• No results found

3 (2,4 Di­chloro­phen­yl) 1 (3,4 di­meth­oxy­phen­yl)prop 2 en 1 one

N/A
N/A
Protected

Academic year: 2020

Share "3 (2,4 Di­chloro­phen­yl) 1 (3,4 di­meth­oxy­phen­yl)prop 2 en 1 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2007). E63, o1897–o1898 doi:10.1107/S1600536807012792 Nget al. C

17H14Cl2O3

o1897

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

3-(2,4-Dichlorophenyl)-1-(3,4-dimethoxy-phenyl)prop-2-en-1-one

Shea-Lin Ng,aP. S. Patil,b Ibrahim Abdul Razak,a Hoong-Kun Funa* and S. M. Dharmaprakashb

aX-ray Crystallography Unit, School of Physics,

Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, andbDepartment of Studies in

Physics, Mangalore University,

Mangalagangotri, Mangalore 574 199, India

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study T= 297 K

Mean(C–C) = 0.002 A˚ Rfactor = 0.043 wRfactor = 0.124

Data-to-parameter ratio = 22.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 14 March 2007 Accepted 18 March 2007

#2007 International Union of Crystallography All rights reserved

In the title molecule, C17H14Cl2O3, the methoxy groups are

almost coplanar with the attached benzene ring. The mol-ecules are linked via intermolecular C—H O interactions into wave-like chains along thebaxis.

Comment

With the development of lasers and other high-intensity visible-light sources, the need for passive optical limiters to protect sensors and human eyes from an intense optical beam has generated much interest in the development of new nonlinear optical materials and devices. In recent years, organic nonlinear optical materials have been studied because of their large nonlinearities, inherently fast response times, broadband spectral response, and ease of processing and synthesis (Chemla & Zyss, 1987; Kiranet al.2007). During our search for nonlinear optical chalcones (Patil, Dharmaprakash

et al., 2006, 2007), the title compound, (I), was synthesized, and we present its synthesis and structure here (Fig. 1).

The bond lengths and angles in (I) are comparable to those observed in a related structure (Patil, Nget al., 2006) and show normal values (Allen et al., 1987). The methoxy groups attached at C3 and C4 lie almost in the plane of the C1–C6 benzene ring [C16—O2—C4—C5 =3.1 (3)and C17—O3—

C3—C2 = 6.5 (2)]. The dihedral angle between the two

benzene rings is 5.37 (8).

The intramolecular C9—H9A Cl1 and C9—H9A O1 interactions (Table 1) generate S(5) ring motifs (Bernsteinet al., 1995). In the crystal structure, intermolecular C15— H15A O2i(symmetry code as in Table 1) interactions link the molecules into wave-like chains along thebaxis.

Experimental

(2)

for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Crystal data

C17H14Cl2O3

Mr= 337.18 Monoclinic,P21=c a= 10.8846 (3) A˚

b= 10.3394 (3) A˚

c= 15.2387 (5) A˚ = 115.997 (2)

V= 1541.44 (8) A˚3

Z= 4

MoKradiation = 0.43 mm1

T= 297 (2) K 0.460.360.20 mm

Data collection

Bruker SMART APEX II CCD area-detector diffractometer Absorption correction: multi-scan

(SADABS; Bruker, 2005)

Tmin= 0.839,Tmax= 0.920

24942 measured reflections 4533 independent reflections 2914 reflections withI> 2(I)

Rint= 0.040

Refinement

R[F2> 2(F2)] = 0.043

wR(F2) = 0.124

S= 1.07 4533 reflections

202 parameters

H-atom parameters constrained

max= 0.29 e A˚

3

min=0.29 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C9—H9A Cl1 0.93 2.63 3.068 (2) 109

C9—H9A O1 0.93 2.48 2.810 (2) 101

C15—H15A O2i

0.93 2.46 3.287 (2) 149

Symmetry code: (i)xþ1;y1 2;zþ

1 2.

H atoms were placed in calculated positions, with C—H distances in the range 0.93–0.96 A˚ . TheUisovalues were set equal to 1.5Ueqof

the carrier atom for methyl H atoms and 1.2Ueqfor the remaining H

atoms.

Data collection:APEX2(Bruker, 2005); cell refinement:APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve

structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTLandPLATON(Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118 and the Fundamental Research Grant Scheme (FRGS, 203/PFIZIK/671064). PSP thanks DRDO, Government of India, for a Junior Research Fellowship (JRF).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12A) and

SADABS(Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Chemla, D. S. & Zyss, J. (1987). Editors. Nonlinear Optical Properties of

Organic Molecules and Crystal, Vol. 1. Orlando, FL: Academic Press. Kiran, J. A., Mithun, A., Shivarama Holla, B., Shashikala, H. D., Umesh, G. &

Chandrasekharan, K. (2007).Opt. Commun.269, 235–240.

Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006).J. Cryst. Growth,297, 111–116.

Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Narayana Rao, D. (2007).J. Cryst. Growth.In the press. Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006).

Acta Cryst.E62, o4448–o4449.

Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007).

Acta Cryst.E63, o59–o60.

Sheldrick, G. M. (1998).SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

[image:2.610.319.562.70.278.2]

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines indicate intramolecular hydrogen bonds.

Figure 2

[image:2.610.45.296.71.191.2]
(3)

supporting information

sup-1 Acta Cryst. (2007). E63, o1897–o1898

supporting information

Acta Cryst. (2007). E63, o1897–o1898 [https://doi.org/10.1107/S1600536807012792]

3-(2,4-Dichlorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one

Shea-Lin Ng, P. S. Patil, Ibrahim Abdul Razak, Hoong-Kun Fun and S. M. Dharmaprakash

3-(2,4-Dichlorophenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one

Crystal data

C17H14Cl2O3 Mr = 337.18

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 10.8846 (3) Å

b = 10.3394 (3) Å

c = 15.2387 (5) Å

β = 115.997 (2)°

V = 1541.44 (8) Å3

Z = 4

F(000) = 696

Dx = 1.453 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 6241 reflections

θ = 2.5–30.1°

µ = 0.43 mm−1

T = 297 K

Block, yellow

0.46 × 0.36 × 0.20 mm

Data collection

Bruker SMART APEX II CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8.33 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2005)

Tmin = 0.839, Tmax = 0.920

24942 measured reflections 4533 independent reflections 2914 reflections with I > 2σ(I)

Rint = 0.040

θmax = 30.1°, θmin = 2.5°

h = −15→15

k = −14→13

l = −19→21

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.043

wR(F2) = 0.124

S = 1.07

4533 reflections 202 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.053P)2 + 0.1921P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.29 e Å−3

Δρmin = −0.29 e Å−3

Extinction correction: SHELXL97,

Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 1.25324 (4) 0.69651 (5) 0.54940 (4) 0.06639 (18)

Cl2 1.36405 (5) 0.29915 (5) 0.37377 (4) 0.06749 (17)

O1 0.77011 (12) 0.82162 (13) 0.43677 (10) 0.0653 (4)

O2 0.26353 (12) 0.84166 (13) 0.34044 (10) 0.0648 (4)

O3 0.15329 (11) 0.66027 (12) 0.21483 (9) 0.0574 (3)

C1 0.51441 (16) 0.59869 (16) 0.27575 (12) 0.0487 (4)

H1A 0.5687 0.5414 0.2612 0.058*

C2 0.37299 (16) 0.58216 (16) 0.23238 (12) 0.0487 (4)

H2A 0.3337 0.5146 0.1887 0.058*

C3 0.29145 (14) 0.66524 (16) 0.25387 (11) 0.0447 (4)

C4 0.35246 (15) 0.76599 (16) 0.32165 (11) 0.0461 (4)

C5 0.49167 (15) 0.78274 (15) 0.36274 (12) 0.0459 (4)

H5A 0.5312 0.8505 0.4062 0.055*

C6 0.57485 (15) 0.69919 (15) 0.34008 (12) 0.0441 (4)

C7 0.72467 (15) 0.72571 (17) 0.38583 (12) 0.0490 (4)

C8 0.81638 (16) 0.63366 (18) 0.36971 (13) 0.0532 (4)

H8A 0.7783 0.5654 0.3265 0.064*

C9 0.95079 (15) 0.64502 (17) 0.41461 (12) 0.0499 (4)

H9A 0.9852 0.7154 0.4563 0.060*

C10 1.05112 (14) 0.55882 (16) 0.40583 (11) 0.0451 (4)

C11 1.19147 (15) 0.57616 (15) 0.46088 (11) 0.0438 (4)

C12 1.28740 (15) 0.49747 (16) 0.45200 (11) 0.0471 (4)

H12A 1.3803 0.5126 0.4892 0.057*

C13 1.24350 (17) 0.39618 (16) 0.38730 (12) 0.0487 (4)

C14 1.10534 (18) 0.37119 (18) 0.33356 (13) 0.0559 (4)

H14A 1.0761 0.3005 0.2917 0.067*

C15 1.01264 (16) 0.45248 (17) 0.34320 (13) 0.0546 (4)

H15A 0.9200 0.4360 0.3064 0.066*

C16 0.3196 (2) 0.9410 (2) 0.41089 (16) 0.0727 (6)

H16A 0.2474 0.9846 0.4191 0.109*

H16B 0.3673 1.0017 0.3894 0.109*

H16C 0.3821 0.9040 0.4720 0.109*

C17 0.08478 (17) 0.5694 (2) 0.13793 (14) 0.0649 (5)

H17A −0.0122 0.5826 0.1114 0.097*

(5)

supporting information

sup-3 Acta Cryst. (2007). E63, o1897–o1898

H17C 0.1140 0.5815 0.0875 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0447 (2) 0.0746 (3) 0.0725 (3) −0.00803 (19) 0.0188 (2) −0.0297 (2)

Cl2 0.0707 (3) 0.0615 (3) 0.0744 (4) 0.0121 (2) 0.0356 (3) −0.0035 (2)

O1 0.0447 (6) 0.0592 (8) 0.0793 (9) −0.0059 (5) 0.0156 (6) −0.0090 (7)

O2 0.0433 (6) 0.0720 (8) 0.0664 (8) 0.0126 (6) 0.0124 (6) −0.0134 (7)

O3 0.0361 (5) 0.0665 (8) 0.0593 (7) −0.0017 (5) 0.0114 (5) −0.0029 (6)

C1 0.0427 (8) 0.0478 (9) 0.0535 (10) 0.0024 (7) 0.0191 (7) 0.0014 (8)

C2 0.0463 (8) 0.0455 (9) 0.0485 (9) −0.0053 (7) 0.0156 (7) −0.0008 (7)

C3 0.0361 (7) 0.0496 (9) 0.0419 (8) 0.0008 (6) 0.0112 (6) 0.0083 (7)

C4 0.0411 (8) 0.0483 (9) 0.0429 (9) 0.0068 (6) 0.0130 (6) 0.0053 (7)

C5 0.0423 (8) 0.0441 (9) 0.0435 (9) 0.0010 (6) 0.0114 (6) 0.0029 (7)

C6 0.0383 (7) 0.0464 (9) 0.0432 (9) 0.0007 (6) 0.0139 (6) 0.0085 (7)

C7 0.0397 (7) 0.0525 (10) 0.0484 (9) −0.0007 (7) 0.0136 (7) 0.0105 (8)

C8 0.0407 (8) 0.0581 (11) 0.0552 (10) −0.0014 (7) 0.0157 (7) 0.0006 (8)

C9 0.0404 (8) 0.0532 (10) 0.0507 (10) −0.0032 (7) 0.0152 (7) 0.0024 (8)

C10 0.0388 (7) 0.0509 (9) 0.0425 (9) −0.0032 (6) 0.0149 (6) 0.0048 (7)

C11 0.0395 (7) 0.0487 (9) 0.0412 (8) −0.0054 (6) 0.0158 (6) −0.0019 (7)

C12 0.0385 (7) 0.0542 (10) 0.0467 (9) −0.0030 (7) 0.0169 (6) −0.0001 (7)

C13 0.0538 (9) 0.0477 (9) 0.0467 (9) 0.0034 (7) 0.0239 (7) 0.0044 (7)

C14 0.0598 (10) 0.0518 (10) 0.0504 (10) −0.0089 (8) 0.0188 (8) −0.0075 (8)

C15 0.0417 (8) 0.0599 (11) 0.0518 (10) −0.0083 (7) 0.0109 (7) −0.0033 (8)

C16 0.0632 (11) 0.0680 (13) 0.0832 (14) 0.0064 (10) 0.0286 (10) −0.0176 (11)

C17 0.0459 (9) 0.0738 (13) 0.0630 (11) −0.0117 (8) 0.0129 (8) −0.0034 (10)

Geometric parameters (Å, º)

Cl1—C11 1.7393 (16) C8—H8A 0.9300

Cl2—C13 1.7344 (17) C9—C10 1.460 (2)

O1—C7 1.222 (2) C9—H9A 0.9300

O2—C4 1.369 (2) C10—C15 1.395 (2)

O2—C16 1.416 (2) C10—C11 1.3951 (19)

O3—C3 1.3542 (18) C11—C12 1.376 (2)

O3—C17 1.430 (2) C12—C13 1.373 (2)

C1—C6 1.381 (2) C12—H12A 0.9300

C1—C2 1.394 (2) C13—C14 1.385 (2)

C1—H1A 0.9300 C14—C15 1.370 (3)

C2—C3 1.374 (2) C14—H14A 0.9300

C2—H2A 0.9300 C15—H15A 0.9300

C3—C4 1.411 (2) C16—H16A 0.9600

C4—C5 1.373 (2) C16—H16B 0.9600

C5—C6 1.400 (2) C16—H16C 0.9600

C5—H5A 0.9300 C17—H17A 0.9600

C6—C7 1.491 (2) C17—H17B 0.9600

(6)

C8—C9 1.321 (2)

C4—O2—C16 117.62 (14) C15—C10—C9 122.11 (14)

C3—O3—C17 117.69 (14) C11—C10—C9 122.15 (15)

C6—C1—C2 120.80 (15) C12—C11—C10 122.88 (15)

C6—C1—H1A 119.6 C12—C11—Cl1 116.56 (11)

C2—C1—H1A 119.6 C10—C11—Cl1 120.50 (12)

C3—C2—C1 120.31 (15) C13—C12—C11 118.77 (14)

C3—C2—H2A 119.8 C13—C12—H12A 120.6

C1—C2—H2A 119.8 C11—C12—H12A 120.6

O3—C3—C2 125.49 (15) C12—C13—C14 120.86 (16)

O3—C3—C4 115.16 (14) C12—C13—Cl2 118.91 (13)

C2—C3—C4 119.35 (13) C14—C13—Cl2 120.24 (14)

O2—C4—C5 124.93 (15) C15—C14—C13 118.81 (16)

O2—C4—C3 115.21 (13) C15—C14—H14A 120.6

C5—C4—C3 119.86 (15) C13—C14—H14A 120.6

C4—C5—C6 120.89 (15) C14—C15—C10 122.87 (15)

C4—C5—H5A 119.6 C14—C15—H15A 118.6

C6—C5—H5A 119.6 C10—C15—H15A 118.6

C1—C6—C5 118.75 (14) O2—C16—H16A 109.5

C1—C6—C7 123.58 (15) O2—C16—H16B 109.5

C5—C6—C7 117.65 (14) H16A—C16—H16B 109.5

O1—C7—C8 120.94 (15) O2—C16—H16C 109.5

O1—C7—C6 120.08 (15) H16A—C16—H16C 109.5

C8—C7—C6 118.97 (15) H16B—C16—H16C 109.5

C9—C8—C7 122.19 (17) O3—C17—H17A 109.5

C9—C8—H8A 118.9 O3—C17—H17B 109.5

C7—C8—H8A 118.9 H17A—C17—H17B 109.5

C8—C9—C10 126.95 (17) O3—C17—H17C 109.5

C8—C9—H9A 116.5 H17A—C17—H17C 109.5

C10—C9—H9A 116.5 H17B—C17—H17C 109.5

C15—C10—C11 115.73 (14)

C6—C1—C2—C3 −0.7 (3) C5—C6—C7—C8 175.18 (15)

C17—O3—C3—C2 −6.5 (2) O1—C7—C8—C9 5.1 (3)

C17—O3—C3—C4 173.29 (15) C6—C7—C8—C9 −174.05 (16)

C1—C2—C3—O3 178.56 (15) C7—C8—C9—C10 178.74 (16)

C1—C2—C3—C4 −1.2 (2) C8—C9—C10—C15 2.3 (3)

C16—O2—C4—C5 −3.1 (3) C8—C9—C10—C11 −176.47 (17)

C16—O2—C4—C3 177.49 (16) C15—C10—C11—C12 2.6 (2)

O3—C3—C4—O2 1.9 (2) C9—C10—C11—C12 −178.59 (15)

C2—C3—C4—O2 −178.29 (15) C15—C10—C11—Cl1 −174.45 (12)

O3—C3—C4—C5 −177.50 (15) C9—C10—C11—Cl1 4.4 (2)

C2—C3—C4—C5 2.3 (2) C10—C11—C12—C13 −1.0 (2)

O2—C4—C5—C6 179.10 (15) Cl1—C11—C12—C13 176.12 (12)

C3—C4—C5—C6 −1.5 (2) C11—C12—C13—C14 −1.6 (3)

C2—C1—C6—C5 1.4 (2) C11—C12—C13—Cl2 178.47 (12)

(7)

supporting information

sup-5 Acta Cryst. (2007). E63, o1897–o1898

C4—C5—C6—C1 −0.3 (2) Cl2—C13—C14—C15 −177.58 (14)

C4—C5—C6—C7 178.55 (15) C13—C14—C15—C10 −0.8 (3)

C1—C6—C7—O1 174.87 (16) C11—C10—C15—C14 −1.6 (3)

C5—C6—C7—O1 −3.9 (2) C9—C10—C15—C14 179.53 (16)

C1—C6—C7—C8 −6.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C9—H9A···Cl1 0.93 2.63 3.068 (2) 109

C9—H9A···O1 0.93 2.48 2.810 (2) 101

C15—H15A···O2i 0.93 2.46 3.287 (2) 149

Figure

Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical