• No results found

Quadrupled best proximity point theorems in partially ordered metric spaces

N/A
N/A
Protected

Academic year: 2020

Share "Quadrupled best proximity point theorems in partially ordered metric spaces"

Copied!
27
0
0

Loading.... (view fulltext now)

Full text

(1)

____________

*Corresponding author

E-mail address: abelang.premi@gmail.com Received May 31, 2019

605

Available online at http://scik.org

J. Math. Comput. Sci. 9 (2019), No. 5, 605-631 https://doi.org/10.28919/jmcs/4149

ISSN: 1927-5307

QUADRUPLED BEST PROXIMITY POINT THEOREMS IN PARTIALLY

ORDERED METRIC SPACES

LANGPOKLAKPAM PREMILA DEVI1,* AND LAISHRAM SHAMBHU SINGH2 1Department of Mathematics, Manipur University, Canchipur, India

2Department of Mathematics, D. M. College, Imphal, India

Copyright Β© 2019 the author(s). This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: In this paper, we prove some quadrupled best proximity point theorems in partially ordered metric space by using (πœ“, πœ™) contraction. Our results generalise the results of Kumam et.al. (Coupled best proximity points in ordered metric spaces, Fixed Point Theory and Application 2014, 2014:107). An example is also given to verify the results obtained.

Keywords: partial ordered set; best proximity point; quadrupled fixed point; quadrupled best proximity point.

2010 AMS Subject Classification: 41A65, 90C30, 47H10.

1. INTRODUCTION

In a metric space (𝑋, 𝑑) a self mapping 𝑇 on 𝑋 is said to posses fixed point if the equation

𝑇π‘₯ = π‘₯ has at least one solution. In this case x is said to be the fixed point of T. The existence

(2)

contraction principle has the most important tool in order to obtain fixed point of a mapping. Now, the question arises if the equation 𝑇π‘₯ = π‘₯ has no solution. In order to investigate further the study of best proximity started.

Let A and B be non-empty closed subsets of a metric space (𝑋, 𝑑) and 𝑇: 𝐴 β†’ 𝐡 be a non-self mapping. A point π‘₯ in 𝐴 for which 𝑑(π‘₯, 𝑇π‘₯) = 𝑑(𝐴, 𝐡) is called a best proximity point of 𝑇. It can be noted that the best proximity point becomes a fixed point if the underlying mapping is assumed to be self mapping.

The best approximation theorem given by Ky Fan [1] stated as follows:

If 𝐾 is a non-empty compact convex subset of a Hausdroff locally convex topological vector space 𝐸 with a continuous seminorm 𝑝 and 𝑇: 𝐾 β†’ 𝐸 is a single valued continuous function, then there exists an element π‘₯ ∈ 𝐾 such that

𝑝(π‘₯ βˆ’ 𝑇π‘₯) = 𝑑𝑝(𝑇π‘₯, 𝐾) ≔ inf {𝑝(𝑇π‘₯ βˆ’ 𝑦): 𝑦 ∈ 𝐾}

The result of Ky Fan was generalised by a large number of authors in various direction (see [2-19] and references there in).

The concept of coupled fixed point was introduced by Guo and Lakshmikantham [20] in the year 1987. Further, Bhaskar and Lakshmikantham [21] introduced the concept of mixed monotone mapping and established some coupled fixed point theorems for mapping satisfying mixed monotone property.

The concept of coupled fixed point was further extended to triple fixed point by Berinde and Borcut [22] and quadrupled fixed point by Karapinar and Luong [23]. These concepts of Tripled and quadrupled fixed points were presented in a more generalised form by Wu and Liu [24]. For more results on coupled, tripled, quadrupled fixed point, one can see the research articles ([25-50] and references there in).

In this note we prove some quadrupled best proximity point theorems in partially ordered metric space by using proximally quadrupled weak (πœ“, πœ™) contraction on the line of proximally

(3)

DEFINITION 1. [23] Let X be a non empty set and 𝐹: 𝑋4 β†’ 𝑋 be a given mapping. An element (π‘₯, 𝑦, 𝑧, 𝑀) ∈ 𝑋4 is called a quadrupled fixed point of the mapping F if

π‘₯ = 𝐹(π‘₯, 𝑦, 𝑧, 𝑀), 𝑦 = 𝐹(𝑦, 𝑧, 𝑀, π‘₯), 𝑧 = 𝐹(𝑧, 𝑀, π‘₯, 𝑦) and 𝑀 = 𝐹(𝑀, π‘₯, 𝑦, 𝑧).

The authors mentioned above also introduced the notion of mixed monotone mapping. If (𝑋, βͺ― )

is a partially ordered set, the mapping F is said to have the mixed monotone property, if

π‘₯1,π‘₯2 ∈ 𝑋, π‘₯1 βͺ― π‘₯2 ⟹ 𝐹(π‘₯1, 𝑦, 𝑧, 𝑀) βͺ― 𝐹(π‘₯2, 𝑦, 𝑧, 𝑀), 𝑦, 𝑧, 𝑀 ∈ 𝑋,

𝑦1, 𝑦2 ∈ 𝑋, 𝑦1 βͺ― 𝑦2 ⟹ 𝐹(π‘₯, 𝑦1, 𝑧, 𝑀) βͺ° 𝐹(π‘₯, 𝑦2, 𝑧, 𝑀), π‘₯, 𝑧, 𝑀 ∈ 𝑋,

𝑧1, 𝑧2 ∈ 𝑋, 𝑧1 βͺ― 𝑧2 ⟹ 𝐹(π‘₯, 𝑦, 𝑧1, 𝑀) βͺ― 𝐹(π‘₯, 𝑦, 𝑧2, 𝑀), π‘₯, 𝑦, 𝑀 ∈ 𝑋,

𝑀1,𝑀2 ∈ 𝑋, 𝑀1 βͺ― 𝑀2 ⟹ 𝐹(𝑀, 𝑦, 𝑧, 𝑀1) βͺ° 𝐹(π‘₯, 𝑦, 𝑧, 𝑀2), π‘₯, 𝑦, 𝑧, ∈ 𝑋,

Let A and B be non empty subsets of a metric space(𝑋, 𝑑). We use the following notions in the

sequel:

𝑑𝑖𝑠𝑑(𝐴, 𝐡) = inf{𝑑(π‘₯, 𝑦): π‘₯ ∈

𝐴 and 𝑦 ∈ 𝐡},

𝐴0 = {π‘₯ ∈ 𝐴: 𝑑(π‘₯, 𝑦) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), for some 𝑦 ∈ 𝐡}

𝐡0 = {𝑦 ∈ 𝐡: 𝑑(π‘₯, 𝑦) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), for some π‘₯ ∈ 𝐴}

Now we give the following definition.

DEFINITION 2. Let (𝑋, 𝑑, βͺ―) be a partially ordered metric space and A, B are nonempty subsets of X. A mapping 𝐹: 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 β†’ 𝐡 is said to have proximal mixed monotone property if 𝐹(π‘₯, 𝑦, 𝑧, 𝑀) is proximally non decreasing in x and z, and is proximally non increasing in y and w, that is for all π‘₯, 𝑦, 𝑧, 𝑀 ∈ 𝐴,

π‘₯1 βͺ― π‘₯2 βͺ― π‘₯3 βͺ― π‘₯4

𝑑 (𝑒1,𝐹(π‘₯1,𝑦, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒2,𝐹(π‘₯2,𝑦, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒3,𝐹(π‘₯3,𝑦, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

(4)

⟹ 𝑒1 βͺ― 𝑒2 βͺ― 𝑒3 βͺ― 𝑒4

𝑦1 βͺ― 𝑦2 βͺ― 𝑦3 βͺ― 𝑦4

𝑑 (𝑒5,𝐹(π‘₯,𝑦1, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒6,𝐹(π‘₯,𝑦2, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒7,𝐹(π‘₯,𝑦3, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒8,𝐹(π‘₯,𝑦4, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑒5 βͺ° 𝑒6 βͺ° 𝑒7 βͺ° 𝑒8

𝑧1 βͺ― 𝑧2 βͺ― 𝑧3 βͺ― 𝑧4

𝑑 (𝑒9,𝐹(π‘₯,𝑦, 𝑧1, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒10,𝐹(π‘₯,𝑦, 𝑧2, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒11,𝐹(π‘₯,𝑦, 𝑧3, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒12,𝐹(π‘₯,𝑦, 𝑧4, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑒9 βͺ― 𝑒10 βͺ― 𝑒11 βͺ― 𝑒12

and

𝑀1 βͺ― 𝑀2 βͺ― 𝑀3 βͺ― 𝑀4

𝑑 (𝑒13,𝐹(π‘₯,𝑦, 𝑧, 𝑀1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒14,𝐹(π‘₯,𝑦, 𝑧, 𝑀2)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒15,𝐹(π‘₯,𝑦, 𝑧, 𝑀3)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑒16,𝐹(π‘₯,𝑦, 𝑧, 𝑀4)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

⟹ 𝑒13 βͺ° 𝑒14 βͺ° 𝑒15βͺ° 𝑒16

(5)

If we take 𝐴 = 𝐡 the above definition, the notion of the proximal mixed monotone property becomes the conditions of mixed monotone property. The following lemmas are essential for our results.

