• No results found

(2E) 2 (1 Methyl­piperidin 2 yl­­idene) 1 phenyl­ethanone

N/A
N/A
Protected

Academic year: 2020

Share "(2E) 2 (1 Methyl­piperidin 2 yl­­idene) 1 phenyl­ethanone"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o98

Lemmereret al. C

14H17NO doi:10.1107/S160053680605152X Acta Cryst.(2007). E63, o98–o99 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(2

E

)-2-(1-Methylpiperidin-2-ylidene)-1-phenyl-ethanone

Andreas Lemmerer, Joseph P. Michael,* Daniel P. Pienaar and Desigan Sannasy

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa

Correspondence e-mail: jmichael@chem.wits.ac.za

Key indicators

Single-crystal X-ray study

T= 173 K

Mean(C–C) = 0.003 A˚ Disorder in main residue

Rfactor = 0.051

wRfactor = 0.199

Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 2 November 2006 Accepted 28 November 2006

#2007 International Union of Crystallography

All rights reserved

In the title compound, C14H17NO, the piperidine ring is in a

half-chair conformation. The molecules are linked into C(7) chains by an intermolecular C—H O hydrogen bond.

Comment

Enaminones (-acylated enamines) feature prominently in our research programme as intermediates for the synthesis of alkaloids and other nitrogen-containing heterocycles (Michael

et al., 1999). We required the title compound, (I), a simple enaminone, as a model for probing the reactivity of exocyclic enaminones towards reducing agents. Compound (I) has previously been prepared as a key intermediate in the synth-esis of piperidine alkaloids isolated from the genus Sedum

(Ghiaci & Adibi, 1996).

A view of the molecular structure of (I) is given in Fig. 1. The piperidine ring adopts a half-chair conformation [puck-ering amplitude QT = 0.551 (4) A˚ , = 124.0(3 and ’ =

22.8 (4) (Cremer & Pople, 1975)]. The bond lengths for the enaminone functionality from N1 to O1 are comparable with values reported in the literature (Allen et al., 1987), but the delocalization does not extend to the phenyl ring [O1—C9— C10—C11 =15.8 (3)].

The crystal structure of (I) is built up by an intramolecular C—H O hydrogen bond and weak intermolecular C— H O hydrogen bonds that link the molecules into chains. Atom C7 in the molecule at (x,y,z) acts as a hydrogen-bond donorviaatom H7Ato atom O1 in the molecule at (x,1

2y, z1

2), thereby generating by translation aC(7) chain (Etteret al., 1990; Bernsteinet al., 1995) running parallel to the [001] direction (Fig. 2 and Table 1).

Experimental

(2E)-2-(1-Methylpiperidin-2-ylidene)-1-phenylethanone, (I), was prepared in 77% yield from 1-methylpiperidine-2-thione and phenacyl bromide by the method of Ghiaci & Adibi (1996) (m.p. 340– 343 K; literature m.p. 341–343 K). 1H NMR (300 MHz, CDCl

3): 7.83–7.86 (2H,m, 11-H and 15-H), 7.35–7.39 (3H,m, 12-H, 13-H, 14-H), 5.65 (1H, s, 8-H), 3.31–3.45 (4H,m, 3-H and 6-H), 2.98 (3H,s, NCH3), 1.78–1.86 and 1.65–1.71 (4H, 2m, 4-H and 5-H);

(2)

(C13), 127.9 and 127.1 (C11, C12, C14, C15), 90.7 (C8), 52.0 (C6), 40.2 (NCH3), 28.3 (C3), 23.1 and 19.4 (C4, C5). Crystals suitable for X-ray crystallography were obtained as pale-brown blocks by slow growth from a solution in EtOAc/hexane (approximately 1:1).

Crystal data

C14H17NO Mr= 215.29 Monoclinic,P21=c a= 8.006 (2) A˚ b= 9.441 (3) A˚ c= 15.535 (4) A˚ = 95.197 (6) V= 1169.5 (6) A˚3

Z= 4

Dx= 1.223 Mg m3 MoKradiation = 0.08 mm1 T= 173 (2) K Block, pale brown 0.380.280.24 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.962,Tmax= 0.982

5068 measured reflections 2178 independent reflections 1563 reflections withI> 2(I) Rint= 0.037

max= 25.5

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.051 wR(F2) = 0.199 S= 1.06 2178 reflections 164 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.1371P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.24 e A˚3

min=0.34 e A˚3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C3—H3D O1 0.99 2.21 2.804 (3) 117

C7—H7A O1i

0.98 2.54 3.469 (3) 159

Symmetry code: (i)x;yþ1 2;z

1 2.

