• No results found

Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics

N/A
N/A
Protected

Academic year: 2021

Share "Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics"

Copied!
28
0
0

Loading.... (view fulltext now)

Full text

(1)

HAL Id: hal-02113499

https://hal.archives-ouvertes.fr/hal-02113499

Submitted on 28 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Prototyping Paper-Based Microfluidics

Joshua Pearce, N. Anzalone, C. Heldt

To cite this version:

Joshua Pearce, N. Anzalone, C. Heldt. Open-Source Wax RepRap 3-D Printer for Rapid Proto-typing Paper-Based Microfluidics. Journal of Laboratory Automation, 2016, 21 (4), pp.510-516. �10.1177/2211068215624408�. �hal-02113499�

(2)

Open-source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics

J. M. Pearce1,2,*, N. C. Anzalone3, and C. L. Heldt4 

1. Department of Materials Science & Engineering, Michigan Technological University, MI 2. Department of Electrical & Computer Engineering, Michigan Technological University, MI 3. Department of Mechanical Engineering & Engineering Mechanics, Michigan Technological  University, MI 4. Department of Chemical Engineering, Michigan Technological University, MI *Corresponding author: Michigan Technological University, 601 M&M Building, 1400 Townsend  Drive, Houghton, MI 49931­1295 (pearce@mtu.edu) ph: 906­487­1466

Keywords: 3-D printing, wax, paper-based microfluidics, lab-on-a-chip, electrochemical detection

Abstract The open­source release of self­replicating rapid prototypers (RepRaps), has created a rich opportunity  for low­cost distributed digital fabrication of complex three dimensional objects such as scientific  equipment. For example, 3­D printable reactionware devices offer the opportunity to combine open  hardware microfluidic handling with lab on a chip reactionware to radically reduce costs and increase  the number and complexity of microfluidic applications. To further drive down the cost while  improving the performance of lab­on­a­chip paper­based microfluidic prototyping this study reports on  the development of a RepRap upgrade capable of converting a Prusa Mendel RepRap into a wax 3­D  printer for paper­based microfluidic applications. An open­source hardware approach is used to 

(3)

demonstrate a 3­D printable upgrade for the 3­D printer, which combines a heated syringe pump with  the RepRap/Arduino 3­D control. The bill of materials, designs, basic assembly and use instructions are provided along with a completely free and open source software tool chain. The open source hardware  device described here accelerates the potential of the nascent field of electrochemical detection  combined with paper­based microfluidics by dropping the marginal cost of prototyping to nearly zero  while accelerating the turnover between paper­based microfluidic designs. Introduction Bowyer's open­source release of self­replicating rapid prototypers (RepRaps) [1­3], has created  a rich opportunity for low­cost distributed digital fabrication of complex three dimensional objects.  There has been a surge of interest among scientists from a wide swath of fields in using RepRap 3­D  printers to design, manufacture and share the open­source digital designs of scientific equipment [4­6].  As these open­source digitally replicable scientific tools are freely distributed and thus widely  accessible for the cost of materials, 3­D printing components or entire devices results in substantial  economic savings – generally 90­99% less than proprietary commercial equipment [5]. Preliminary  analysis of the economic value of an open hardware approach [7] indicates scientific funders can obtain a return on such investments in the hundreds or thousands of percent [8]. This has resulted in an  explosion of high­quality 3­D printable lab tools for: biology labs [9] and biotechnological and  chemical labwares [10­12], optics and optical system components [13],  colorimetery [14],   nephelometer [15] and turbidimeter [16], nitrate testing [17],  liquid autosampling [18] with robot arms  [19], automated sensing arrays [20] and compatible components for medical applications [21]. Not only are relatively inexpensive 3­D printed parts being used to replace conventional scientific tools, they are 

(4)

also being used to create new scientific opportunities for investigation. For example, utilizing a 3­D  printer in the lab makes it easier for researchers to design and build laboratory tools faster and more  closely aligned to specific research needs. For example, a highly configurable reaction vessel made  with a 3­D printer can integrate reagents, catalysts and a purification apparatus into a single  reactionware [22,23], which can significantly simplify multi­step reactions by integrating equipment  into a single component. These 3­D printable reactionware devices offer the opportunity to combine  open hardware microfluidic handling [24] with simple “lab­on­a­chip” reactionware [25].

There is a large interest in creating such inexpensive lab­on­a­chip devices for rapid detection of health-related biomarkers [26,27], explosives [28,29], and gas components [30]. The goal of such

applications is to save lives by detecting molecules in short periods of time, typically less than one

hour. While the field of microdevices is currently exploding, cost is a constant concern with these

devices. In 2008, the Whitesides group pioneered paper microfluidics [31]. This discovery was quickly

followed by other complex 3-D structures made in paper that controlled the capillary flow of biological

liquids by creating channels bordered with hydrophobic wax [32-34]. Such paper microfluidic devices

have reduced or eliminated the need for pumping of fluids, and this reduces both the footprint and cost

of the overall device. The paper base is also inexpensive and readily available throughout the world,

making it an ideal point of care platform. Originally, groups were creating wax channels using

lithography [32], but this is time consuming and expensive. Recently, wax printing has been developed

that provides more flexibility in design and reduces the cost of device creation [33].

To further drive down the cost while improving the performance of lab on a chip paper  microfluidic prototyping this study reports on the development of a RepRap upgrade capable of  converting a Prusa Mendell RepRap into a wax 3­D printer for paper­based microfluidic applications.  An open­source hardware approach is used to demonstrate a 3­D printable upgrade for the 3­D printer, 

(5)

which combines a heated syringe pump with the RepRap/Arduino 3­D control. The bill of materials,  designs, basic assembly and use instructions are provided along with a completely free and open source software tool chain. The results of this approach are discussed. 

Materials and Methods

The mechanical and electrical design of the wax 3-D printer upgrade followed standard RepRap

design methods for scientific equipment outlined in detail elsewhere [5], thus relying on only open

source electronics, RepRap printable custom parts, off-the-shelf globally available non-printed parts

(referred to as vitamins in the RepRap literature), and a completely open source software tool chain.

The designs are released under a CC-BY-SA license. In addition, no expensive tools, specialty

equipment or advanced skills are needed for assembly.

Both the custom 3-D printed parts as well as the wax print designs are created in OpenSCAD

[35]. Open-source and freely available OpenSCAD is a script-based, parametric CAD program

possessing powerful 3-D modeling capabilities. 3-D models are created by adding and subtracting

primitive objects created by code to produce the desired complex shapes. The script language is based

upon C++. As only a small number of methods are required to produce very complex designs the

learning curve is short for students with programming experience even if they are not familiar with

conventional CAD. The scripts are written such that designs are parametric, thus by changing the

values of a single variable the design can easily be altered. Models rendered in OpenSCAD are saved

as a (.scad) file and are also exported as a stereolithography (.stl) file for the slicing process. Slicing

converts an stl file into layers of equal thickness in the z direction in G-code, a human-readable file

format specifying the path the print head must follow to produce a physical object. Cura, an open

(6)

The mass of the printed parts was calculated with Cura Lulzbot Edition 14.09-1.18 using

normal quality setting for polylactic acid (PLA) for the syringe carriage and the remainder of the parts

were printed in acrylonitrile butadiene styrene (ABS) for its relatively higher temperature resistance.

Results and Discussion

The syringe design was derived from the Wijnen et al. open-source 3-D printable syringe pump

library [37]. There are five 3-D printed custom parts needed for the conversion including a motor

mount (Figure 1), syringe carriage (Figure 2), x carriage (Figure 3) and two syringe retainers (Figure

4). The 3-D printed parts can be printed in about 5 hours on any standard RepRap 3-D printer

consuming $3.11 of commercial PLA filament. The entire bill of materials including part, count, cost

and source totals $87.49 as seen in Table 1. This BOM assumes that only a single conversion kit is

purchased and it should be pointed out that there are discounts for most of the components when

purchased in bulk (e.g. fasteners). The conversion kit assembly follows the basic steps outlined by

Wijnen et al. [37] for syringe pumps and is shown completed without the syringe in Figure 5.

The Prusa Mendell RepRap [38], which can be fabricated for less than $600 and assembled in

24 hours [39], is itself capable of printing all of the conversion components (Figures 1-4). After

printing the ABS and PLA components with the standard direct drive head, the mechanical components

of the syringe depressor are assembled as shown in Figure 5 and the heater made up of the copper pipe

and nichrome heating element wrapped in Kapton polyimide tape for the syringe is installed (Figure 6).

Then the syringe is placed into position along with the temperature feedback provided by the thermistor

and the assembly is insulated as shown in Figure 7. Finally, the extruder driver and standard hot end is

removed to be replaced by the assembled syringe pump (Figure 8). It should be noted that similar

(7)

work is needed to convert delta style 3-D printers with Bowden sheaths.

The wax printer, can then be fully assembled, utilizing a Prusa Mendel open source RepRap 3-D

printer for the frame and electronics as shown in Figure 8. The resultant wax 3-D printer has a

horizontal print area of 150 mm width by 200 mm length, and about 30 mm in height. The printer uses

an open source electronics prototyping platform of the Arduino Atmega 2560 [40], with a RepRap

Arduino Mega Pololu Shield (RAMPS) to control the motors and heating element [41]. The glass

syringe is then filled with a wax and heated to melting and the wax is printed on a paper substrate as

shown in Figure 9 at 5mm/s.

Similar to the design of the conversion kit, the design of the microfluidic device takes place in

OpenSCAD using parametric variables (e.g. changing the gap width variable alters the distance

between the two lines of wax in a test print). The design is then exported as an stl in order to be sliced

with Cura into several layers of G-code, a language that is understood and controls the movements of

the 3-D printer. Thus complex geometries for the wax print can be easily designed and printed as

shown in the example in Figure 10. The settings for Cura, that are used to dictate the boundaries and

how the motors move, are specific to each printer. With the wax printer, Cura is set up to produce slow

moving prints, around 5 mm/s, with an extrusion rate less than 0.5 mm/s for the wax (as compared to

conventional RepRap printing materials), in order to maintain print quality. The print is meant to be

printed, hot enough to melt the wax, but is close enough to the phase transition temperature to have the

wax solidify shortly after it is deposited on the print bed. In the example shown in Figures 9 and 10 the

Cerita wax (normally used for investment casting) is printed at 70oC. The G-code is then imported into

one of several printer control software packages such as Repetier [42], Printrun [43] or Franklin [44]),

which provides a user interface to control the printer. This software is used to load the G-code into the

(8)

the marginal cost of changing a paper-based microfluidic design is reduced to the cost of the substrate

paper and the wax used for the experiment. The far more time consuming and expensive

lithography-based prototyping steps, including transparency mask fabrication, SU-8 photoresisit for the channels,

wafer cleaning, lithography, developing, sealing, and vacuum degassing, are eliminated.

Conservatively, creating a single new microfluidic design using lithography based methods costs more

than the wax printer conversion kit capable of unlimited design options for nearly zero marginal cost. It

however, should be noted that there are other lower cost methods of microfluidic design available, such

as the paper-based methods in [33]. Future work is needed to compare these two methods, which would

involve first optimizing the printing of the 3-D wax printer described. This is accomplished for each

specific wax in a short power vs velocity study. First, an approximate extrusion temperature is found

by ramping up the temperature while printing a constant velocity spiral. When this is done a simple zig

zag pattern is designed that increases the print head velocity at each corner. Then this pattern is

repeatedly printed with a small x-offset while varying the extrusion temperature and extrusion rate in a

systematic fashion. After the optimal print head velocity and extrusion rate are found a final set of runs

are made while adjusting the temperature again by small increments to obtain optimal printing

parameters. These parameters are then used in printing identical microfluidic devices using the two

methods and the resultant devices are tested.

The Prusa has an x-y position accuracy of 20 microns and a minimum z accuracy of 0.4

microns. The heated bed on the Prusa can also be used to anneal the wax and/or further drive it into the

paper substrate to obtain channel widths that the printer itself is not capable of obtaining. This,

however, can only be achieved for a subset of geometries. Future work is needed to improve this

resolution, by for example moving to finer pitched lead screws and belts, higher-quality stepper motors,

(9)

and easy removal of the plunger for wax filling; multi material printing with multiple heads, and

indirect automated head swapping.

In addition, to wax printing to replicate the work that has been accomplished in the past [33] for lower costs so that experiments are more accessible to a greater selection of scientists [45], this 3­D  printer also enables fabrication of fully integrated microdevices using a single tool and the creation of  complex 3­D geometries for yet unexplored microdevice applications. For example, The most common detection method for paper microfluidic devices is colorimetric [46,47] and there are already well  established techniques for utilizing Arduino­based open source electronics and RepRap 3­D printing to  make hand­held detection devices [14,15,17]. However, colorimetric detection works well for yes/no  detection, but is difficult to calibrate to a quantitative measures in microfluidic applications.  For a  microfluidic device this is the difference between a pregnancy test and a blood glucose level test.  A  more quantitative measure uses electrochemical detection. Electrochemical paper­based devices have  been created to detect the oxidation of glucose with an indium­doped tin oxide electrode [47] and a  more standard glassy carbon electrode [48]. Other examples include human tears being analyzed for  ion detection [49] and the detection of cholesterol levels in human serum [50].  While electrochemical  detection combined with paper­based microfluidics is still in its infancy, it has a high potential to  become a useful and cost effective microdevice platform for many different analytes, as well as serving to detect environmental hazards. The open source hardware device described in this paper accelerates  this potential by dropping the marginal cost of prototyping microdevices to nearly zero, while  accelerating the turnover between paper­based microfluidic designs. Acknowledgements

(10)

The authors would like to acknowledge NSF (CBET-1159425 and CBET-1510006) for funding of this

work.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or

publication of this article.

References

1. Jones, R.; Haufe, P.; Sells, E.; Iravani, P.; Olliver, V.; Palmer, C.; Bowyer, A. RepRap – the Replicating Rapid Prototyper. Robotica2011, 29 (01), 177–191.

2. Sells, E., Smith, Z., Bailard, S., Bowyer, A. & Olliver, V. in Piller, F. T.; Tseng, M. M. Handbook of Research in Mass Customization and Personalization: (In 2 Volumes); World Scientific Publishing

Company, 2009.

3. Bowyer, A. 3D Printing and Humanity's First Imperfect Replicator. 3D printing & Additive  Manufacturing 2014, 1.1, 4­5.

4. Pearce, J. M. Building Research Equipment with Free, Open-Source Hardware. Science2012, 337

(6100), 1303–1304.

5. Pearce, J. Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs; Elsevier: Amsterdam ; Boston, 2014. 

6. Pearce, J. M. Laboratory Equipment: Cut Costs with Open-Source Hardware. Nature2014, 505

(11)

7. Pearce, J. M. Quantifying the Value of Open Source Hard-Ware Development. Modern Economy

2015, 06 (01), 1–11.

8. Pearce, J. M. Return on Investment for Open Source Scientific Hardware Development. Science and Public Policy2015.

9.  Baden, T.; Chagas, A. M.; Gage, G.; Marzullo, T.; Prieto-Godino, L. L.; Euler, T. Open Labware: 3-D Printing Your Own Lab Equipment. PLOS Biology2015, 13 (3), e1002086.

10.  Lücking, T. H.; Sambale, F.; Beutel, S.; Scheper, T. 3D-Printed Individual Labware in Biosciences by Rapid Prototyping: A Proof of Principle. Engineering in Life Sciences2015, 15 (1), 51–56.

11. Gross, B. C.; Erkal, J. L.; Lockwood, S. Y.; Chen, C.; Spence, D. M. Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Analytical Chemistry2014, 86 (7), 3240–3253.

12. Su, C.-K.; Hsia, S.-C.; Sun, Y.-C. Three-Dimensional Printed Sample Load/inject Valves Enabling Online Monitoring of Extracellular Calcium and Zinc Ions in Living Rat Brains. Analytica Chimica

Acta2014, 838, 58–63.

13. Zhang, C.; Anzalone, N. C.; Faria, R. P.; Pearce, J. M. Open-Source 3D-Printable Optics Equipment. PLoS ONE2013, 8 (3), e59840.

14. Anzalone, G.; Glover, A.; Pearce, J. Open-Source Colorimeter. Sensors2013, 13 (4), 5338–5346.

15. Wijnen, B.; Anzalone, G. C.; Pearce, J. M. Open-Source Mobile Water Quality Testing Platform.

Journal of Water, Sanitation and Hygiene for Development2014, 4 (3), 532.

16. Kelley, C.; Krolick, A.; Brunner, L.; Burklund, A.; Kahn, D.; Ball, W.; Weber-Shirk, M. An Affordable Open-Source Turbidimeter. Sensors2014, 14 (4), 7142–7155.

17. Wittbrodt, B. T.; Squires, D. A.; Walbeck, J.; Campbell, E.; Campbell, W. H.; Pearce, J. M. Open-Source Photometric System for Enzymatic Nitrate Quantification. PLOS ONE2015, 10 (8), e0134989.

(12)

18. Carvalho, M. C.; Eyre, B. D. A Low Cost, Easy to Build, Portable, and Universal Autosampler for Liquids. Methods in Oceanography2013, 8, 23–32.

19. Beaconsfield, 3D Printed Robot Arm. (http://www.instructables.com/id/3D­Printed­Robot­Arm/) Last accessed September 28, 2015.

20. Wittbrodt, J. N.; Liebel, U.; Gehrig, J. Generation of Orientation Tools for Automated Zebrafish Screening Assays Using Desktop 3D Printing. BMC Biotechnology2014, 14 (1), 36.

21. Herrmann, K.-H.; Gärtner, C.; Güllmar, D.; Krämer, M.; Reichenbach, J. R. 3D Printing of MRI Compatible Components: Why Every MRI Research Group Should Have a Low-Budget 3D Printer.

Medical Engineering & Physics2014, 36 (10), 1373–1380.

22. Symes, M. D., Kitson, P. J., Yan, J., Richmond, C. J., Cooper, G. J., Bowman, R. W., ... & Cronin,

L. (2012). Integrated 3D-printed reactionware for chemical synthesis and analysis. Nature Chemistry,

4(5), 349-354.

23. Kitson, P. J.; Symes, M. D.; Dragone, V.; Cronin, L. Combining 3D Printing and Liquid Handling to Produce User-Friendly Reactionware for Chemical Synthesis and Purification. Chem. Sci.2013, 4

(8), 3099–3103.

24.  da Costa, E. T.; Mora, M. F.; Willis, P. A.; do Lago, C. L.; Jiao, H.; Garcia, C. D. Getting Started with Open-Hardware: Development and Control of Microfluidic Devices: Microfluidics and

Miniaturization. ELECTROPHORESIS2014, 35 (16), 2370–2377.

25. Kitson, P. J.; Rosnes, M. H.; Sans, V.; Dragone, V.; Cronin, L. Configurable 3D-Printed Millifluidic and Microfluidic “lab on a Chip” Reactionware Devices. Lab on a Chip2012, 12 (18), 3267.

26. Feng, L.; Wu, L.; Wang, J.; Ren, J.; Miyoshi, D.; Sugimoto, N.; Qu, X., Detection of a prognostic  indicator in early­stage cancer using functionalized graphene­based peptide sensors. Adv Mater 2012,  24 (1), 125­31.

(13)

27.  Juul, S.; Nielsen, C. J. F.; Labouriau, R.; Roy, A.; Tesauro, C.; Jensen, P. W.; Harmsen, C.;  Kristoffersen, E. L.; Chiu, Y.­L.; Frøhlich, R.; Fiorani, P.; Cox­Singh, J.; Tordrup, D.; Koch, J.;  Bienvenu, A.­L.; Desideri, A.; Picot, S.; Petersen, E.; Leong, K. W.; Ho, Y.­P.; Stougaard, M.;  Knudsen, B. R., Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of  Malaria­Causing Plasmodium Parasites Based on Enzyme Activity Measurement. ACS Nano 2012, 6  (12), 10676­10683. 28. Kuang, Z.; Kim, S. N.; Crookes­Goodson, W. J.; Farmer, B. L.; Naik, R. R., Biomimetic  Chemosensor: Designing Peptide Recognition Elements for Surface Functionalization of Carbon  Nanotube Field Effect Transistors. ACS Nano 2009, 4 (1), 452­458. 29.  Zhang, D.; Jiang, J.; Chen, J.; Zhang, Q.; Lu, Y.; Yao, Y.; Li, S.; Logan Liu, G.; Liu, Q.,  Smartphone­based portable biosensing system using impedance measurement with printed electrodes  for 2,4,6­trinitrotoluene (TNT) detection. Biosens Bioelectron 2015, 70, 81­8. 30. Basu, S.; Bhattacharyya, P., Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuator B­Chem 2012, 173, 1­21.  31. Martinez, A. W.; Phillips, S. T.; Whitesides, G. M., Three­dimensional microfluidic devices  fabricated in layered paper and tape. Proc. Natl. Acad. Sci. 2008, 105 (50), 19606­11.

32. Liu, H.; Crooks, R. M., Three-Dimensional Paper Microfluidic Devices Assembled Using the Principles of Origami. J. Am. Chem. Soc. 2011, 133, 17564-17566.

33. Carrilho, E.; Martinez, A. W.; Whitesides, G. M., Understanding wax printing: A simple

micropatterning process for paper-based microfluidics. Anal. Chem.2009, 81 (16), 7091-7095. 34. Lan, W. J.; Maxwell, E. J.; Parolo, C.; Bwambok, D. K.; Subramaniam, A. B.; Whitesides, G. M.,

(14)

(20), 4103-8.

35. OpenSCAD, (http://openscad.org). Last accessed September 28, 2015.

36. Cura, (http://software.ultimaker.com/) Last accessed September 28, 2015.

37. Wijnen, B.; Hunt, E. J.; Anzalone, G. C.; Pearce, J. M. Open-Source Syringe Pump Library. PLoS

ONE2014, 9 (9), e107216.

38. Prusa Mendell. (http://reprap.org/wiki/Prusa_Mendel) Last accessed September 28, 2015.

39. Schelly, C.; Anzalone, G.; Wijnen, B.; Pearce, J. M. Open-Source 3-D Printing Technologies for

Education: Bringing Additive Manufacturing to the Classroom. Journal of Visual Languages &

Computing2015, 28, 226–237.

40. Arduino (https://www.arduino.cc/) Last accessed September 28, 2015.

41. RepRap Arduino Mega Pololu Shield. (http://reprap.org/wiki/Ramps) Last accessed September 28,

2015.

42. Repetier, (http://www.repetier.com/documentation/repetier-host/) Last accessed September 28,

2015.

43. Printrun (http://www.reprap.org/wiki/Printrun) Last accessed September 28, 2015.

44. Franklin (https://github.com/mtu-most/franklin/tree/master/firmware) Last accessed September 28,

2015.

45. Pearce, J. M. Open-source hardware for research and education. Physics Today2013, 66(11), 8. 46. Zhu, Y.; Xu, X.; Brault, N. D.; Keefe, A. J.; Han, X.; Deng, Y.; Xu, J.; Yu, Q.; Jiang, S., Cellulose

Paper Sensors Modified with Zwitterionic Poly(carboxybetaine) for Sensing and Detection in Complex

Media. Anal. Chem. 2014,86 (6), 2871-2875.

47. Liu, H.; Crooks, R. M., Paper-based electrochemical sensing platform with integral battery and

(15)

48. Lankelma, J.; Nie, Z.; Carrilho, E.; Whitesides, G. M., Paper-based analytical device for

electrochemical flow-injection analysis of glucose in urine. Anal Chem 2012,84 (9), 4147-52. 49. Chagas, C. L.; Costa Duarte, L.; Lobo-Junior, E. O.; Piccin, E.; Dossi, N.; Coltro, W. K., Hand

drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic

cations in human tear samples using electrophoresis chips. Electrophoresis 2015,36 (16), 1837-44. 50. Ruecha, N.; Rangkupan, R.; Rodthongkum, N.; Chailapakul, O., Novel paper-based cholesterol

biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens Bioelectron 2014,

(16)

Tables and table legends

Table 1. Bill of materials for wax 3-D printer conversion kit.