LEMMA 1. Let (𝑋, 𝑑, βͺ―) be a partially ordered metric space and A, B are nonempty subsets of X. Assume that 𝐴0is nonempty. A mapping 𝐹: 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 β†’ 𝐡 has the proximal

mixed monotone property with 𝐹(𝐴0Γ— 𝐴0Γ— 𝐴0Γ— 𝐴0) βŠ† 𝐡0 whenever

π‘₯0, π‘₯1, π‘₯2, π‘₯3, 𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑧0,𝑧1, 𝑧2, 𝑧3, 𝑀0, 𝑀1, 𝑀2, 𝑀3 ∈ 𝐴 such that

{

π‘₯0 βͺ― π‘₯1 βͺ― π‘₯2 βͺ― π‘₯3; 𝑦0 βͺ° 𝑦1 βͺ° 𝑦2 βͺ° 𝑦3; 𝑧0 βͺ― 𝑧1 βͺ― 𝑧2βͺ― 𝑧3; 𝑀0 βͺ° 𝑀1 βͺ° 𝑀2 βͺ° 𝑀3 𝑑 (π‘₯1 , 𝐹(π‘₯0, 𝑦0, 𝑧0,𝑀0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (π‘₯2 , 𝐹(π‘₯1, 𝑦1, 𝑧1,𝑀1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (π‘₯3 , 𝐹(π‘₯2, 𝑦2, 𝑧2,𝑀2)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (π‘₯4 , 𝐹(π‘₯3, 𝑦3, 𝑧3,𝑀3)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡). ⟹ π‘₯1 βͺ― π‘₯2 βͺ― π‘₯3 βͺ― π‘₯4

(1)

Proof : By hypothesis we have 𝐹(𝐴0Γ— 𝐴0 Γ— 𝐴0Γ— 𝐴0) βŠ† 𝐡0, therefore 𝐹(π‘₯3, 𝑦0, 𝑧0,𝑀0) ∈

𝐡0. Hence, there exist π‘₯1βˆ— ∈ 𝐴 such that

𝑑 (π‘₯1βˆ—, 𝐹(π‘₯

3, 𝑦0, 𝑧0,𝑀0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡). (2)

Since F is proximal mixed monotone ( in particular F is proximally non decreasing in x) from (1) and (2), we get

{

π‘₯0 βͺ― π‘₯1 βͺ― π‘₯2 βͺ― π‘₯3;

𝑑 (π‘₯1 , 𝐹(π‘₯0, 𝑦0, 𝑧0,𝑀0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (π‘₯2 , 𝐹(π‘₯1, 𝑦1, 𝑧1,𝑀1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (π‘₯3 , 𝐹(π‘₯2, 𝑦2, 𝑧2,𝑀2)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (π‘₯1βˆ— , 𝐹(π‘₯

3, 𝑦0, 𝑧0,𝑀0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

⟹ π‘₯1 βͺ― π‘₯2 βͺ― π‘₯3 βͺ― π‘₯1βˆ—

(3)

Similarly, using the fact that F is proximal mixed monotone (in particular, F is

(6)

{

𝑦0 βͺ° 𝑦1 βͺ° 𝑦2 βͺ° 𝑦3

𝑑 (π‘₯1βˆ— , 𝐹(π‘₯3, 𝑦0, 𝑧0,𝑀0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (π‘₯4 , 𝐹(π‘₯3, 𝑦3, 𝑧3,𝑀3)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) ⟹ π‘₯1βˆ— βͺ― π‘₯

4

(4)

From (3) and (4), we have π‘₯1 βͺ― π‘₯2 βͺ― π‘₯3 βͺ― π‘₯4. This completes the proof.

LEMMA 2. Let (𝑋, 𝑑, βͺ―) be a partially ordered metric space andA, B are non empty subsets of X. Assume 𝐴0 is nonempty. A mapping 𝐹: 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 β†’ 𝐡 has the proximal mixed monotone property with 𝐹(𝐴0Γ— 𝐴0Γ— 𝐴0Γ— 𝐴0) βŠ† 𝐡0 whenever

π‘₯0, π‘₯1, π‘₯2, π‘₯3, 𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑧0,𝑧1, 𝑧2, 𝑧3, 𝑀0, 𝑀1, 𝑀2, 𝑀3 ∈ 𝐴 such that

{

π‘₯0 βͺ― π‘₯1 βͺ― π‘₯2 βͺ― π‘₯3; 𝑦0 βͺ° 𝑦1 βͺ° 𝑦2 βͺ° 𝑦3; 𝑧0 βͺ― 𝑧1 βͺ― 𝑧2βͺ― 𝑧3; 𝑀0 βͺ° 𝑀1 βͺ° 𝑀2 βͺ° 𝑀3 𝑑 (𝑦1 , 𝐹(𝑦0, 𝑧0,𝑀0, π‘₯0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (𝑦2 , 𝐹(𝑦1, 𝑧1,𝑀1, π‘₯1,)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡). 𝑑 (𝑦3 , 𝐹(𝑦2, 𝑧2,𝑀2, π‘₯2,)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (𝑦4 , 𝐹(𝑦3, 𝑧3,𝑀3, π‘₯3)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

⟹ 𝑦1 βͺ° 𝑦2 βͺ° 𝑦3 βͺ° 𝑦4

(5)

LEMMA 3. Let (𝑋, 𝑑, βͺ―) be a partially ordered metric space and A, B are non empty subsets of X. Assume 𝐴0 is nonempty. A mapping 𝐹: 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 β†’ 𝐡 has the proximal mixed monotone property with 𝐹(𝐴0Γ— 𝐴0Γ— 𝐴0Γ— 𝐴0) βŠ† 𝐡0 whenever

π‘₯0, π‘₯1, π‘₯2, π‘₯3, 𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑧0,𝑧1, 𝑧2, 𝑧3, 𝑀0, 𝑀1, 𝑀2, 𝑀3 ∈ 𝐴 such that

{

π‘₯0 βͺ― π‘₯1 βͺ― π‘₯2 βͺ― π‘₯3; 𝑦0 βͺ° 𝑦1 βͺ° 𝑦2 βͺ° 𝑦3; 𝑧0 βͺ― 𝑧1 βͺ― 𝑧2βͺ― 𝑧3; 𝑀0 βͺ° 𝑀1 βͺ° 𝑀2 βͺ° 𝑀3

𝑑 (𝑧1 , 𝐹(𝑧0, 𝑀0,π‘₯0, 𝑦0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (𝑧2 , 𝐹(𝑧1, 𝑀1,π‘₯1, 𝑦1,)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (𝑧3 , 𝐹(𝑧2, 𝑀2,π‘₯2, 𝑦2,)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (𝑧4 , 𝐹(𝑧3, 𝑀3,π‘₯3, 𝑦3)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

⟹ 𝑧1 βͺ― 𝑧2 βͺ― 𝑧3 βͺ― 𝑧4

(7)

LEMMA 4. Let (𝑋, 𝑑, βͺ―) be a partially ordered metric spaces and A, B are non empty subsets of X. Assume 𝐴0 is nonempty. A mapping 𝐹: 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 β†’ 𝐡 has the proximal

mixed monotone property with 𝐹(𝐴0Γ— 𝐴0Γ— 𝐴0 Γ— 𝐴0) βŠ† 𝐡0 whenever

π‘₯0, π‘₯1, π‘₯2, π‘₯3, 𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑧0,𝑧1, 𝑧2, 𝑧3, 𝑀0, 𝑀1, 𝑀2, 𝑀3 ∈ 𝐴 such that

{

π‘₯0 βͺ― π‘₯1 βͺ― π‘₯2 βͺ― π‘₯3; 𝑦0 βͺ° 𝑦1 βͺ° 𝑦2 βͺ° 𝑦3; 𝑧0 βͺ― 𝑧1 βͺ― 𝑧2 βͺ― 𝑧3; 𝑀0 βͺ° 𝑀1 βͺ° 𝑀2 βͺ° 𝑀3

𝑑 (𝑀1 , 𝐹(𝑀0, π‘₯0,𝑦0, 𝑧0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (𝑀2 , 𝐹(𝑀1, π‘₯1,𝑦1, 𝑧1,)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (𝑀3 , 𝐹(𝑀2, π‘₯2,𝑦2, 𝑧2,)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

𝑑 (𝑀4 , 𝐹(𝑀3, π‘₯3,𝑦3, 𝑧3)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

⟹ 𝑀1 βͺ° 𝑀2 βͺ° 𝑀3 βͺ° 𝑀4

(7)

Proof of lemma 2, 3, 4 are omitted.

Following definition was given by Luong and Thuan [37]

DEFINITION 3. [37] Let πœ™ be the class of all functions πœ™: [0,∞) β†’ [0,∞) which satisfy: 1. πœ™ is continuous and non decreasing,

2. πœ™(𝑑) = 0 if and only if 𝑑 = 0,

3. πœ™(𝑑 + 𝑠) ≀ πœ™(𝑑) + πœ™(𝑠), βˆ€ 𝑑, 𝑠 ∈ [0, ∝).

And let πœ“ be the class of all functions πœ“: [0,∞) β†’ [0,∞) which satisfy lim

π‘‘β†’π‘Ÿπœ“(𝑑) > 0 for all π‘Ÿ > 0 and lim

𝑑→0+πœ“(𝑑) = 0 .

Now we give the following definition of proximally quadrupled weak (πœ“, πœ™) contraction.

DEFINITION 4. Let (𝑋, 𝑑, βͺ―) be a partially ordered metric space and A and B are non empty subsets of X. Assume 𝐴0 is non empty. A mapping 𝐹: 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 β†’ 𝐡 is said to be proximally quadrupled weak (πœ“, πœ™) contraction on A, whenever

{

π‘₯1 βͺ― π‘₯2; 𝑦1 βͺ° 𝑦2; 𝑧1 βͺ― 𝑧2; 𝑀1 βͺ° 𝑀2 𝑑(𝑒, 𝐹(π‘₯1, 𝑦1, 𝑧1, 𝑀1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

(8)

⟹ πœ™(𝑑(𝑒, 𝑣))

≀ 1

4πœ™(𝑑(π‘₯1, π‘₯2) + 𝑑(𝑦1, 𝑦2) + 𝑑(𝑧1, 𝑧2) + 𝑑(𝑀1, 𝑀2))

βˆ’ πœ“ (𝑑(π‘₯1, π‘₯2) + 𝑑(𝑦1, 𝑦2) + 𝑑(𝑧1, 𝑧2) + 𝑑(𝑀1, 𝑀2)

4 )

where π‘₯1, π‘₯2, 𝑦1, 𝑦2, 𝑧1, 𝑧2, 𝑀1, 𝑀2 ∈ 𝐴.

If 𝐴 = 𝐡 in the above definition, the notion of proximally quadrupled weak (πœ“, πœ™) contraction on A reduces to that of a quadrupled weak (πœ“, πœ™) contraction.