Atoms C4 and C5 of the piperidine ring (see Fig. 1) are disordered. They were resolved by finding alternative positions from the differ-ence Fourier map, and subsequently refined anisotropically over two positions with an occupancy of 0.607 (6) for C4A and C5A, and 0.393 (6) for the alternative positions C4Band C5B. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H bond lengths of 0.95 (aromatic CH), 0.98 (CH3), 0.99 (CH2) or 0.95 A˚ (CH), and isotropic displacement parameters equal to 1.2 (CH and CH2) or 1.5 (CH3) timesUeqof the parent atom.

Data collection:SMART(Bruker, 1998); cell refinement:SMART; data reduction: SAINT-Plus (Bruker (1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:

ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Bran-denburg, 1999); software used to prepare material for publication:

WinGX(Farrugia, 1999) andPLATON(Spek, 2003).

This work was supported by grants from the National Research Foundation, Pretoria (NRF, GUN 2053652) and the University of the Witwatersrand.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Brandenburg, K. (1999). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.

Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999).SAINT-Plus. Version 6.02 (includingXPREP). Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990).Acta Cryst.B46, 256–262. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Ghiaci, M. & Adibi, M. (1996).Org. Prep. Proc. Int.28, 474–477.

Michael, J. P., de Koning, C. B., Gravestock, D., Hosken, G. D., Howard, A. S., Jungmann, C. M., Krause, R. W. M., Parsons, A. S., Pelly, S. C. & Stanbury, T. V. (1999).Pure Appl. Chem.71, 979–988.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

[image:2.610.337.537.73.217.2]

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Figure 1

[image:2.610.316.563.281.419.2]

The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms C4 and C5 in the piperidine ring are disordered; the minor occupancy disordered component is shown with dashed bonds.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2007). E63, o98–o99

supporting information

Acta Cryst. (2007). E63, o98–o99 [https://doi.org/10.1107/S160053680605152X]

(2

E

)-2-(1-Methylpiperidin-2-ylidene)-1-phenylethanone

Andreas Lemmerer, Joseph P. Michael, Daniel P. Pienaar and Desigan Sannasy

(2E)-2-(1-Methylpiperidin-2-ylidene)-1-phenylethanone

Crystal data

C14H17NO

Mr = 215.29

Monoclinic, P21/c Hall symbol: -P 2ybc a = 8.006 (2) Å b = 9.441 (3) Å c = 15.535 (4) Å β = 95.197 (6)° V = 1169.5 (6) Å3

Z = 4

F(000) = 464 Dx = 1.223 Mg m−3

Melting point = 340–343 K Mo radiation, λ = 0.71073 Å Cell parameters from 979 reflections θ = 2.6–27.7°

µ = 0.08 mm−1

T = 173 K Block, pale brown 0.38 × 0.28 × 0.24 mm

Data collection

Bruker SMART CCD area-detector diffractometer

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.962, Tmax = 0.982 5068 measured reflections

2178 independent reflections 1563 reflections with I > 2σ(I) Rint = 0.037

θmax = 25.5°, θmin = 2.5°

h = −9→9 k = −9→11 l = −18→14

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.051

wR(F2) = 0.199

S = 1.06 2178 reflections 164 parameters

205 restraints

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.1371P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.24 e Å−3 Δρmin = −0.34 e Å−3

Special details

Experimental. absorption corrections were made using the program SADABS (Sheldrick, 1996).

