, N 8.93%.

Crystal data

C20H14BrN3O30.5C7H8

Mr= 470.32

Triclinic,P1

a= 8.2708 (3) A˚

b= 10.7547 (3) A˚

c= 12.3929 (3) A˚ = 88.1844 (17)

= 85.3535 (16)

= 69.6152 (13)

V= 1029.91 (5) A˚3

Z= 2

Dx= 1.516 Mg m

3

MoKradiation = 2.03 mm1

T= 160 (1) K Tablet, orange 0.200.130.08 mm

Data collection

Nonius KappaCCD area-detector diffractometer

’and!scans withoffsets Absorption correction: multi-scan

(Blessing, 1995)

Tmin= 0.671,Tmax= 0.795

(expected range = 0.717–0.850)

23736 measured reflections 4718 independent reflections 3707 reflections withI> 2(I)

Rint= 0.047

max= 27.5

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.037

wR(F2) = 0.098

S= 1.03 4718 reflections 304 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.053P)2

+ 0.3064P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.39 e A˚

3

min=0.54 e A˚

[image:2.610.46.291.67.213.2]

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1 N1 0.73 (3) 1.92 (3) 2.593 (2) 154 (4) O3—H3 N3 0.87 (3) 1.76 (3) 2.554 (2) 151 (3) C6—H6 Bri

0.95 2.92 3.630 (2) 133

C12—H12 O3ii

0.95 2.53 3.388 (3) 151

C17—H17 O1iii

0.95 2.49 3.419 (3) 166

C26—H26 O2iv

0.95 2.50 3.374 (6) 153

Symmetry codes: (i)xþ1;yþ1;z1; (ii)xþ2;y;z; (iii)x1;y;zþ1; (iv)

xþ2;yþ1;z.

The asymmetric unit contains one molecule of the carboxylic acid in a general position plus one half of a toluene molecule which is disordered about a centre of inversion, with the centre of gravity of the six-membered ring displaced slightly from the inversion centre. The atoms of one entire toluene molecule were defined with the site-occupation factors of the atoms set to 0.5. The atoms of the six-membered ring of the toluene molecule were constrained to an ideal hexagon, while neighbouring atoms within each orientation of the disordered toluene molecule were restrained to have similar atomic displacement parameters. The carboxylic acid and phenolic H atoms were placed in the positions indicated by a difference Fourier map and their positions were refined freely along with individual isotropic displacement parameters. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 A˚ ) withUiso(H) = 1.5Ueq(C), but

were allowed to rotate freely about the C—C bonds. All other H atoms were placed in geometrically idealised positions and constrained to ride on their parent C atom at a distance of 0.95 A˚ and withUiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure:SIR92 (Altomare et al., 1994);

organic papers

Acta Cryst.(2006). E62, o2566–o2568 Lindenet al. C

[image:2.610.314.568.72.192.2]

20H14BrN3O30.5C7H8

o2567

Figure 1

A view of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Only one orientation of the disordered toluene molecule is shown.

Figure 2

[image:2.610.313.567.400.475.2]
(3)

program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97andPLATON(Spek, 2003).

The financial support of the Department of Science and Technology, New Delhi, India (grant No.SP/S1/IC-03/2005 to TSBB), is gratefully acknowledged.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Basu Baul, T. S., Rynjah, W., Singh, K. S., Pellerito, C., D’Agati, P. & Pellerito, L. (2005).Appl. Organomet. Chem.19, 1189–1195.

Basu Baul, T. S., Singh, K. S., Holcˇapek, M., Jira´sko, R., Linden, A., Song, X., Zapata, A. & Eng, G. (2005).Appl. Organomet. Chem.19, 935–944. Basu Baul, T. S., Singh, K. S., Holcˇapek, M., Jira´sko, R., Rivarola, E. & Linden,

A. (2005).J. Organomet. Chem.690, 4232–4242.

Basu Baul, T. S., Singh, K. S., Lycˇka, A., Holcˇapek, M. & Linden, A. (2005).J. Organomet. Chem.690, 1581–1587.

Basu Baul, T. S., Singh, K. S., Song, X., Zapata, A., Eng, G., Lycka, A. & Linden, A. (2004).J. Organomet. Chem.689, 4702–4711.

Blessing, R. H. (1995).Acta Cryst.A51, 33–38.

Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005).Acta Cryst.

E61, o1007–o1009.

Jeffrey, G. A., Maluszynska, H. & Mitra, J. (1985).Int. J. Biol. Macromol.7, 336–348.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Linden, A., Basu Baul, T. S. & Singh, K. S. (2005).Acta Cryst.E61, m2711– m2713.

Nonius (2000).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Revannasiddaiah, D., Lokanath, N. K., Sridhar, M. A. & Prasad, J. S. (1997).Z. Kristallogr.212, 387–388.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

organic papers

o2568

Lindenet al. C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, o2566–o2568

supporting information

Acta Cryst. (2006). E62, o2566–o2568 [https://doi.org/10.1107/S1600536806019556]

2-{(

E

)-3-[(

E

)-4-Bromophenyliminomethyl]-4-hydroxyphenyldiazenyl}benzoic

acid toluene hemisolvate

Anthony Linden, Tushar S. Basu Baul and Keisham S. Singh

2-{(E)-3-[(E)-4-bromophenyliminomethyl]-4-hydroxyphenyldiazenyl}benzoic acid toluene hemisolvate

Crystal data

C20H14BrN3O3·0.5C7H8 Mr = 470.32

Triclinic, P1 Hall symbol: -P 1

a = 8.2708 (3) Å

b = 10.7547 (3) Å

c = 12.3929 (3) Å

α = 88.1844 (17)°

β = 85.3535 (16)°

γ = 69.6152 (13)°

V = 1029.91 (5) Å3

Z = 2

F(000) = 478

Dx = 1.516 Mg m−3

Melting point: 488 K

Mo radiation, λ = 0.71073 Å Cell parameters from 15871 reflections

θ = 2.0–27.5°

µ = 2.03 mm−1 T = 160 K Tablet, orange

0.20 × 0.13 × 0.08 mm

Data collection

Nonius KappaCCD area-detector diffractometer

Radiation source: Nonius FR590 sealed tube generator

Horizontally mounted graphite crystal monochromator

Detector resolution: 9 pixels mm-1 φ and ω scans with κ offsets Absorption correction: multi-scan

(Blessing, 1995)

Tmin = 0.671, Tmax = 0.795 23736 measured reflections 4718 independent reflections 3707 reflections with I > 2σ(I)

Rint = 0.047

θmax = 27.5°, θmin = 2.0°

h = −10→10

k = −13→13

l = −16→16

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.037 wR(F2) = 0.098 S = 1.03 4718 reflections 304 parameters 42 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: geom & difmap H atoms treated by a mixture of independent

and constrained refinement

w = 1/[σ2(Fo2) + (0.053P)2 + 0.3064P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.39 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o2566–o2568

Special details

Experimental. Solvent used: toluene Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.516 (1) Frames collected: 361 Seconds exposure per frame: 24 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 33.0

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, o2566–o2568

H16 0.6655 0.2944 0.4933 0.047* C17 0.5748 (3) 0.1940 (2) 0.61074 (18) 0.0424 (5) H17 0.5088 0.2691 0.6534 0.051* C18 0.5788 (3) 0.0681 (2) 0.64176 (16) 0.0376 (5) C19 0.6741 (3) −0.0424 (2) 0.58207 (18) 0.0379 (5) H19 0.6750 −0.1279 0.6045 0.046* C20 0.7687 (3) −0.0268 (2) 0.48883 (17) 0.0356 (5) H20 0.8352 −0.1024 0.4468 0.043*

C21 −0.0859 (13) 0.3670 (8) 0.6524 (6) 0.090 (2) 0.50 H21A −0.1945 0.4248 0.6888 0.135* 0.50 H21B 0.0030 0.3373 0.7046 0.135* 0.50 H21C −0.1036 0.2898 0.6227 0.135* 0.50 C22 −0.0283 (7) 0.4422 (5) 0.5623 (3) 0.0560 (14) 0.50 C23 −0.1486 (5) 0.5402 (5) 0.5054 (4) 0.059 (2) 0.50 H23 −0.2687 0.5610 0.5240 0.070* 0.50 C24 −0.0929 (10) 0.6079 (4) 0.4215 (4) 0.076 (2) 0.50 H24 −0.1751 0.6749 0.3826 0.091* 0.50 C25 0.0829 (11) 0.5775 (6) 0.3943 (3) 0.080 (2) 0.50 H25 0.1210 0.6238 0.3369 0.096* 0.50 C26 0.2032 (7) 0.4795 (7) 0.4511 (4) 0.075 (2) 0.50 H26 0.3233 0.4587 0.4326 0.090* 0.50 C27 0.1475 (6) 0.4118 (5) 0.5351 (4) 0.0517 (18) 0.50 H27 0.2297 0.3448 0.5739 0.062* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o2566–o2568

C15 0.0369 (11) 0.0353 (11) 0.0280 (10) −0.0154 (9) −0.0030 (8) 0.0007 (8) C16 0.0520 (13) 0.0334 (11) 0.0358 (11) −0.0203 (10) 0.0043 (10) −0.0003 (9) C17 0.0549 (14) 0.0403 (12) 0.0353 (11) −0.0224 (11) 0.0077 (10) −0.0071 (9) C18 0.0485 (12) 0.0490 (13) 0.0257 (10) −0.0300 (11) −0.0041 (9) 0.0028 (9) C19 0.0460 (12) 0.0363 (11) 0.0374 (11) −0.0210 (10) −0.0085 (10) 0.0070 (9) C20 0.0399 (11) 0.0326 (11) 0.0363 (11) −0.0145 (9) −0.0047 (9) −0.0006 (9) C21 0.133 (6) 0.082 (5) 0.071 (5) −0.064 (4) 0.029 (4) −0.026 (4) C22 0.072 (4) 0.058 (3) 0.049 (3) −0.038 (3) 0.015 (3) −0.026 (3) C23 0.060 (4) 0.047 (4) 0.069 (5) −0.016 (3) −0.010 (3) −0.022 (4) C24 0.110 (6) 0.057 (4) 0.070 (5) −0.036 (4) −0.029 (4) −0.009 (4) C25 0.145 (6) 0.073 (4) 0.048 (4) −0.070 (4) 0.004 (4) −0.022 (3) C26 0.091 (5) 0.082 (4) 0.067 (4) −0.055 (4) 0.032 (3) −0.035 (3) C27 0.057 (3) 0.056 (4) 0.047 (4) −0.024 (3) −0.006 (3) −0.007 (3)

Geometric parameters (Å, º)

Br—C18 1.902 (2) C12—C13 1.366 (3) O1—C1 1.329 (3) C12—H12 0.9500 O1—H1 0.73 (3) C13—H13 0.9500 O2—C1 1.206 (3) C14—H14 0.9500 O3—C11 1.333 (2) C15—C16 1.387 (3) O3—H3 0.87 (3) C15—C20 1.391 (3) N1—N2 1.262 (2) C16—C17 1.386 (3) N1—C3 1.429 (3) C16—H16 0.9500 N2—C8 1.408 (3) C17—C18 1.387 (3) N3—C14 1.286 (3) C17—H17 0.9500 N3—C15 1.416 (3) C18—C19 1.374 (3) C1—C2 1.509 (3) C19—C20 1.381 (3) C2—C7 1.394 (3) C19—H19 0.9500 C2—C3 1.408 (3) C20—H20 0.9500 C3—C4 1.393 (3) C21—C22 1.501 (8) C4—C5 1.377 (3) C21—H21A 0.9800 C4—H4 0.9500 C21—H21B 0.9800 C5—C6 1.387 (3) C21—H21C 0.9800 C5—H5 0.9500 C22—C23 1.3900 C6—C7 1.380 (3) C22—C27 1.3900 C6—H6 0.9500 C23—C24 1.3900 C7—H7 0.9500 C23—H23 0.9500 C8—C9 1.383 (3) C24—C25 1.3900 C8—C13 1.411 (3) C24—H24 0.9500 C9—C10 1.396 (3) C25—C26 1.3900 C9—H9 0.9500 C25—H25 0.9500 C10—C11 1.417 (3) C26—C27 1.3900 C10—C14 1.455 (3) C26—H26 0.9500 C11—C12 1.402 (3) C27—H27 0.9500

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, o2566–o2568

N2—N1—C3 114.77 (16) C16—C15—C20 119.55 (19) N1—N2—C8 115.49 (16) C16—C15—N3 123.41 (18) C14—N3—C15 121.65 (18) C20—C15—N3 116.98 (19) O2—C1—O1 120.1 (2) C17—C16—C15 120.2 (2) O2—C1—C2 121.8 (2) C17—C16—H16 119.9 O1—C1—C2 118.12 (18) C15—C16—H16 119.9 C7—C2—C3 118.3 (2) C16—C17—C18 118.9 (2) C7—C2—C1 116.84 (19) C16—C17—H17 120.6 C3—C2—C1 124.82 (18) C18—C17—H17 120.6 C4—C3—C2 120.05 (18) C19—C18—C17 121.8 (2) C4—C3—N1 122.57 (18) C19—C18—Br 119.18 (16) C2—C3—N1 117.36 (18) C17—C18—Br 118.92 (17) C5—C4—C3 120.5 (2) C18—C19—C20 118.79 (19) C5—C4—H4 119.8 C18—C19—H19 120.6 C3—C4—H4 119.8 C20—C19—H19 120.6 C4—C5—C6 119.9 (2) C19—C20—C15 120.7 (2) C4—C5—H5 120.1 C19—C20—H20 119.6 C6—C5—H5 120.1 C15—C20—H20 119.6 C7—C6—C5 120.3 (2) C22—C21—H21A 109.5 C7—C6—H6 119.9 C22—C21—H21B 109.5 C5—C6—H6 119.9 H21A—C21—H21B 109.5 C6—C7—C2 121.0 (2) C22—C21—H21C 109.5 C6—C7—H7 119.5 H21A—C21—H21C 109.5 C2—C7—H7 119.5 H21B—C21—H21C 109.5 C9—C8—N2 115.10 (17) C23—C22—C27 120.0 C9—C8—C13 119.31 (18) C23—C22—C21 120.8 (6) N2—C8—C13 125.58 (18) C27—C22—C21 119.2 (6) C8—C9—C10 121.28 (18) C24—C23—C22 120.0 C8—C9—H9 119.4 C24—C23—H23 120.0 C10—C9—H9 119.4 C22—C23—H23 120.0 C9—C10—C11 118.66 (18) C23—C24—C25 120.0 C9—C10—C14 120.44 (18) C23—C24—H24 120.0 C11—C10—C14 120.78 (18) C25—C24—H24 120.0 O3—C11—C12 118.90 (18) C24—C25—C26 120.0 O3—C11—C10 121.44 (18) C24—C25—H25 120.0 C12—C11—C10 119.66 (18) C26—C25—H25 120.0 C13—C12—C11 120.66 (18) C27—C26—C25 120.0 C13—C12—H12 119.7 C27—C26—H26 120.0 C11—C12—H12 119.7 C25—C26—H26 120.0 C12—C13—C8 120.41 (19) C26—C27—C22 120.0 C12—C13—H13 119.8 C26—C27—H27 120.0 C8—C13—H13 119.8 C22—C27—H27 120.0 N3—C14—C10 120.22 (18)

(9)

supporting information

sup-6 Acta Cryst. (2006). E62, o2566–o2568

O1—C1—C2—C3 −0.1 (3) N2—C8—C13—C12 −179.05 (19) C7—C2—C3—C4 0.2 (3) C15—N3—C14—C10 −175.66 (17) C1—C2—C3—C4 179.93 (19) C9—C10—C14—N3 176.46 (18) C7—C2—C3—N1 −178.19 (17) C11—C10—C14—N3 0.4 (3) C1—C2—C3—N1 1.5 (3) C14—N3—C15—C16 27.4 (3) N2—N1—C3—C4 0.9 (3) C14—N3—C15—C20 −155.52 (19) N2—N1—C3—C2 179.22 (17) C20—C15—C16—C17 1.5 (3) C2—C3—C4—C5 −0.5 (3) N3—C15—C16—C17 178.5 (2) N1—C3—C4—C5 177.81 (18) C15—C16—C17—C18 −1.3 (4) C3—C4—C5—C6 0.2 (3) C16—C17—C18—C19 0.5 (4) C4—C5—C6—C7 0.4 (3) C16—C17—C18—Br −176.64 (17) C5—C6—C7—C2 −0.7 (3) C17—C18—C19—C20 0.2 (3) C3—C2—C7—C6 0.4 (3) Br—C18—C19—C20 177.29 (16) C1—C2—C7—C6 −179.37 (19) C18—C19—C20—C15 0.0 (3) N1—N2—C8—C9 −175.97 (17) C16—C15—C20—C19 −0.8 (3) N1—N2—C8—C13 3.5 (3) N3—C15—C20—C19 −177.98 (18) N2—C8—C9—C10 178.24 (17) C27—C22—C23—C24 0.0

C13—C8—C9—C10 −1.3 (3) C21—C22—C23—C24 −179.3 (5) C8—C9—C10—C11 1.2 (3) C22—C23—C24—C25 0.0 C8—C9—C10—C14 −174.88 (18) C23—C24—C25—C26 0.0 C9—C10—C11—O3 −179.55 (18) C24—C25—C26—C27 0.0 C14—C10—C11—O3 −3.4 (3) C25—C26—C27—C22 0.0 C9—C10—C11—C12 −0.4 (3) C23—C22—C27—C26 0.0 C14—C10—C11—C12 175.75 (18) C21—C22—C27—C26 179.3 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1···N1 0.73 (3) 1.92 (3) 2.593 (2) 154 (4) O3—H3···N3 0.87 (3) 1.76 (3) 2.554 (2) 151 (3) C6—H6···Bri 0.95 2.92 3.630 (2) 133

C12—H12···O3ii 0.95 2.53 3.388 (3) 151

C17—H17···O1iii 0.95 2.49 3.419 (3) 166

C26—H26···O2iv 0.95 2.50 3.374 (6) 153

Figure

Figure 2

References

Related documents

Table 3. 1 See Kisto et al.. Johansen cointegration test results. 3) Lag lengths in Vector Autogression were selected using Likelihood Ratio Test. 4) Crit- ical Values for the Trace

Standard LFs : The Schechter function and the Gamma PDF can model the LF for stars, see Table 1 and Table 2 as well as Figure 7 and Figure 8 , but the val- ues of the

Different molecular approaches have shown the advan- tage of conclusive species determination and also strain differentiation within the genus echinococcus which is responsible

Negative Binomial re- gression model relating expected malaria incidences, rainfall and temperature was not selected as the final model due to high correlation between rainfall and

The agriculture in the other analyzed riverside ecosystem, of Maritsa, is characterized by several indicators for levels of high sustainability: economic – labour

And, most of the existing unmixing algorithms are based on the LMM, which assumes that the spectrum as a linear combination of pure spectra of all elements within a pixel and

introduced a multi-stack approach in [17] where a number of LR MRI volumes were captured at different orientations and combined to produce an SR volume using the

In the case of Economy (A) there are fewer zeros in transition matrix due to coordination and higher trust between various players of economic process that is helpful in