3. MAIN RESULT

Let (𝑋, 𝑑, βͺ―) be a partially ordered complete metric space endowed with the product space 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 satisfying the following conditions for (π‘₯, 𝑦, 𝑧, 𝑀), (𝑝, π‘ž, π‘Ÿ, 𝑠) ∈

𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 ,

(𝑝, π‘ž, π‘Ÿ, 𝑠) βͺ― (π‘₯, 𝑦, 𝑧, 𝑀) ⟺ π‘₯ βͺ° 𝑝, 𝑦 βͺ― π‘ž, 𝑧 βͺ° π‘Ÿ, 𝑀 βͺ― 𝑠.

Theorem 1. Let (𝑋, 𝑑, βͺ―) be a partially ordered complete metric space. Let A, B are non

empty closed subsets of the metric space (𝑋, 𝑑) such that 𝐴0 β‰  πœ™. Let 𝐹: 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 β†’

𝐡 satisfy the following conditions:

1. F is continuous proximally quadrupled weak (πœ“, πœ™) contraction on A having the proximal mixed monotone property on A such that 𝐹(𝐴0Γ— 𝐴0Γ— 𝐴0Γ— 𝐴0) βŠ† 𝐡0.

2. There exist elements (π‘₯0, 𝑦0, 𝑧0, 𝑀0) and (π‘₯1, 𝑦1, 𝑧1, 𝑀1) in 𝐴0Γ— 𝐴0 Γ— 𝐴0Γ— 𝐴0 such that

𝑑 (π‘₯1 , 𝐹(π‘₯0, 𝑦0, 𝑧0,𝑀0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) with π‘₯0 βͺ― π‘₯1

𝑑 (𝑦1 , 𝐹(𝑦0, 𝑧0, 𝑀0,π‘₯0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) with 𝑦0 βͺ° 𝑦1,

𝑑 (𝑧1 , 𝐹(𝑧0,𝑀0, π‘₯0, 𝑦0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) with 𝑧0 βͺ― 𝑧1and

(9)

Then there exists (π‘₯, 𝑦, 𝑧, 𝑀) in 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 such that 𝑑(π‘₯, 𝐹(π‘₯, 𝑦, 𝑧, 𝑀)) =

𝑑𝑖𝑠𝑑(𝐴, 𝐡) , 𝑑(𝑦, 𝐹(𝑦, 𝑧, 𝑀, π‘₯)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) , 𝑑(π‘₯, 𝐹(𝑧, 𝑀, π‘₯, 𝑦)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) and

𝑑(𝑀, 𝐹(𝑀, π‘₯, 𝑦, 𝑧)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

Proof: By hypothesis, there exists elements (π‘₯0, 𝑦0, 𝑧0,𝑀0) and (π‘₯1, 𝑦1, 𝑧1,𝑀1) in 𝐴0 Γ—

𝐴0 Γ— 𝐴0Γ— 𝐴0 such that

𝑑 (π‘₯1 , 𝐹(π‘₯0, 𝑦0, 𝑧0,𝑀0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) with π‘₯0 βͺ― π‘₯1,

𝑑 (𝑦1 , 𝐹(𝑦0, 𝑧0, 𝑀0,π‘₯0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) with 𝑦0 βͺ° 𝑦1,

𝑑 (𝑧1 , 𝐹(𝑧0,𝑀0, π‘₯0, 𝑦0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) with 𝑧0 βͺ― 𝑧1, and

𝑑(𝑀1 , 𝐹(𝑀0, π‘₯0, 𝑦0, 𝑧0)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) with 𝑀0 βͺ° 𝑀1.

Since(𝐴0Γ— 𝐴0Γ— 𝐴0 Γ— 𝐴0) βŠ† 𝐡0 , then there exists element (π‘₯2, 𝑦2, 𝑧2,𝑀2) ∈ 𝐴0Γ—

𝐴0 Γ— 𝐴0Γ— 𝐴0 such that

𝑑 (π‘₯2 , 𝐹(π‘₯1, 𝑦1, 𝑧1,𝑀1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑦2 , 𝐹(𝑦1, 𝑧1, 𝑀1,π‘₯1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑧2 , 𝐹(𝑧1, 𝑀1, π‘₯1,𝑦1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) and

𝑑 (𝑀2 , 𝐹(𝑀1, π‘₯1, 𝑦1,𝑧1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

And also there exists element (π‘₯3, 𝑦3, 𝑧3,𝑀3) ∈ 𝐴0 Γ— 𝐴0Γ— 𝐴0Γ— 𝐴0

𝑑 (π‘₯3 , 𝐹(π‘₯2, 𝑦2, 𝑧2,𝑀2)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑦3 , 𝐹(𝑦2, 𝑧2, 𝑀2,π‘₯2)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑 (𝑧3 , 𝐹(𝑧2, 𝑀2, π‘₯2,𝑦2)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

(10)

Thus by lemma 1, 2, 3, 4 we have π‘₯1 βͺ― π‘₯2 βͺ― π‘₯3; 𝑦1 βͺ° 𝑦2 βͺ° 𝑦3; 𝑧1 βͺ― 𝑧2 βͺ― 𝑧3 π‘Žπ‘›π‘‘ 𝑀1 βͺ° 𝑀2 βͺ°

𝑀3. Continuing in this way, we can construct sequences {π‘₯𝑛}, {𝑦𝑛}, {𝑧𝑛} π‘Žπ‘›π‘‘ {𝑀𝑛} in 𝐴0 such

that

𝑑 (π‘₯𝑛+1 , 𝐹(π‘₯𝑛, 𝑦𝑛, 𝑧𝑛,𝑀𝑛)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), βˆ€n ∈ N with π‘₯0 βͺ― π‘₯1 βͺ― β‹― βͺ― π‘₯𝑛 βͺ― π‘₯𝑛+1 βͺ―... (8)

𝑑 (𝑦𝑛+1 , 𝐹(𝑦𝑛, 𝑧𝑛,𝑀𝑛, π‘₯𝑛)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), βˆ€n ∈ N with 𝑦0 βͺ° 𝑦1 βͺ° β‹― βͺ° 𝑦𝑛 βͺ° 𝑦𝑛+1 βͺ°... (9)

𝑑 (𝑧𝑛+1 , 𝐹(𝑧𝑛,𝑀𝑛, π‘₯𝑛, 𝑦𝑛)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), βˆ€n ∈ N with 𝑧0 βͺ― 𝑧1 βͺ― β‹― βͺ― 𝑧𝑛 βͺ― 𝑧𝑛+1 βͺ―... (10)

𝑑(𝑀𝑛+1 , 𝐹(𝑀𝑛, π‘₯𝑛, 𝑦𝑛, 𝑧𝑛)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), βˆ€n ∈ N with 𝑀0 βͺ° 𝑀1 βͺ° β‹― βͺ° 𝑀𝑛 βͺ° 𝑀𝑛+1βͺ°... (11)

Then 𝑑 (π‘₯𝑛 , 𝐹(π‘₯π‘›βˆ’1, π‘¦π‘›βˆ’1, π‘§π‘›βˆ’1,π‘€π‘›βˆ’1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑 (π‘₯𝑛+1 , 𝐹(π‘₯𝑛, 𝑦𝑛, 𝑧𝑛,𝑀𝑛)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) and we also have π‘₯π‘›βˆ’1 βͺ― π‘₯𝑛 ,π‘¦π‘›βˆ’1 βͺ° 𝑦𝑛 ,π‘§π‘›βˆ’1 βͺ― 𝑧𝑛 and π‘€π‘›βˆ’1 βͺ° 𝑀𝑛 , βˆ€ 𝑛 ∈ 𝑁 . Since F is proximally quadrupled weak (πœ“, πœ™) contraction on A, we have πœ™(𝑑(π‘₯𝑛, π‘₯𝑛+1)) ≀ 1 4πœ™(𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛)) βˆ’ πœ“ (𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛) 4 ) (12)

Similarly, πœ™(𝑑(𝑦𝑛, 𝑦𝑛+1)) ≀ 1 4πœ™(𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛) + 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛)) βˆ’ πœ“ (𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛) + 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) 4 ) (13)

πœ™(𝑑(𝑧𝑛, 𝑧𝑛+1)) ≀ 1 4πœ™(𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛) + 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛)) βˆ’ πœ“ (𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛) + 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) 4 ) (14)

(11)

πœ™(𝑑(𝑀𝑛, 𝑀𝑛+1))

≀ 1

4πœ™(𝑑(π‘€π‘›βˆ’1, 𝑀𝑛) + 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛))

βˆ’ πœ“ (𝑑(π‘€π‘›βˆ’1, 𝑀𝑛) + 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛)

4 ) (15)

From (12), (13), (14) and (15), we get

πœ™(𝑑(π‘₯𝑛, π‘₯𝑛+1)) + πœ™(𝑑(𝑦𝑛, 𝑦𝑛+1)) + πœ™(𝑑(𝑧𝑛, 𝑧𝑛+1)) + πœ™(𝑑(𝑀𝑛, 𝑀𝑛+1))

≀ πœ™(𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛))

βˆ’ 4πœ“ (𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛)

4 ) (16)

By property (iii) of πœ™, we have

πœ™(𝑑(π‘₯𝑛, π‘₯𝑛+1) + 𝑑(𝑦𝑛, 𝑦𝑛+1) + 𝑑(𝑧𝑛, 𝑧𝑛+1) + 𝑑(𝑀𝑛, 𝑀𝑛+1))

≀ πœ™(𝑑(π‘₯𝑛, π‘₯𝑛+1)) + πœ™(𝑑(𝑦𝑛, 𝑦𝑛+1)) + πœ™(𝑑(𝑧𝑛, 𝑧𝑛+1)) + πœ™(𝑑(𝑀𝑛, 𝑀𝑛+1))

(17) From (16) and (17), we get

πœ™(𝑑(π‘₯𝑛, π‘₯𝑛+1) + 𝑑(𝑦𝑛, 𝑦𝑛+1) + 𝑑(𝑧𝑛, 𝑧𝑛+1) + 𝑑(𝑀𝑛, 𝑀𝑛+1))

≀ πœ™(𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛))

βˆ’ 4πœ“ (𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛)

4 ) (18)

Since πœ™ is non decreasing from (18), we get

𝑑(π‘₯𝑛, π‘₯𝑛+1) + 𝑑(𝑦𝑛, 𝑦𝑛+1) + 𝑑(𝑧𝑛, 𝑧𝑛+1) + 𝑑(𝑀𝑛, 𝑀𝑛+1)

≀ 𝑑(π‘₯π‘›βˆ’1, π‘₯𝑛) + 𝑑(π‘¦π‘›βˆ’1, 𝑦𝑛) + 𝑑(π‘§π‘›βˆ’1, 𝑧𝑛) + 𝑑(π‘€π‘›βˆ’1, 𝑀𝑛) (19)

(12)

lim

π‘›β†’βˆžπ›Ώπ‘› = limπ‘›β†’βˆž[𝑑(π‘₯𝑛, π‘₯𝑛+1) + 𝑑(𝑦𝑛, 𝑦𝑛+1) + 𝑑(𝑧𝑛, 𝑧𝑛+1) + 𝑑(𝑀𝑛, 𝑀𝑛+1)] = 𝛿 (20) Now we have to show that 𝛿 = 0. On the contrary, let 𝛿 > 0. Taking limit as 𝑛 β†’ ∞ on both sides of (18) and using the fact that πœ™ is continuous, we have

πœ™(𝛿) ≀ lim

π‘›β†’βˆžπœ™(π›Ώπ‘›βˆ’1) βˆ’ 4 limπ‘›β†’βˆžπœ“ (

π›Ώπ‘›βˆ’1

4 ) = πœ™(𝛿) βˆ’ 4 lim

π‘›β†’βˆžπœ“ (

π›Ώπ‘›βˆ’1

4 ) < πœ™(𝛿),

Since lim

π‘‘β†’π‘Ÿπœ“(𝑑) > 0, βˆ€ π‘Ÿ > 0, which is a contradiction and hence we conclude that 𝛿 = 0. Thus,

lim

π‘›β†’βˆžπ›Ώπ‘› = limπ‘›β†’βˆž[𝑑(π‘₯𝑛, π‘₯𝑛+1) + 𝑑(𝑦𝑛, 𝑦𝑛+1) + 𝑑(𝑧𝑛, 𝑧𝑛+1) + 𝑑(𝑀𝑛, 𝑀𝑛+1)]

= 0 (21)

Next we have to prove that {π‘₯𝑛}, {𝑦𝑛}, {𝑧𝑛} π‘Žπ‘›π‘‘ {𝑀𝑛} are Cauchy sequences. On the contrary, let us assume that at least one of the sequences {π‘₯𝑛}, {𝑦𝑛}, {𝑧𝑛} π‘Žπ‘›π‘‘ {𝑀𝑛} is not a Cauchy sequence. This means that at least one of

lim

𝑛,π‘šβ†’βˆžπ‘‘(π‘₯𝑛, π‘₯π‘š) = 0 , lim𝑛,π‘šβ†’βˆžπ‘‘(𝑦𝑛, π‘¦π‘š) = 0

lim

𝑛,π‘šβ†’βˆžπ‘‘(𝑧𝑛, π‘§π‘š) = 0 , lim𝑛,π‘šβ†’βˆžπ‘‘(𝑀𝑛, π‘€π‘š) = 0 is not true and consequently,

lim

𝑛,π‘šβ†’βˆž[𝑑(π‘₯𝑛, π‘₯π‘š) + 𝑑(𝑦𝑛, π‘¦π‘š) + 𝑑(𝑧𝑛, π‘§π‘š) + 𝑑(𝑀𝑛, π‘€π‘š)] = 0

is not true.

Then, there exists πœ€ > 0 for which we can find subsequences {π‘₯π‘›π‘˜}, {π‘₯π‘šπ‘˜} of {π‘₯𝑛}; {π‘¦π‘›π‘˜},

{π‘¦π‘šπ‘˜} of {𝑦𝑛}; {π‘§π‘›π‘˜}, {π‘§π‘šπ‘˜} of {𝑧𝑛} and {π‘€π‘›π‘˜}, {π‘€π‘šπ‘˜} of {𝑀𝑛} such that π‘›π‘˜ is the

smallest index for which π‘›π‘˜ > π‘šπ‘˜ > π‘˜,

𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜) β‰₯ πœ€ (22)

This means that

(13)

Using triangle inequality from (19) and (20), we get

πœ€ ≀ 𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜)

≀ 𝑑(π‘₯π‘›π‘˜, π‘₯π‘›π‘˜βˆ’1) + 𝑑(π‘₯π‘›π‘˜βˆ’1, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘›π‘˜βˆ’1) + 𝑑(π‘¦π‘›π‘˜βˆ’1, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘›π‘˜βˆ’1)

+ 𝑑(π‘§π‘›π‘˜βˆ’1, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘›π‘˜βˆ’1) + 𝑑(π‘€π‘›π‘˜βˆ’1, π‘€π‘šπ‘˜)

≀ 𝑑(π‘₯π‘›π‘˜, π‘₯π‘›π‘˜βˆ’1) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘›π‘˜βˆ’1) + 𝑑(π‘§π‘›π‘˜, π‘§π‘›π‘˜βˆ’1) + 𝑑(π‘€π‘›π‘˜, π‘€π‘›π‘˜βˆ’1) + πœ€

Taking limit as π‘˜ β†’ ∞ and using (18), we obtain

lim

𝑛,π‘šβ†’βˆž[𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜)] = πœ€ (24) By triangle inequality, we have

𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜)

≀ 𝑑(π‘₯π‘›π‘˜, π‘₯π‘›π‘˜+1) + 𝑑(π‘₯π‘›π‘˜+1, π‘₯π‘šπ‘˜+1) + 𝑑(π‘₯π‘šπ‘˜+1, π‘₯π‘šπ‘˜) +

𝑑(π‘¦π‘›π‘˜, π‘¦π‘›π‘˜+1) + 𝑑(π‘¦π‘›π‘˜+1, π‘¦π‘šπ‘˜+1) + 𝑑(π‘¦π‘šπ‘˜+1, π‘¦π‘šπ‘˜) +

𝑑(π‘§π‘›π‘˜, π‘§π‘›π‘˜+1) + 𝑑(π‘§π‘›π‘˜+1, π‘§π‘šπ‘˜+1) + 𝑑(π‘§π‘šπ‘˜+1, π‘§π‘šπ‘˜) +

𝑑(π‘€π‘›π‘˜, π‘€π‘›π‘˜+1) + 𝑑(π‘€π‘›π‘˜+1, π‘€π‘šπ‘˜+1) + 𝑑(π‘€π‘šπ‘˜+1, π‘€π‘šπ‘˜)

= [𝑑(π‘₯π‘›π‘˜, π‘₯π‘›π‘˜+1) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘›π‘˜+1) + 𝑑(π‘§π‘›π‘˜, π‘§π‘›π‘˜+1) + 𝑑(π‘€π‘›π‘˜, π‘€π‘›π‘˜+1)]

+ [𝑑(π‘₯π‘šπ‘˜+1, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘šπ‘˜+1, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘šπ‘˜+1, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘šπ‘˜+1, π‘€π‘šπ‘˜)]

+ [𝑑(π‘₯π‘›π‘˜+1, π‘₯π‘šπ‘˜+1) + 𝑑(π‘¦π‘›π‘˜+1, π‘¦π‘šπ‘˜+1) + 𝑑(π‘§π‘›π‘˜+1, π‘§π‘šπ‘˜+1)

+ 𝑑(π‘€π‘›π‘˜+1, π‘€π‘šπ‘˜+1)] (25)

By property of πœ™, we obtain

πœ™(π›Ύπ‘˜) ≀ πœ™(π›Ώπ‘›π‘˜) + πœ™(π›Ώπ‘šπ‘˜) + πœ™ (𝑑(π‘₯π‘›π‘˜+1, π‘₯π‘šπ‘˜+1)) + πœ™ (𝑑(π‘¦π‘›π‘˜+1, π‘¦π‘šπ‘˜+1))

(14)

Where π›Ύπ‘˜ = 𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜)

π›Ώπ‘›π‘˜ = 𝑑(π‘₯π‘›π‘˜, π‘₯π‘›π‘˜+1) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘›π‘˜+1) + 𝑑(π‘§π‘›π‘˜, π‘§π‘›π‘˜+1) + 𝑑(π‘€π‘›π‘˜, π‘€π‘›π‘˜+1)

π›Ώπ‘šπ‘˜ = 𝑑(π‘₯π‘šπ‘˜+1, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘šπ‘˜+1, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘šπ‘˜+1, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘šπ‘˜+1, π‘€π‘šπ‘˜)

Since π‘₯π‘›π‘˜ βͺ° π‘₯π‘šπ‘˜, π‘¦π‘›π‘˜ βͺ― π‘¦π‘šπ‘˜, π‘§π‘›π‘˜ βͺ° π‘§π‘šπ‘˜and π‘€π‘›π‘˜ βͺ― π‘€π‘šπ‘˜, using the fact that F is a proximally

quadrupled weak (πœ“, πœ™) contraction on A, we get

πœ™ (𝑑(π‘₯π‘›π‘˜+1, π‘₯π‘šπ‘˜+1))

≀1

4πœ™ (𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜))

βˆ’ πœ“ (𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜)

4 )

=1

4πœ™(π›Ύπ‘˜) βˆ’ πœ“ ( π›Ύπ‘˜

4) (27)

Similarly,

πœ™ (𝑑(π‘¦π‘›π‘˜+1, π‘¦π‘šπ‘˜+1))

≀1

4πœ™ (𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜) + 𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜))

βˆ’ πœ“ (𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜)

4 )

=1

4πœ™(π›Ύπ‘˜) βˆ’ πœ“ ( π›Ύπ‘˜

4) (28)

πœ™ (𝑑(π‘§π‘›π‘˜+1, π‘§π‘šπ‘˜+1))

≀1

4πœ™ (𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜) + 𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜))