(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

C2 0.4632 (2) 0.2460 (2) 0.49237 (12) 0.0264 (5)

C3 0.3064 (3) 0.2206 (3) 0.53690 (13) 0.0355 (5)

H3A 0.2715 0.3107 0.5625 0.043* 0.607 (6)

H3B 0.3318 0.1523 0.5846 0.043* 0.607 (6)

H3C 0.229 0.3014 0.5248 0.043* 0.393 (6)

H3D 0.3364 0.2173 0.6001 0.043* 0.393 (6)

C4A 0.1590 (4) 0.1624 (4) 0.4753 (2) 0.0338 (10) 0.607 (6)

H4A1 0.0643 0.1356 0.5087 0.041* 0.607 (6)

H4A2 0.1194 0.236 0.4328 0.041* 0.607 (6)

C5A 0.2206 (6) 0.0339 (5) 0.4288 (3) 0.0378 (11) 0.607 (6)

H5A1 0.1266 −0.0111 0.393 0.045* 0.607 (6)

H5A2 0.2692 −0.0366 0.4711 0.045* 0.607 (6)

C4B 0.2162 (8) 0.0849 (7) 0.5090 (3) 0.0420 (18) 0.393 (6)

H4B1 0.1093 0.0765 0.536 0.05* 0.393 (6)

H4B2 0.2868 0.0013 0.5254 0.05* 0.393 (6)

C5B 0.1842 (7) 0.0962 (10) 0.4113 (4) 0.0401 (18) 0.393 (6)

H5B1 0.1298 0.1879 0.3954 0.048* 0.393 (6)

H5B2 0.1088 0.019 0.3889 0.048* 0.393 (6)

C6 0.3532 (3) 0.0854 (3) 0.37209 (14) 0.0366 (6)

H6A 0.4163 0.0025 0.3533 0.044* 0.607 (6)

H6B 0.2962 0.1298 0.3196 0.044* 0.607 (6)

H6C 0.3984 −0.0117 0.3802 0.044* 0.393 (6)

H6D 0.3368 0.1048 0.3093 0.044* 0.393 (6)

C7 0.6145 (3) 0.2210 (3) 0.36359 (14) 0.0369 (6)

H7A 0.6017 0.1699 0.3085 0.055*

H7B 0.7196 0.1924 0.3962 0.055*

H7C 0.6169 0.3232 0.3525 0.055*

C8 0.5942 (2) 0.3273 (2) 0.53132 (13) 0.0288 (5)

H8 0.6911 0.3377 0.5008 0.035*

C9 0.5953 (2) 0.3961 (2) 0.61296 (12) 0.0279 (5)

C10 0.7548 (2) 0.4703 (2) 0.64782 (12) 0.0267 (5)

C11 0.7452 (3) 0.5667 (2) 0.71523 (12) 0.0326 (5)

H11 0.6399 0.5847 0.7367 0.039*

C12 0.8861 (3) 0.6365 (3) 0.75130 (13) 0.0365 (5)

H12 0.8767 0.7027 0.7966 0.044*

C13 1.0406 (3) 0.6102 (2) 0.72174 (13) 0.0357 (5)

H13 1.1376 0.6581 0.7467 0.043*

C14 1.0535 (3) 0.5139 (2) 0.65557 (15) 0.0382 (6)

H14 1.1598 0.495 0.6354 0.046*

C15 0.9121 (2) 0.4451 (2) 0.61866 (14) 0.0336 (5)

H15 0.9222 0.3799 0.5729 0.04*

N1 0.4733 (2) 0.18768 (19) 0.41371 (11) 0.0311 (5)

(5)

supporting information

sup-3 Acta Cryst. (2007). E63, o98–o99

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C2 0.0262 (10) 0.0293 (11) 0.0245 (10) 0.0030 (8) 0.0069 (8) 0.0023 (8)

C3 0.0286 (11) 0.0471 (13) 0.0322 (11) −0.0085 (9) 0.0112 (9) −0.0064 (9)

C4A 0.0268 (17) 0.041 (2) 0.034 (2) −0.0064 (16) 0.0062 (15) −0.0007 (17)

C5A 0.044 (2) 0.035 (3) 0.036 (2) −0.0089 (19) 0.0073 (18) −0.0006 (18)

C4B 0.042 (3) 0.052 (4) 0.033 (3) −0.019 (3) 0.009 (2) 0.001 (3)

C5B 0.035 (3) 0.049 (5) 0.037 (3) −0.020 (3) 0.005 (3) −0.002 (3)

C6 0.0361 (12) 0.0426 (13) 0.0318 (11) −0.0089 (9) 0.0065 (9) −0.0068 (9)