Part Name Quantity $/unit Cost $ Source

Glass Syringe, 3 ml 1

$ 9.93

$

9.93 Zoro.com

30 RW x 2" Blunt Needle 1 $ 14.00 $ 14.00 Labemco.com

LM6UU Linear Bearing 2

$ 0.65

$

1.30 Robotdigg.com

Semitec 104-GT2 Thermistor 1 $ 1.12 $ 1.12 Mouser.com

1" x 24" Copper Pipe 1

$ 4.89

$

4.89 HomeDepot.com

Nema 11 Motor 1 $ 15.50 $ 15.50 Kysanelectronics.com

5 mm x 5 mm Shaft Coupling 1

$ 2.98

$

2.98 Adafruit.com

625zz Ball Bearing 1 $ 7.77 $ 7.77 VXB.com

M5 Hex Nut 2 $ 0.17 $ 0.34 McMasterCarr.com M5 Washer 1 $ 0.14 $ 0.14 McMasterCarr.com M3 Hex Nut 8 $ 0.30 $ 2.43 McMasterCarr.com

M3 x 16 mm socket head cap screw 8 $ 0.82 $ 6.56 McMasterCarr.com

M2.5 x 12mm socket head cap screw 4

$ 0.17

$

0.68 McMasterCarr.com

Stainless Steel M5 Threaded Rod 150mm 1 $ 2.61 $ 2.61 McMasterCarr.com

6 mm A2 Tool Steel Smooth Rod 150mm 2

$ 6.83

$

13.66 McMasterCarr.com

Ni-Chrome Wire 150mm 1 $ 0.48 $ 0.48 McMasterCarr.com

insulation 1 scavenged

Vitamin subtotal $ 84.38

Printed Parts mass (g)

Motor mount (ABS) 39 $ 42.95 $ 1.68 Lulzbot.com

Syringe carriage (PLA) 18

$ 24.95

$

0.45 Lulzbot.com

Syringe retainers (ABS) 6 $ 42.95 $ 0.26 Lulzbot.com

X carriage (ABS) 17

$ 42.95

$

0.73 Lulzbot.com

Printed part subtotal $ 3.11 Total

$ 87.49

(17)
(18)

Figure Legends

Figure 1. Cura rendering of motor mount.

Figure 2. Cura rendering of syringe carriage.

Figure 3. Cura rendering of x carriage.

Figure 4. Cura rendering of the small and large syringe retainers.

Figure 5. Assembled conversion kit without syringe.

Figure 6. Assembled conversion kit with heater and copper pipe installed.

Figure 7. Fully assembled conversion kit with syringe, thermistor wiring and insulation.

Figure 8. Prusa Mendel open source RepRap Converted Wax 3-D printer.

Figure 9. Wax printing on paper substrate.

(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)

References

Related documents

In the exogenous- a economy, instead, the international transmission of the shock operates through the effect of asset values on credit constraints but not through changes in

Svrstavanje tih vizura u krajobrazne tipove govori kako od ukupno 22 lokacije s kojih su vizure ocjenjene kao izrazito visoka vizualna kvaliteta (najviši

$1000 and a complimentary letter to Mary Patten for her heroic work in bringing the fast sailing clipper ship safely around the dangerous Cape Horn?. When Mary and Captain

Most algorithms for large item sets are related to the Apri- ori algorithm that will be discussed in Chapter IV-A2. All algorithms and methods are usually based on the same

The use of pseudonyms in online transactions and communication was also quite common amongst Asian people. For example, some had registered on WeChat with a nickname, as their

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

The Master Fund is authorised in Luxembourg as a specialised investment fund and is managed by a management company, Ress Capital Fund Management SA, who acts

2 Percentage endorsement rates for items from the DISCO PDA measure stratified by group ( “substantial” PDA features, “some” PDA features and the rest of the sample).. N