βˆ’ πœ“ (𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜)

4 )

=1

4πœ™(π›Ύπ‘˜) βˆ’ πœ“ ( π›Ύπ‘˜

(15)

and

πœ™ (𝑑(π‘€π‘›π‘˜+1, π‘€π‘šπ‘˜+1))

≀1

4πœ™ (𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜) + 𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜))

βˆ’ πœ“ (𝑑(π‘₯π‘›π‘˜, π‘₯π‘šπ‘˜) + 𝑑(π‘¦π‘›π‘˜, π‘¦π‘šπ‘˜) + 𝑑(π‘§π‘›π‘˜, π‘§π‘šπ‘˜) + 𝑑(π‘€π‘›π‘˜, π‘€π‘šπ‘˜)

4 )

=1

4πœ™(π›Ύπ‘˜) βˆ’ πœ“ ( π›Ύπ‘˜

4) (30)

Using (27), (28), (29) and (30), we get

πœ™(π›Ύπ‘˜) ≀ πœ™(π›Ώπ‘›π‘˜) + πœ™(π›Ώπ‘šπ‘˜) + πœ™(π›Ύπ‘˜) βˆ’ 4πœ“ ( π›Ύπ‘˜

4) (31)

Letting π‘˜ β†’ ∞ and using (21), (24) and (31), we have

πœ™(πœ€) ≀ πœ™(0) + πœ™(0) + πœ™(πœ€) βˆ’ 4πœ“ (πœ€

4) < πœ™(πœ€) ,

which is a contradiction and hence we can conclude that {π‘₯𝑛}, {𝑦𝑛}, {𝑧𝑛} π‘Žπ‘›π‘‘ {𝑀𝑛} are Cauchy sequences. Since A is a closed subset of a complete metric space X, these sequences have limits.

Hence, there exists π‘₯, 𝑦, 𝑧, 𝑀 ∈ 𝐴 such that π‘₯𝑛 β†’ π‘₯, 𝑦𝑛 β†’ 𝑦, 𝑧𝑛 β†’ 𝑧 π‘Žπ‘›π‘‘ 𝑀𝑛 β†’ 𝑀. Then

(π‘₯𝑛, 𝑦𝑛, 𝑧𝑛, 𝑀𝑛) β†’ (π‘₯, 𝑦, 𝑧, 𝑀) in 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴.

Since F is continuous, we have that 𝐹(π‘₯𝑛, 𝑦𝑛, 𝑧𝑛, 𝑀𝑛) β†’ 𝐹(π‘₯, 𝑦, 𝑧, 𝑀), 𝐹(𝑦𝑛, 𝑧𝑛, 𝑀𝑛, π‘₯𝑛) β†’

𝐹(𝑦, 𝑧, 𝑀, π‘₯), 𝐹(𝑧𝑛, 𝑀𝑛, π‘₯𝑛, 𝑦𝑛) β†’ 𝐹(𝑧, 𝑀, π‘₯, 𝑦) π‘Žπ‘›π‘‘ 𝐹(𝑀𝑛, π‘₯𝑛, 𝑦𝑛, 𝑧𝑛) β†’ 𝐹(𝑀, π‘₯, 𝑦, 𝑧).

But from (8), (9), (10) and (11), we know that the sequences {𝑑(π‘₯𝑛+1, 𝐹(π‘₯𝑛, 𝑦𝑛, 𝑧𝑛, 𝑀𝑛))},

{𝑑(𝑦𝑛+1, 𝐹(𝑦𝑛, 𝑧𝑛, 𝑀𝑛, π‘₯𝑛))}, {𝑑(𝑧𝑛+1, 𝐹(𝑧𝑛, 𝑀𝑛, π‘₯𝑛, 𝑦𝑛))} and {𝑑(𝑀𝑛+1, 𝐹(𝑀𝑛, π‘₯𝑛, 𝑦𝑛, 𝑧𝑛))} are

constant sequences with the value 𝑑𝑖𝑠𝑑(𝐴, 𝐡). Therefore, 𝑑(π‘₯, 𝐹(π‘₯, 𝑦, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡),

𝑑(𝑦, 𝐹(𝑦, 𝑧, 𝑀, π‘₯)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(𝑧, 𝐹(𝑧, 𝑀, π‘₯, 𝑦)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) and 𝑑(𝑀, 𝐹(𝑀, π‘₯, 𝑦, 𝑧, )) =

𝑑𝑖𝑠𝑑(𝐴, 𝐡). This completes our proof.

(16)

closed subset of the metric space (𝑋, 𝑑). Let 𝐹: 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 β†’ 𝐴 satisfy the following conditions:

1. F is continuous having proximal mixed monotone property and proximally quadrupled weak (πœ“, πœ™) contraction on A.

2. There exists (π‘₯0, 𝑦0, 𝑧0, 𝑀0) and (π‘₯1, 𝑦1, 𝑧1, 𝑀1) in 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 such that π‘₯1 =

𝐹(π‘₯0, 𝑦0, 𝑧0, 𝑀0) with π‘₯0 βͺ― π‘₯1 , 𝑦1 = 𝐹(𝑦0, 𝑧0, 𝑀0, π‘₯0) with 𝑦0 βͺ° 𝑦1 , 𝑧1 =

𝐹(𝑧0, 𝑀0, π‘₯0, 𝑦0) with 𝑧0 βͺ― 𝑧1 and 𝑀1 = 𝐹(𝑀0, π‘₯0, 𝑦0, 𝑧0) with 𝑀0 βͺ° 𝑀1.

Then there exists (π‘₯, 𝑦, 𝑧, 𝑀) ∈ 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 such that 𝑑(π‘₯, 𝐹(π‘₯, 𝑦, 𝑧, 𝑀)) = 0,

𝑑(𝑦, 𝐹(𝑦, 𝑧, 𝑀, π‘₯)) = 0, 𝑑(𝑧, 𝐹(𝑧, 𝑀, π‘₯, 𝑦)) = 0 and 𝑑(𝑀, 𝐹(𝑀, π‘₯, 𝑦, 𝑧, )) = 0.

We also note that theorem 1 is still valid for F not necessarily continuous if A has the following property that

{π‘₯𝑛} is a non decreasing sequence in A such that π‘₯𝑛 β†’ π‘₯, then π‘₯𝑛 βͺ― π‘₯, (32)

{𝑦𝑛} is a non decreasing sequence in A such that 𝑦𝑛 β†’ 𝑦, then 𝑦𝑛 βͺ° 𝑦, (33)

{𝑧𝑛} is a non decreasing sequence in A such that 𝑧𝑛 β†’ 𝑧, then 𝑧𝑛 βͺ― 𝑧, (34)

and {𝑀𝑛} is a non decreasing sequence in A such that 𝑀𝑛 β†’ 𝑀, then 𝑀𝑛 βͺ° 𝑀, (35)

Theorem 2. Assume the conditions (32), (33), (34) and (35) and 𝐴0 is closed in X instead of continuity of F in Theorem 1, then the conclusion of Theorem 1 holds. Proof. Proceeding similar to Theorem 1, we claim that there exists sequences {π‘₯𝑛}, {𝑦𝑛}, {𝑧𝑛} and {𝑀𝑛} in A satisfying the following conditions: 𝑑(π‘₯𝑛+1, 𝐹(π‘₯𝑛, 𝑦𝑛, 𝑧𝑛, 𝑀𝑛)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) with π‘₯𝑛 βͺ― π‘₯𝑛+1, βˆ€ 𝑛 ∈ 𝑁, (36)

𝑑(𝑦𝑛+1, 𝐹(𝑦𝑛, 𝑧𝑛, 𝑀𝑛, π‘₯𝑛)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) with 𝑦𝑛 βͺ° 𝑦𝑛+1, βˆ€ 𝑛 ∈ 𝑁, (37)

𝑑(𝑧𝑛+1, 𝐹(𝑧𝑛, 𝑀𝑛, π‘₯𝑛, 𝑦𝑛)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) with 𝑧𝑛 βͺ― 𝑧𝑛+1, βˆ€ 𝑛 ∈ 𝑁, (38)

(17)

Moreover, π‘₯𝑛 β†’ π‘₯, 𝑦𝑛 β†’ 𝑦, 𝑧𝑛 β†’ 𝑧 π‘Žπ‘›π‘‘ 𝑀𝑛 β†’ 𝑀. From (32), (33), (34) and (35), we get π‘₯𝑛 βͺ―

π‘₯, 𝑦𝑛 βͺ° 𝑦, 𝑧𝑛 βͺ― 𝑧 and 𝑀𝑛 βͺ° 𝑀 respectively. Note that the sequence {π‘₯𝑛}, {𝑦𝑛}, {𝑧𝑛} and

{𝑀𝑛} are in 𝐴0 and 𝐴0 is closed. Therefore, (π‘₯, 𝑦, 𝑧, 𝑀) ∈ 𝐴0Γ— 𝐴0Γ— 𝐴0 Γ— 𝐴0. Since

𝐹(𝐴0Γ— 𝐴0Γ— 𝐴0 Γ— 𝐴0) βŠ† 𝐡0 , there exists 𝐹(π‘₯, 𝑦, 𝑧, 𝑀), 𝐹(𝑦, 𝑧, 𝑀, π‘₯), 𝐹(𝑧, 𝑀, π‘₯, 𝑦) and

𝐹(𝑀, π‘₯, 𝑦, 𝑧) in 𝐡0. Therefore, there exists (π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—) ∈ 𝐴0Γ— 𝐴0Γ— 𝐴0 Γ— 𝐴0 such that

𝑑(π‘₯βˆ—, 𝐹(π‘₯, 𝑦, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(π‘¦βˆ—, 𝐹(𝑦, 𝑧, 𝑀, π‘₯)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(π‘§βˆ—, 𝐹(𝑧, 𝑀, π‘₯, 𝑦)) =

𝑑𝑖𝑠𝑑(𝐴, 𝐡) π‘Žπ‘›π‘‘ 𝑑(π‘€βˆ—, 𝐹(𝑀, π‘₯, 𝑦, 𝑧)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡).

Since π‘₯𝑛 βͺ― π‘₯, 𝑦𝑛 βͺ° 𝑦, 𝑧𝑛 βͺ― 𝑧 and 𝑀𝑛 βͺ° 𝑀, by using the fact that 𝐹 is a proximally quadrupled weak (πœ“, πœ™) contraction on 𝐴 and using (36), (37), (38) and (39), we get

πœ™(𝑑(π‘₯𝑛+1, π‘₯βˆ—))

≀ 1

4πœ™(𝑑(π‘₯𝑛, π‘₯) + 𝑑(𝑦𝑛, 𝑦) + 𝑑(𝑧𝑛, 𝑧) + 𝑑(𝑀𝑛, 𝑀))

βˆ’ πœ“ (𝑑(π‘₯𝑛, π‘₯) + 𝑑(𝑦𝑛, 𝑦) + 𝑑(𝑧𝑛, 𝑧) + 𝑑(𝑀𝑛, 𝑀)

4 ) , for all n

Similarly,

πœ™(𝑑(𝑦𝑛+1, π‘¦βˆ—))

≀ 1

4πœ™(𝑑(𝑦𝑛, 𝑦) + 𝑑(𝑧𝑛, 𝑧) + 𝑑(𝑀𝑛, 𝑀) + 𝑑(π‘₯𝑛, π‘₯))

βˆ’ πœ“ (𝑑(𝑦𝑛, 𝑦) + 𝑑(𝑧𝑛, 𝑧) + 𝑑(𝑀𝑛, 𝑀) + 𝑑(π‘₯𝑛, π‘₯)

4 ) , for all n

πœ™(𝑑(𝑧𝑛+1, π‘§βˆ—))

≀1

4πœ™(𝑑(𝑧𝑛, 𝑧) + 𝑑(𝑀𝑛, 𝑀) + 𝑑(π‘₯𝑛, π‘₯) + 𝑑(𝑦𝑛, 𝑦))

βˆ’ πœ“ ((𝑧𝑛, 𝑧) + 𝑑(𝑀𝑛, 𝑀) + 𝑑(π‘₯𝑛, π‘₯) + 𝑑(𝑦𝑛, 𝑦)

4 ) , for all n

(18)

πœ™(𝑑(𝑀𝑛, π‘€βˆ—))

≀ 1

4πœ™(𝑑(𝑀𝑛, 𝑀) + 𝑑(π‘₯𝑛, π‘₯) + 𝑑(𝑦𝑛, 𝑦) + 𝑑(𝑧𝑛, 𝑧))

βˆ’ πœ“ (𝑑(𝑀𝑛, 𝑀) + 𝑑(π‘₯𝑛, π‘₯) + 𝑑(𝑦𝑛, 𝑦) + 𝑑(𝑧𝑛, 𝑧)

4 ) , for all n

Since π‘₯𝑛 β†’ π‘₯, 𝑦𝑛 β†’ 𝑦, 𝑧𝑛 β†’ 𝑧 π‘Žπ‘›π‘‘ 𝑀𝑛 β†’ 𝑀 by taking the limit on the above inequalities, we

get π‘₯ = π‘₯ βˆ—, 𝑦 = π‘¦βˆ—, 𝑧 = π‘§βˆ— π‘Žπ‘›π‘‘ 𝑀 = π‘€βˆ—. Hence, we get that 𝑑(π‘₯, 𝐹(π‘₯, 𝑦, 𝑧, 𝑀)) =

𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(𝑦, 𝐹(𝑦, 𝑧, 𝑀, π‘₯)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(𝑧, 𝐹(𝑧, 𝑀, π‘₯, 𝑦)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) and

𝑑(𝑀, 𝐹(𝑀, π‘₯, 𝑦, 𝑧)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡). This complete the proof.

EXAMPLE 1. Let X={(0,0,0,1), (1,0,0,0), (-1,0,0,0), (0,0,0,-1)}∈ 𝑅4 and consider the usual order

(π‘₯, 𝑦, 𝑧, 𝑀) βͺ― (𝑝, π‘ž, π‘Ÿ, 𝑑) ⟺ π‘₯ βͺ― 𝑝, 𝑦 βͺ― π‘ž, 𝑧 βͺ― π‘Ÿ, 𝑀 βͺ― 𝑠.

Thus, (𝑋, βͺ―) is a partially ordered set. Besides, (𝑋, 𝑑4) is a complete metric space. Considering

𝑑4 the Euclidean metric. Let 𝐴 = {(0,0,0,1), (1,0,0,0)} and 𝐡 = {(0,0,0, βˆ’1), (βˆ’1,0,0,0)}

be closed subsets of X.

Then 𝑑𝑖𝑠𝑑(𝐴, 𝐡) = √2, 𝐴 = 𝐴 0 and 𝐡 = 𝐡0. Let 𝐹: 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 β†’ 𝐡 be defined as

𝐹 ((π‘₯1,π‘₯2, π‘₯3,π‘₯4), (𝑦1,𝑦2, 𝑦3,𝑦4), (𝑧1,𝑧2, 𝑧3,𝑧4), (𝑀1,𝑀, 𝑀3,𝑀4))=(βˆ’π‘₯4,βˆ’ π‘₯3, βˆ’π‘₯2,βˆ’π‘₯1).

Then, one can see that 𝐹 is continuous such that 𝐹(𝐴0Γ— 𝐴0 Γ— 𝐴0Γ— 𝐴0) βŠ† 𝐡0. Only

comparable pairs of points in 𝐴 are π‘₯ βͺ― π‘₯ for π‘₯ ∈ 𝐴. Hence the proximal mixed monotone property and the proximally quadrupled weak (πœ“, πœ™) contraction on 𝐴 are obviously

satisfied. However, 𝐹 has many quadrupled best proximity points such as

(0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1); (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1); (1,0,0,0), (1,0,0,0), (1,0,0,0), (1,0,0,0) etc. Hence not unique.

(19)

Every pair of elements has either a lower bound or an upper bound. This condition is equivalent to the following statement.

For every pair of (π‘₯, 𝑦, 𝑧, 𝑀), (π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—) ∈ 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 , there exists

(π‘Ž, 𝑏, 𝑐, 𝑑) ∈ 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 which is comparable to (π‘₯, 𝑦, 𝑧, 𝑀) and (π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—).

Theorem 3. In addition to the hypothesis of Theorem 1 (resp. Theorem 2), suppose that for any

two elements (π‘₯, 𝑦, 𝑧, 𝑀) and (π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—) in 𝐴0Γ— 𝐴0Γ— 𝐴0Γ— 𝐴0 there exists

(𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ 𝐴0Γ— 𝐴0Γ— 𝐴0Γ— 𝐴0 such that (𝑧1, 𝑧2, 𝑧3, 𝑧4) is comparable to

(π‘₯, 𝑦, 𝑧, 𝑀) and (π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—), then F has a unique quadrupled best proximity point.

Proof: From Theorem 1 (resp. Theorem 2), the set of quadrupled best proximity points of F

is non empty. Suppose that there exists (π‘₯, 𝑦, 𝑧, 𝑀) and (π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—) in 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴 which are quadrupled best proximity points. That is

𝑑(π‘₯, 𝐹(π‘₯, 𝑦, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(𝑦, 𝐹(𝑦, 𝑧, 𝑀, π‘₯)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(𝑧, 𝐹(𝑧, 𝑀, π‘₯, 𝑦)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(𝑀, 𝐹(𝑀, π‘₯, 𝑦, 𝑧)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

and

𝑑(π‘₯βˆ—, 𝐹(π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(π‘¦βˆ—, 𝐹(π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—, π‘₯βˆ—)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(π‘§βˆ—, 𝐹(π‘§βˆ—, π‘€βˆ—, π‘₯βˆ—, π‘¦βˆ—)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(π‘€βˆ—, 𝐹(π‘€βˆ—, π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

We consider two cases:

Case I: Suppose (π‘₯, 𝑦, 𝑧, 𝑀) is comparable. Let (π‘₯, 𝑦, 𝑧, 𝑀) is comparable to (π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—) with respect to the ordering 𝐴 Γ— 𝐴 Γ— 𝐴 Γ— 𝐴. Using the fact that 𝐹 is a proximally quadrupled

(20)

and (π‘₯βˆ—, 𝐹(π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), we get

πœ™(𝑑(π‘₯, π‘₯βˆ—) ≀1

4πœ™(𝑑(π‘₯, π‘₯βˆ—) + 𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—)

βˆ’ πœ“ (𝑑(π‘₯, π‘₯βˆ—) + 𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—)

4 ) (40)

Similarly, we get

πœ™(𝑑(𝑦, π‘¦βˆ—) ≀1

4πœ™(𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—) + 𝑑(π‘₯, π‘₯βˆ—))

βˆ’ πœ“ (𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—) + 𝑑(π‘₯, π‘₯βˆ—)

4 ) (41)

Also,

πœ™(𝑑(𝑧, π‘§βˆ—) ≀1

4πœ™(𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—) + 𝑑(π‘₯, π‘₯βˆ—) + 𝑑(𝑦, π‘¦βˆ—))

βˆ’ πœ“ (𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—) + 𝑑(π‘₯, π‘₯βˆ—) + 𝑑(𝑦, π‘¦βˆ—)

4 ) (42)

And

πœ™(𝑑(𝑀, π‘€βˆ—) ≀1

4πœ™(𝑑(𝑀, π‘€βˆ—) + 𝑑(π‘₯, π‘₯βˆ—) + 𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—))

βˆ’ πœ“ (𝑑(𝑀, 𝑀

βˆ—) + 𝑑(π‘₯, π‘₯βˆ—) + 𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—)

4 ) (43)

Adding (40), (41), (42) and (43), we get

πœ™(𝑑(π‘₯, π‘₯βˆ—)) + πœ™(𝑑(𝑦, π‘¦βˆ—)) + πœ™(𝑑(𝑧, π‘§βˆ—)) + πœ™(𝑑(𝑀, π‘€βˆ—))

≀ πœ™(𝑑(π‘₯, π‘₯βˆ—) + 𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—))

βˆ’ 4πœ“ (πœ™(𝑑(π‘₯, π‘₯

βˆ—) + 𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—)

4 ) (44)

By the property (iii) of πœ™, we obtain

πœ™(𝑑(π‘₯, π‘₯βˆ—)) + πœ™(𝑑(𝑦, π‘¦βˆ—)) + πœ™(𝑑(𝑧, π‘§βˆ—)) + πœ™(𝑑(𝑀, π‘€βˆ—))

(21)

From (44) and (45), we get

πœ™(𝑑(π‘₯, π‘₯βˆ—)) + πœ™(𝑑(𝑦, π‘¦βˆ—)) + πœ™(𝑑(𝑧, π‘§βˆ—)) + πœ™(𝑑(𝑀, π‘€βˆ—))

≀ πœ™(𝑑(π‘₯, π‘₯βˆ—), 𝑑(𝑦, π‘¦βˆ—), 𝑑(𝑧, π‘§βˆ—), 𝑑(𝑀, π‘€βˆ—))

βˆ’ 4πœ“ (πœ™(𝑑(π‘₯, π‘₯βˆ—) + 𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—)

4 ) (46)

This implies that

4πœ“ (𝑑(π‘₯, π‘₯

βˆ—) + 𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—)

4 ) ≀ 0. Using the property of πœ“, we get

𝑑(π‘₯, π‘₯βˆ—) + 𝑑(𝑦, π‘¦βˆ—) + 𝑑(𝑧, π‘§βˆ—) + 𝑑(𝑀, π‘€βˆ—) = 0. Hence 𝑑(π‘₯, π‘₯βˆ—) = 𝑑(𝑦, π‘¦βˆ—) = 𝑑(𝑧, π‘§βˆ—) =

𝑑(𝑀, π‘€βˆ—) = 0. So, π‘₯ = π‘₯βˆ—, 𝑦 = π‘¦βˆ— , 𝑧 = π‘§βˆ—and 𝑀 = π‘€βˆ—.

Case II: Suppose (π‘₯, 𝑦, 𝑧, 𝑀) is not comparable. Let (π‘₯, 𝑦, 𝑧, 𝑀) be not comparable to

(π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—), then there exists (𝑝

1, π‘ž1, π‘Ÿ1, 𝑠1) ∈ 𝐴0Γ— 𝐴0Γ— 𝐴0Γ— 𝐴0 which is comparable to

(π‘₯, 𝑦, 𝑧, 𝑀) and (π‘₯βˆ—, π‘¦βˆ—, π‘§βˆ—, π‘€βˆ—) . Since 𝐹(𝐴

0 Γ— 𝐴0Γ— 𝐴0Γ— 𝐴0) βŠ† 𝐡0 , there exists

(𝑝2, π‘ž2, π‘Ÿ2, 𝑠2) ∈ 𝐴0Γ— 𝐴0Γ— 𝐴0Γ— 𝐴0 such that

𝑑(𝑝2, 𝐹(𝑝1, π‘ž1, π‘Ÿ1, 𝑠1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(π‘ž2, 𝐹(π‘ž1, π‘Ÿ1, 𝑠1, 𝑝1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(π‘Ÿ2, 𝐹(π‘Ÿ1, 𝑠1, 𝑝1, π‘ž1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(𝑠2, 𝐹(𝑠1, 𝑝1, π‘ž1, π‘Ÿ1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

Without loss of generality, assume that (𝑝1, π‘ž1, π‘Ÿ1, 𝑠1) βͺ― (π‘₯, 𝑦, 𝑧, 𝑀) (i. e π‘₯ βͺ° 𝑝1, y βͺ― π‘ž1, z βͺ°

π‘Ÿ1, 𝑀 βͺ― 𝑠1) . Note that (𝑝1, π‘ž1, π‘Ÿ1, 𝑠1) βͺ― (π‘₯, 𝑦, 𝑧, 𝑀) implies that (𝑦, 𝑧, 𝑀, π‘₯) βͺ― (π‘ž1, π‘Ÿ1, 𝑠1, 𝑝1).

From Lemma 1, 2, 3 and 4, we get

𝑝1 βͺ― π‘₯, π‘ž1 βͺ° 𝑦, π‘Ÿ1 βͺ― 𝑧 and 𝑠1 βͺ° w

𝑑(𝑝2, 𝐹(𝑝1, π‘ž1, π‘Ÿ1, 𝑠1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(π‘₯, 𝐹(π‘₯, 𝑦, 𝑧, 𝑀)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) implies that 𝑝2 βͺ― π‘₯.

(22)

𝑑(π‘ž2, 𝐹(π‘ž1, π‘Ÿ1, 𝑠1, 𝑝1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(𝑦, 𝐹(𝑦, 𝑧, 𝑀, π‘₯)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)implies that π‘ž2 βͺ° 𝑦. π‘ž1 βͺ°

𝑦 and π‘Ÿ1 βͺ― 𝑧

𝑑(π‘Ÿ2, 𝐹(π‘Ÿ1, 𝑠1, 𝑝1, π‘ž1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(𝑧, 𝐹(𝑧, 𝑀, π‘₯, 𝑦)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)implies that π‘Ÿ2 βͺ― 𝑧. π‘Ÿ1 βͺ―

𝑧 and 𝑠1 βͺ° 𝑀

𝑑(𝑠2, 𝐹(𝑠1, 𝑝1, π‘ž1, π‘Ÿ1)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(𝑀, 𝐹(𝑀, π‘₯, 𝑦, 𝑧)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)implies that 𝑠2βͺ° 𝑀.

From the above four inequalities, we obtain (𝑝2, π‘ž2, π‘Ÿ2, 𝑠2) βͺ― (π‘₯, 𝑦, 𝑧, 𝑀). Continuing this process, we get sequences {𝑝𝑛}, {π‘žπ‘›}, {π‘Ÿπ‘›} and {𝑠𝑛} such that

𝑑(𝑝𝑛+1, 𝐹(𝑝𝑛, π‘žπ‘›, π‘Ÿπ‘›, 𝑠𝑛)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(π‘žπ‘›+1, 𝐹(π‘žπ‘›, π‘Ÿπ‘›, 𝑠𝑛, 𝑝𝑛)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(π‘Ÿπ‘›+1, 𝐹(π‘Ÿπ‘›, 𝑠𝑛, 𝑝𝑛, π‘žπ‘›)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

𝑑(𝑠𝑛+1, 𝐹(𝑠𝑛, 𝑝𝑛, π‘žπ‘›, π‘Ÿπ‘›)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡)

with (𝑝𝑛, π‘žπ‘›, π‘Ÿπ‘›, 𝑠𝑛) βͺ― (π‘₯, 𝑦, 𝑧, 𝑀), βˆ€π‘› ∈ 𝑁. By using the fact that F is a proximally quadrupled weak (πœ“, πœ™) contraction on A, we get 𝑝𝑛 βͺ― π‘₯, π‘žπ‘› βͺ° 𝑦, π‘Ÿπ‘› βͺ― 𝑧 and 𝑠𝑛 βͺ° 𝑀 .

𝑑(𝑝𝑛+1, 𝐹(𝑝𝑛, π‘žπ‘›, π‘Ÿπ‘›, 𝑠𝑛)) = 𝑑(𝐴, 𝐡), 𝑑(π‘₯, 𝐹(π‘₯, 𝑦, 𝑧, 𝑀)) = 𝑑(𝐴, 𝐡) implies that

πœ™(𝑑(𝑝𝑛+1, π‘₯)

≀1

4πœ™(𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀))

βˆ’ πœ“ (𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀)

4 ) (47)

Similarly, we can have

y βͺ― π‘žπ‘›, 𝑧 βͺ° π‘Ÿπ‘›, 𝑀 βͺ― 𝑠𝑛 and π‘₯ βͺ° 𝑝𝑛.

(23)

πœ™(𝑑(π‘žπ‘›+1, 𝑦) ≀

1

4πœ™(𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀) + 𝑑(𝑝𝑛, π‘₯))

βˆ’πœ“ (𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀) + 𝑑(𝑝𝑛, π‘₯)

4 ) (48)

π‘Ÿπ‘› βͺ― 𝑧, 𝑠𝑛 βͺ° 𝑀, 𝑝𝑛 βͺ― π‘₯ and π‘žπ‘› βͺ° 𝑦 .

𝑑(π‘Ÿπ‘›+1, 𝐹(π‘Ÿπ‘›, 𝑠𝑛, 𝑝𝑛, π‘žπ‘›)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(𝑧, 𝐹(𝑧, 𝑀, π‘₯, 𝑦)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) implies that

πœ™(𝑑(𝑧, π‘Ÿπ‘›+1) ≀

1

4πœ™(𝑑(𝑧, π‘Ÿπ‘›) + 𝑑(𝑀, 𝑠𝑛) + 𝑑(π‘₯, 𝑝𝑛) + 𝑑(𝑦, π‘žπ‘›))

βˆ’πœ“ (πœ™(𝑑(𝑧, π‘Ÿπ‘›) + 𝑑(𝑀, 𝑠𝑛) + 𝑑(π‘₯, 𝑝𝑛) + 𝑑(𝑦, π‘žπ‘›))

4 ) (49)

and 𝑀 βͺ― 𝑠𝑛, π‘₯ βͺ° 𝑝𝑛, y βͺ― π‘žπ‘› and 𝑧 βͺ° π‘Ÿπ‘›.

𝑑(𝑠𝑛+1, 𝐹(𝑠𝑛, 𝑝𝑛, π‘žπ‘›, π‘Ÿπ‘›)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡), 𝑑(𝑀, 𝐹(𝑀, π‘₯, 𝑦, 𝑧)) = 𝑑𝑖𝑠𝑑(𝐴, 𝐡) implies that

πœ™(𝑑(𝑀, 𝑠𝑛+1) ≀1

4πœ™(𝑑(𝑀, 𝑠𝑛) + 𝑑(π‘₯, 𝑝𝑛) + 𝑑(𝑦, π‘žπ‘›) + 𝑑(𝑧, π‘Ÿπ‘›))

βˆ’πœ“ (πœ™(𝑑(𝑀, 𝑠𝑛) + 𝑑(π‘₯, 𝑝𝑛) + 𝑑(𝑦, π‘žπ‘›) + 𝑑(𝑧, π‘Ÿπ‘›))

4 ) (50)

Adding (47), (48), (49) and (50), we obtain

πœ™(𝑑(𝑝𝑛+1, π‘₯) + πœ™(𝑑(π‘žπ‘›+1, 𝑦) + πœ™(𝑑(π‘Ÿπ‘›+1, 𝑧) + πœ™(𝑑(𝑠𝑛+1, 𝑀)

≀ πœ™(𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀))

βˆ’ 4πœ“ (𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀)

4 ) (51)

By the property (iii) of πœ™, we get

πœ™(𝑑(𝑝𝑛+1, π‘₯) + 𝑑(π‘žπ‘›+1, 𝑦) + 𝑑(π‘Ÿπ‘›+1, 𝑧) + 𝑑(𝑠𝑛+1, 𝑀))

≀ πœ™(𝑑(𝑝𝑛+1, π‘₯)) + πœ™(𝑑(π‘žπ‘›+1, 𝑦)) + πœ™(𝑑(π‘Ÿπ‘›+1, 𝑧)) + πœ™(𝑑(𝑠𝑛+1, 𝑀)) (52)

(24)

πœ™(𝑑(𝑝𝑛+1, π‘₯)) + πœ™(𝑑(π‘žπ‘›+1, 𝑦)) + πœ™(𝑑(π‘Ÿπ‘›+1, 𝑧)) + πœ™(𝑑(𝑠𝑛+1, 𝑀))

≀ πœ™(𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀))

βˆ’ 4πœ“ (𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀)

4 ) (53)

This implies that

πœ™(𝑑(𝑝𝑛+1, π‘₯)) + πœ™(𝑑(π‘žπ‘›+1, 𝑦)) + πœ™(𝑑(π‘Ÿπ‘›+1, 𝑧)) + πœ™(𝑑(𝑠𝑛+1, 𝑀))

≀ πœ™(𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀)) (54)

Using the fact that πœ™ is non decreasing, we get

𝑑(𝑝𝑛+1, π‘₯) + 𝑑(π‘žπ‘›+1, 𝑦) + 𝑑(π‘Ÿπ‘›+1, 𝑧) + 𝑑(𝑠𝑛+1, 𝑀)

≀ 𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀) (55)

This means that the sequence {𝑑(𝑝𝑛+1, π‘₯) + 𝑑(π‘žπ‘›+1, 𝑦) + 𝑑(π‘Ÿπ‘›+1, 𝑧) + 𝑑(𝑠𝑛+1, 𝑀)} is decreasing. Therefore, there exists 𝛼 β‰₯ 0 such that

lim

π‘›β†’βˆž[𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀) ] = 𝛼 (56) We show that 𝛼 = 0. Suppose, to the contrary, that 𝛼 > 0. Taking the limit as 𝑛 β†’ ∞ in (53), we have that

πœ™(𝛼) ≀ πœ™(𝛼) βˆ’ 4 lim

π‘›β†’βˆžπœ“ (

𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀)

4 ) < πœ™(𝛼).

This is a contradiction. Thus 𝛼 = 0, that is

lim

π‘›β†’βˆž[𝑑(𝑝𝑛, π‘₯) + 𝑑(π‘žπ‘›, 𝑦) + 𝑑(π‘Ÿπ‘›, 𝑧) + 𝑑(𝑠𝑛, 𝑀) ] = 0 (57) So we have that

𝑝𝑛 β†’ π‘₯, π‘žπ‘› β†’ 𝑦, π‘Ÿπ‘› β†’ 𝑧 and 𝑠𝑛 β†’ 𝑀. Analogously, we can prove that 𝑝𝑛 β†’ π‘₯βˆ—, π‘žπ‘› β†’ π‘¦βˆ—, π‘Ÿπ‘› β†’

π‘§βˆ— and 𝑠

𝑛 β†’ π‘€βˆ—. Therefore, π‘₯ = π‘₯βˆ—, 𝑦 = π‘¦βˆ—, 𝑧 = π‘§βˆ—and 𝑀 = π‘€βˆ—.

Conflict of Interests

(25)

REFERENCES

[1] Fan K , Extensions of two fixed point theorems of F. E. Browder, Math. Z. 122 (1969), 234-240.

[2] S. S. Basha, P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math. (Szeged), 63 (1997), 289-300.

[3] G. Beer, D. V. Pai, Proximal maps, prox map and coincidence points, Number. Funct. Anal.Optim.11 (1990), 429-448.

[4] G. Beer, D. V. Pai, The prox. Map, J. Math. Anal. Appl. 156 (1991), 428-443.

A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl. 323 (2006), 1001-1006.

[5] D. Guo, V. Lakshmikantham , Coupled fixed points of nonlinear operators with application, Nonlinear. Funct. Anal. Optim.13 (1992), 397-402

[6] T. G, Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.

[7] V. Berinde, M. Borcut, Tripled fixed point theorms for contractive type mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), 4889-4897.

[8] Erdal Karapinar and Nguyen Van Luong, Quadrupled fixed point theorems for nonlinear contractions, Comput. Math. Appl. 64 (2012), 1839-1848.

[9] Jun Wu and Yicheng Liu, Note for tripled and quadrupled fixed points of mixed monotone mappings, Bull Korean Math. Soc. 50 (2013), No. 3, 993-1005.

[10] H. Aydi and E. Karapinar, Tripled coincidence point theorems for a class of contractions in ordered metric

spaces, Tamkang J. Math. 44 (2013), 233-251.

[11] H. Aydi and E. Karapinar, Tripled coincidence point theorems for a class of contractions in ordered metric spaces, Acta Univ. Apulensis, 23 (2012), 195-208.

[12] V.C Ojbasic Rajic, S. Radenovic, A note on tripled fixed point of w-compatible mappings in tvs-cone metric spaces, Thai J. Math. 12 (2014), 717-728.

(26)

[14] B.V. Luong, N. X. Thuan, Coupled fixed point theorems for mixed monotone mappings and and application to

integral equations, Comput. Math. Appl. 62 (2011), 4238-4248.

[15] W. Sintunavarat, P. Kumam, Coupled best proximity point theorem in metric spaces, Fixed Point Theory Appl. 2012 (2012), Article ID 93.

[16] Th. Chhatrajit and Yumnam Rohen, Triple fixed point theorems for mappings satisfying weak contraction under F-invariant set, Int. J. Pure Appl. Math. 105(4) (2015), 811-822.

[17] H. K. Nashie, Yumnam Rohen and Chhatrajit Thokchom, Common coupled fixed point theorems of two mappings satisfying generalised contractive condition in cone metric space, Int. J. Pure Appl. Math. 106(3) (2016), 791-799.

[18] Laishram Shanjit and Yumnam Rohen, Coupled fixed point theorem in partially ordered multiplicative metric space and its applications, Int. J. Pure Appl. Math. 108 (2016), 49-62.

[19] Thokchom Chhatrajit Singh and Yumnam Rohen, Triple Fixed Points Theorems on Cone Metric space, J. Glob. Res. Math. Arch. 2(4) (2014), 43-49.

[20] Th. Chhatrajit and Yumnam Rohen, Triple fixed point theorems for mappings satisfying weak contraction under F-invariant set, Int. J. Pure Appl. Math. 105(4) (2015), 811-822.

[21] H.K. Nashine, Yumnam Rohen and Th. Chhatrajit, Common fixed point theorems of two mappings satisfying generised contractive condition in cone metric space, Int. J. Pure Appl. Math. 106(3) (2016) 791-799. [22] Laishram Shanjit, Yumnam Rohen, Th. Chhatrajit and P.P Murthy, Coupled fixed point theorems in partially

ordered multiplicative metric space and its application, Int. J. Pure Appl. Math. 108(1) (2016) 49-62. [23] Bulbul Khomdram, Yumnam Rohen and Thockchom Chhatrajit Singh, Coupled fixed points theorems in Gb –

metric space satisfying some rational contractive conditions, SpringerPlus, 5 (2016), 1261.

[24] Bulbul Khomdram and Yumnam Rohen, Quadruple common fixed point theorems in Gb – metric spaces, Int. J.

Pure Appl. Math.109(2) (2016), 279-293.

[25] Nabil Mlaiki and Yumnam Rohen, Some Coupled fixed point theorems in partially ordered Ab-metric space, J. Nonlinear Sci. Appl. 10(2017), 1731-1743.

(27)

[27] Laishram Shanjit and Yumnam Rohen, Tripled fixed point in ordered multiplicative metric spaces, J. Nonlinear Anal. Appl. 1 (2017), 55-65.

[28] Yumnam Rohen, Ningthoujam Priyobarta, Nabil Mlaiki and Nizar Souyah, Coupled fixed point theorems in Ab-metric spaces satisfying rational inequality, J. Inequal. Spec. Funct. 9(2) (2018), 41-56.

References

Related documents

If simultaneous blood and CSF glucose levels are 70% in pre-term and 50% in full-term infants, there is a significant statistical relationship beΒ­ tween CSF glucose/blood

The Team Building training provided is expected to be able to improve team and organizational productivity, the ability of the team to adapt to changing situations and conditions

Treatment of human promonocytic leukemic cell line U937 with mild hyperthermia in the temperature range of 40-43Β°C resulted in differentiation of these cells

in children with chronic renal insufficiency, infancy. Andrali SP, Bergstein 1M, Shermd 01: Aluminum intoxicaΒ­ tion from aluminum-containing phosphate binders in t..:hilΒ­ dren

Consider the following case. The military commander of a certain camps announces on a Saturday evening that during the following week there will be a &#34;Class A blackout&#34;.

The most important risk factors for increased behavioural and emotional prob- lems in children with acute seizures included family history of febrile seizures for total CBCL

Prioritization was based on the number of lower value services per ICD10 code, prevalence and burden of disease (expressed in Years Lived with Disabilities (YLD) and Disability