C7 0.0312 (11) 0.0520 (14) 0.0293 (11) −0.0066 (10) 0.0121 (9) −0.0081 (10)

C8 0.0233 (10) 0.0362 (12) 0.0279 (10) −0.0012 (8) 0.0082 (8) 0.0003 (8)

C9 0.0233 (10) 0.0341 (12) 0.0270 (10) 0.0024 (8) 0.0065 (8) 0.0046 (8)

C10 0.0294 (10) 0.0285 (11) 0.0225 (10) 0.0024 (8) 0.0035 (8) 0.0055 (8)

C11 0.0334 (11) 0.0404 (12) 0.0249 (10) −0.0004 (9) 0.0081 (8) 0.0015 (8)

C12 0.0415 (12) 0.0437 (13) 0.0248 (11) −0.0053 (10) 0.0052 (9) −0.0033 (9) C13 0.0333 (11) 0.0400 (13) 0.0330 (12) −0.0078 (10) −0.0016 (9) 0.0037 (9)

C14 0.0300 (11) 0.0413 (13) 0.0441 (13) 0.0003 (9) 0.0075 (9) −0.0003 (10)

C15 0.0302 (11) 0.0338 (12) 0.0373 (12) 0.0012 (8) 0.0053 (9) −0.0040 (9)

N1 0.0296 (9) 0.0394 (11) 0.0252 (9) −0.0043 (7) 0.0081 (7) −0.0033 (7)

O1 0.0312 (8) 0.0633 (12) 0.0304 (8) −0.0060 (7) 0.0096 (6) −0.0112 (7)

Geometric parameters (Å, º)

C2—N1 1.350 (3) C6—H6B 0.99

C2—C8 1.393 (3) C6—H6C 0.99

C2—C3 1.506 (3) C6—H6D 0.99

C3—C4B 1.515 (5) C7—N1 1.464 (2)

C3—C4A 1.551 (4) C7—H7A 0.98

C3—H3A 0.99 C7—H7B 0.98

C3—H3B 0.99 C7—H7C 0.98

C3—H3C 0.99 C8—C9 1.424 (3)

C3—H3D 0.99 C8—H8 0.95

C4A—C5A 1.518 (5) C9—O1 1.255 (2)

C4A—H4A1 0.99 C9—C10 1.513 (3)

C4A—H4A2 0.99 C10—C11 1.395 (3)

C5A—C6 1.520 (4) C10—C15 1.397 (3)

C5A—H5A1 0.99 C11—C12 1.380 (3)

C5A—H5A2 0.99 C11—H11 0.95

C4B—C5B 1.520 (6) C12—C13 1.380 (3)

C4B—H4B1 0.99 C12—H12 0.95

C4B—H4B2 0.99 C13—C14 1.383 (3)

C5B—C6 1.537 (5) C13—H13 0.95

C5B—H5B1 0.99 C14—C15 1.384 (3)

C5B—H5B2 0.99 C14—H14 0.95

C6—N1 1.470 (3) C15—H15 0.95

(6)

N1—C2—C8 120.91 (18) C5A—C6—H6A 108.6

N1—C2—C3 118.14 (17) N1—C6—H6B 108.6

C8—C2—C3 120.96 (17) C5A—C6—H6B 108.6

C2—C3—C4B 113.5 (3) H6A—C6—H6B 107.6

C2—C3—C4A 113.09 (19) N1—C6—H6C 109.6

C2—C3—H3A 109 C5B—C6—H6C 109.6

C4A—C3—H3A 109 N1—C6—H6D 109.6

C2—C3—H3B 109 C5B—C6—H6D 109.6

C4A—C3—H3B 109 H6C—C6—H6D 108.1

H3A—C3—H3B 107.8 N1—C7—H7A 109.5

C2—C3—H3C 108.9 N1—C7—H7B 109.5

C4B—C3—H3C 108.9 H7A—C7—H7B 109.5

C2—C3—H3D 108.9 N1—C7—H7C 109.5

C4B—C3—H3D 108.9 H7A—C7—H7C 109.5

H3C—C3—H3D 107.7 H7B—C7—H7C 109.5

C5A—C4A—C3 108.3 (3) C2—C8—C9 125.59 (18)

C5A—C4A—H4A1 110 C2—C8—H8 117.2

C3—C4A—H4A1 110 C9—C8—H8 117.2

C5A—C4A—H4A2 110 O1—C9—C8 125.65 (18)

C3—C4A—H4A2 110 O1—C9—C10 116.50 (17)

H4A1—C4A—H4A2 108.4 C8—C9—C10 117.85 (17)

C4A—C5A—C6 107.1 (3) C11—C10—C15 117.83 (19)

C4A—C5A—H5A1 110.3 C11—C10—C9 117.98 (18)

C6—C5A—H5A1 110.3 C15—C10—C9 124.16 (18)

C4A—C5A—H5A2 110.3 C12—C11—C10 121.2 (2)

C6—C5A—H5A2 110.3 C12—C11—H11 119.4

H5A1—C5A—H5A2 108.5 C10—C11—H11 119.4

C3—C4B—C5B 105.0 (5) C13—C12—C11 120.2 (2)

C3—C4B—H4B1 110.7 C13—C12—H12 119.9

C5B—C4B—H4B1 110.7 C11—C12—H12 119.9

C3—C4B—H4B2 110.7 C12—C13—C14 119.6 (2)

C5B—C4B—H4B2 110.7 C12—C13—H13 120.2

H4B1—C4B—H4B2 108.8 C14—C13—H13 120.2

C4B—C5B—C6 108.4 (5) C13—C14—C15 120.2 (2)

C4B—C5B—H5B1 110 C13—C14—H14 119.9

C6—C5B—H5B1 110 C15—C14—H14 119.9

C4B—C5B—H5B2 110 C14—C15—C10 120.9 (2)

C6—C5B—H5B2 110 C14—C15—H15 119.5

H5B1—C5B—H5B2 108.4 C10—C15—H15 119.5

N1—C6—C5A 114.7 (2) C2—N1—C7 120.42 (17)

N1—C6—C5B 110.3 (3) C2—N1—C6 125.16 (17)

N1—C6—H6A 108.6 C7—N1—C6 114.39 (16)

N1—C2—C3—C4B 26.1 (4) C8—C9—C10—C11 164.01 (19)

C8—C2—C3—C4B −153.8 (4) O1—C9—C10—C15 162.0 (2)

N1—C2—C3—C4A −15.0 (3) C8—C9—C10—C15 −18.1 (3)

C8—C2—C3—C4A 165.1 (2) C15—C10—C11—C12 0.8 (3)

(7)

supporting information

sup-5 Acta Cryst. (2007). E63, o98–o99

C4B—C3—C4A—C5A −46.8 (4) C10—C11—C12—C13 −0.9 (3)

C3—C4A—C5A—C6 −65.2 (4) C11—C12—C13—C14 0.2 (3)

C2—C3—C4B—C5B −55.6 (6) C12—C13—C14—C15 0.6 (3)

C4A—C3—C4B—C5B 42.2 (4) C13—C14—C15—C10 −0.6 (3)

C3—C4B—C5B—C6 69.1 (7) C11—C10—C15—C14 −0.1 (3)

C4A—C5A—C6—N1 43.5 (4) C9—C10—C15—C14 −177.94 (19)

C4A—C5A—C6—C5B −42.5 (6) C8—C2—N1—C7 −6.6 (3)

C4B—C5B—C6—N1 −52.1 (7) C3—C2—N1—C7 173.54 (18)

C4B—C5B—C6—C5A 53.0 (6) C8—C2—N1—C6 171.43 (19)

N1—C2—C8—C9 178.57 (19) C3—C2—N1—C6 −8.5 (3)

C3—C2—C8—C9 −1.5 (3) C5A—C6—N1—C2 −6.6 (4)

C2—C8—C9—O1 −4.9 (3) C5B—C6—N1—C2 21.7 (4)

C2—C8—C9—C10 175.31 (19) C5A—C6—N1—C7 171.5 (3)

O1—C9—C10—C11 −15.8 (3) C5B—C6—N1—C7 −160.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C3—H3D···O1 0.99 2.21 2.804 (3) 117

C7—H7A···O1i 0.98 2.54 3.469 (3) 159

Figure

Figure 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical