• No results found

Numerical study of circulation in the Caspian Sea and its effects on the southern coastal currents

N/A
N/A
Protected

Academic year: 2021

Share "Numerical study of circulation in the Caspian Sea and its effects on the southern coastal currents"

Copied!
125
0
0

Loading.... (view fulltext now)

Full text

(1)
(2)
(3)

! " # $% 30 / 6 / 1393 , . % /0 " 1 %2 34 % 5 - 6 . 2 1 . 7 - 1 8 9 : ; <, = > - ?= " @ A #B 1 ... 2 8 ... D =E! - % =1 D @ A F : 1 ( 6 8 - > 8 @ 1 # $% I- @= D $ 68JK 8 3 0 LM 5 , - N 8 A . < O68JK ) 8 , 8 9 Q . K > " (.... R% D Q 2 8 8 I1 S 31 QD @ A @ T -D @ U 8 V 4 1 /- E . W O 8 @ T -. 2 ( 0 Y = Z 6 / 1 [R\ , - N ) ] 1 N K Q^ - "6 ( -O W B- 8 6 @ < /- @=O , :> . 3 ( 8 F /R7 Q9 _ ` > " 1 @ E1 ; 6 8 @ T - = \ QL 0 > /a > =!1 b %` ... . K > " A c 4 1 6> $ =5 8 O68JK / 8 ! @> 5 > Q" 1 . 4 ( > 6 b %` > $ 6 <O =5 8 8 D cK . > #\ Q /1 7 e f[ ; Z 6 D 0 Y = ? 1 W M 8 @ A W 8 I1 S 31 # $% 1 /-/ "6 . ; D 8 D ... g 8 ...

(4)

!

"

#"$ %

&'

( " "

) *%

+

"

#"$ %

,-

.&,/

)

Ph.D

(

:

5 -

6

. 2

1

.

7

- 1

8

9

: ;

<,

=

> -

?=

1 %2

34 %

: -: : ! 1393

(5)

1 A6 1 % <` \ 9 %2 =%A2 -h 8 E N . R D , - D $ = A . A%6 8 6 iA6 1 A$ N : < ? 4 = 1 \ 9 %2 Q = ; -6 =6 Q. A, = 1D < . =% cK 3 0 N @ 8 O =A5 \ 9 %2 . 9 %2 8 R - Kj=%E " - D /-8 > D $ > B, ! [ j=%E \ D <- k- A AMQ= A D , - N . . \ 9 %2 > N %bA6 : 3 : Q A B Q ] Q i 8 W --=%E . \ 9 %2 8 . =%A > W l 4 1 -. [a Q K 8 1 ] A6 4 "% =\ . . -=%E 6 " - D . -8 > " = D>] . $ A 8 K ,8 " - 8 %4 1 = D > B, Q "% <- k-8 =\ . A iO Q= A , - N D $ 8 . -8 A > " A =\ 8 . -5"&

(6)

6 7

& %

) *

@ A

0TM

@= i` ... ... 1 8 9:% : < / 1 -1 -= ... ... 3 1 -2 -. 1 3 0 - - ,nB ... ... . ... 4 1 -3 -3 0 W 8 S8 / A6 ... ... ... .... 5 1 -4 -f=6 3 0 ... ... 6 1 -5 -S 3 0 6 ... ... 6 9:% : < * = < > &>. & 2 -1 -3 0 % O K . ... 8 2 -2 -. > U 3 0 % O K . ... ... ... 11 2 -3 -= :8 ... ... ... .... ... 18 2 -3 -1 -?= COHERENS ... ... . ... ... 19 2 -3 -1 -1 -= A< -W ? ... ... ... 19 2 -3 -1 -2 -?= q M ... ... ... 20 2 -3 -1 -3 -W] ! -... ... ... 21 2 -3 -1 -4 -> > - BB; i 8 ... ... ... ... ... 25 2 -3 -1 -5 -?= 6 ? - 6 r / !\ ... ... ... 26 2 -4 -= ?= . FVCOM ... . ... 26 2 -4 -1 -W] ! -... .. ... . ... ... ... 27 2 -4 -2 -W " 5W] ! ... ... . ... ... 29 2 -4 -3 -8 W M W] ! ... ... ... 31

(7)

2 -4 -4 -6 ? - 6 r / !\ ?= ... ... ... ... 34 9:% : < . &? @ 3 -1 -= ... ... ... ... 36 3 -2 -= 6 ;@> = ... ... ... 37 3 -2 -1 -. 2 6@ ... ... . ... 37 3 -2 -2 -8 6@ ... ... ... 43 3 -4 -?= > - @ 8 W A l% COHERENS ... ... ... 45 3 -4 -1 -?= @= @ T - 6@ ... 45 3 -5 -?= 6 2 F COHERENS ... 48 3 -6 -?= > - @ 8 W A l% FVCOM ... 56 3 -6 -1 -@= @ T - 6@ ?= ... 56 A9:% : B ,% "9 "$C 4 -1 -= ... ... ... ... . ... 62 4 -2 -?= > - R t COHERENS ? - 1 2004 ... . ... 62 4 -2 -1 -1 / 8? A 1 ?= 2 ... ... 62 4 -2 -2 -8 / 8? A 1 ?= 2 ... . ... 66 4 -2 -3 -8 > W 28 1> W 2 N 1 B 6 ... . ... 67 4 -2 -4 -6 / 8 A ? A 1 ?= 2 ... . ... 68 4 -2 -5 -... ... 72 4 -2 -6 -1 %28 -... 73 4 -2 -7 -\ L5 - 2 @= =K ... ... 80 4 -2 -8 -1 %28 N [ ] - 1 ... 85 4 -2 -9 -1 a9 %2 = 6 @ B ? - ?= > - R 1 ... 87 4 -2 -9 -1 -N [ ] 1 ?= > - R 8 = 6@ B ... . ... 87

(8)

4 -2 -9 -2 -?= > - R 8 W 2/ - = 6@ B ... ... .. ... 90 4 -2 -9 -3 -. 2/ -"h \: 1 - 18 0 -W 2 / - 1 1 % 7 ... .. ... 91 4 -2 -9 -4 -. 2 = 6 @ T 4L 0 8 $ ... .. ... ... 92 4 -3 -?= > - R t FVCOM ? - 1 2004 ... .. ... 94 4 -3 -1 -a8 . Bi 6? -@> = 1 iR 1 ?= 2 t . Bi ... ... ... 94 4 -4 -?= > - R t N 1 B FVCOM 8 COHERENS ... .. ... 97 5C*= 9:% : * = .& ' C , ; $ 8u01 ... ... 101 W E%O K ... ... 104 c 8 1 % .... . ... ... ... 105

(9)

& %

8

?

) *

0TM

@ A

?8=2 2 -1 -/, 5 , ! 6 K ... 25 =2 ?8 3 -1 -? -q 6 @ @> 5L : 1v % O 18 N < 2004 ... 53 ?8=2 3 -2 -? -q 6@ @> 5L 1 K % O 1 8 N < 2004 ... 53 ?8=2 3 -3 -? -q 6@ @> 5 L 6 % O 1 8 N < 2004 ... 54 ?8=2 3 -4 -? -q 6@ @> 5 L 6 O % O 1 8 N < 2004 ... 54 ?8=2 3 -5 -6@ @> 5L /1 4 % O 1 8 N < ? - q 2004 ... 55 ?8=2 3 -6 -? -q 6@ @> 5 L 1/ - % O 1 8 N < 2004 ... 55 ?8=2 4 -7 -8 -8> W 2 / -8 1> W 2 / - 6 N < B 6 8 ? - q 6@ @> 5L ... 67

(10)

& %

B

D

) *

0TM

@ A

A 3 -1 ( M 6 8 1 ... 47

(11)

& %

B

9+-) *

0TM

@ A

Li 2 -1 : U Q9Qq, -1 %2 0 = , <`"68 "6Q "6w -, A ) /- TM3A 9 ^ -( ... 9 Li 2 -2 : ] 1 0 - 6 . = : L 8 ) /- /A-( @ Q ) x` ( . = 8 N K 9 : /- ; @ ) Q. iA68 N i y 2005 ( ... ... ... 12 Li 2 -3 : /- ; @ 9 ^ - A : 1 ) N i y Q. iA68 2005 ( ... 13 Li 2 -4 : A L 8 K a ( 9 b ( /- ; 9 c ( Q/- ; 9 1 %2 3 A 69 ) 1 . = N < 2 . ! f 0 3 . = z =5 ( ... 13 Li 2 -5 : O L OR%2 y >N < A @> 5 ) Q. iA68 % 2008 (. ... ... 14 Li 2 -6 : 0 -W 2 6 N < ) cm/s ( 6@ a ( R -b ( c ( /- ; ) Q. iA68 R 2010 ( ... ... 15 Li 2 -7 : W 2 6 N < ) cm/s ( 3A 50 6@ a ( R -b ( ) Q. iA68 R 2010 ( .. ... 16 Li 2 -8 : ?= > - R > @= /-=1 0 -W 2 6 N < HYCOM 6 = ; km 3.3 ) 2 / - 1 ? 4 cm/s 10 ( /-) 8 Q. iA6 2010 ( ... ... ... ... 17 Li 2 -9 : B1 # 8 .8=1 > I { 4 ... 28 Li 2 -10 : 8 W " B -... ... 32 Li 2 -11 : iR 6? - ?= 6 r ; \/ !\ ) @ ; • ? - Q ( ... 34 Li 3 -1 -= 6@ / !\ ... ... ... .... . 36 Li 3 -2 -8 1Q. 2 6@ ;@> = 6@ < B / !\ CTD .... ... ... .. ... . ... .. 37 Li 3 -4 -?8 @ < B K % - 1 8 0 -W 2/ -... 38 Li 3 -5 -D8 @ < B 0 - >8 0 - ]W 2/ -... 39 Li 3 -6 -K % - 1 8 0 -W 2/ -D8 @ < B ... 40 Li 3 -7 -D - @ < B 0 - >8 0 - ]W 2/ -... 41

(12)

Li 3 -8 -D - @ < B K % - 1 8 0 -W 2/ -... ... 42 Li 3 -9 -, % E18 . B >Q K L 6 v " ... 43 Li 3 -10 -, % E1 8 . B >Q KL 6 v " ... 44 Li 3 -11 -?= 1 @= 8 B1 ; K COHERENS ) ( ... 45 Li 3 -12 -/1 4 8 : 1 v Q 1 K Q 6 2 6/ 8 6 . = 6 N < RB ) j 2004 ( ... ... 49 Li 3 -13 -/1 4 8 : 1 v Q 1 K Q 6 2 6/ 8 6 . = 6 N < RB ) 2004 ( ... ... 50 Li 3 -14 -6 N < ? - 1 . = 2004 ... ... ... 51 8 52 Li 3 -15 -D I- @= $ . Bi z z 6 iR SMS 1 ... .. ... 57 Li 3 -16 -D I- @= $ . Bi z z 6 iR AB\ SMS 1 ) 1 O 1{ S8 ...( ... ... ... ... ... 58 Li 3 -17 -D I- @= $ . Bi a 6 ? - 1 z z 6 iR SMS 1 ... ... 59 Li 3 -18 -D I- @= $ . Bi a z z 6 iR > AB\ SMS 1 ) 1 O 1{ S8 ... ( ... ... ... 60 Li 4 -1 -W 2 6 N < ) 1/ 8 7 /0 E% ( ... 64 8 65 Li 4 -2 -W 2 6 N < ) 6 8 / 8 7 /0 E% ( ... 66 Li 4 -3 -, - 0 -W 2 N < Q ?= @= > - R COHERENS Q .... 69 Li 4 -4 -0 -W 2 6 N < ) 2004 ( ... 70 Li 4 -5 -N < 0 - >W 2 6 ) 2004 ( ... 71 Li 4 -6 -0 - ] 6 6. = N < ) 2004 ( ... 72 Li 4 -7 -2 / -8 6 6. = N < 0 - >8 0 - 6 ] W ) 2004 ( ... ... 74

(13)

Li 4 -8 -6 ] W 2/ - 8 6 6. = N < 0 - >8 0 -) 2004 ( ... ... 76 Li 4 -9 -0 - >8 0 - 6 ] W 2/ - 8 6 6. = N < ) ] 2 2004 ( ... ... 77 Li 4 -10 -6 . = N < 0 - >8 0 - 6 ] W 2/ - 8 6 ) R 2004 ( ... ... 78 Li 4 -11 -0 - >8 0 - 6 ] W 2/ - 8 6 6. = N < ) R -2004 ( ... ... 79 Li 4 -12 -9 ) -; ( ] 2@ 0 - ] ) 2004 ( ... 81 Li 4 -13 : 9 ! : 1 ) ; ( r2| N 42.5 ] 2@ /- ; 8 ) 2004 ( ... ... 82 Li 4 -14 : ] A / -28 ?= D ... 83 Li 4 -15 -^ - / - 8 . = 6 N < /- ; ) 2004 ....( ... .... . .. .. ... 84 Li 4 -16 : ] 1 6Li : 9 . = ) ; ( ] 2@ ?8 >8 2004 ) /- : x`/A-Q?= > - R t : @ 6 ( N K 6Li } : 9 . = ) ; ( /- ; @ ?8 >8 2004 ) - /A-/ : x` /A- Q ?= > - R t : @ 6 ( ... 85 Li 4 -17 : " \ - 8 1 %2 . = 6 N < ) 1 ?= > - R t ? -2004 ...( ... ... ... .. . ... 86 . Li 4 -18 : 8 1 %2 . = 6 N < ) O 1 { S8 1 ( " \ -) R t ? - 1 ?= > -2004 ( ... ... 86 Li 4 -19 : : v " 17 R @ , @ < B ) ? - @= ;@> = 6@ 2004 ( ... 87 Li 4 -20 : . i A 50 \ 2 ) , @ < B ( R @ ) ? - ?= 28 2004 ( ... ... ... 87 Li 4 -21 : : 6v " ) ] 1Li ( 8 ) N KLi ( 17 y , @ < B ) 6 @ - @= ;@> = ? 2005 ( ... 88

(14)

Li 4 -22 : . i A 50 \ 2 ) , @ < B ( y@ ) ? - ?= 28 2004 ( ... ... 88 Li 4 -23 : 6v " ) ] 1Li ( 8 ) N KLi ( 17 @ , @ < B ) 6@ ? - @= ;@> = 2005 ( ... ... 89 Li 4 -24 : . i A 50 \ 2 ) , @ < B ( @ ) ? - ?= 28 2004 ( ... ... 89 Li 4 -25 : , @ < B 0 -W 2/ -) ?= t 8 @= ;@> = 6 @ B ? -2004 ( ... ... 90 Li 4 -26 : K % - 1 / -8 0 - W 2/ -) ? - ;@> = 6 @ 2004 ( ... 91 Li 4 -27 : 2 / -0 - >8 0 - W ) ? - @= ; @> = 6@ 2004 ( ... 92 Li 4 -28 : ] 1 QW 2 @=% `q 4 : ?8 @ < B 1 ) 3A 20 ( I-8Q : D8 @ < B 1 ) 3A 50 ( N KQ : D -@ < B 1 ) 3A 200 ...( ... 93 Li 4 -29 : ?= I- 1> W 2 <, > - R FVCOM 6@> = 1 6 ? - 1 . Bi ) 2004 ( ... ... 95 Li 4 -30 : ?= I- 1> W 2 <, > - R FVCOM 6@> = 1 6 ? - 1 . Bi a ) 2004 ( ... ... 96 Li 4 -31 : ?= I- 1> W 2 <, > - R N 1 B FVCOM ) /- ( 8 ?= COHERENS ) x` ( ? -2004 ... 98 Li 4 -31 : ?= I- 1 > W 2 <, > - R N 1 B FVCOM ) /A- ( ?= 8 COHERENS ) x` ( ? -2004 ... ... 99

(15)

+A : =!1 - = ?= > @ T - 1 W 2 : ; <, > - R Q !, N COHERENS = 6 @ 8 @= D $ . =!1 - ?= N %bA6 COHERENS 8 FVCOM 2 1 / 8 7 /0 = @= B < =i 1 / 8 N /0 6 . > - R > LM 5 t 8 . > - ?= % Q 1 1 R iR !1 @ 1 L Km 5 =! 8 30 l A< - > /- @= ; . . O = > - R t Q : ; <, / 8 L N AE > =6 /- @ 1 . ; 8 1/ 8 . L5 - @ 1 2 @= =K Q 1> W 2 7 > i /- @= $ . B1 L \ . t N %bA6 > - R @= =K N =6 . O A A > 40 # 1 /- ; 8 ] 2 @ A / - 8 @ v 10 8 7 @ . 1 a L5 - 1 /RB \ L5 - Q=6= v 2 @= =K > W= N %bA6 8=5 5 /- N K ; - 2 . L5 -> D ; 6 9 Q. B > 8 K 6 L e / 5 9 %2f 4 1 - 9 . 2 1 a L5 -> 8 @ / 5 ? A - 1 1 %2 =% . B1 W 5N 3 A 8 0 - > 6 ] 8 = -< - K W 2/ #R-= ~ 1 @> 5 . ?= 8 2 > LM 5 t COHERENS 8 FVCOM /0 W 2: ; <, /T;. 8 =6 . O ?= 8 1 > B1 <%6 A6Q 1/ 8 7 /- . Bi R ?= 8 6 1 @= 1 . / B E : ?= Q Q = > - R Q: ; <, COHERENS ?= Q FVCOM

(16)

?8

L

W

3 0

(17)

1 -1 -/- " B L1 \ 1 - @ 1 . E2 ` N ; 1 . , A 8 Q 1 %2 1 6 /5 B # 1 km2 16484000 8 km2 138000 8 km2 80000 = L ) Q 18 1994 8 18 } Q. iA6 1994 (. # 1 1 %2 8 Q , A 6 1 y % O 1 20 Q 788 Q 1025 1 %2 5 6 9 "$5 8 /-D - 8 , A 8 1% 9 L "$5 /- 6 ) Q. iA68 8 -1994 .( iO L 1 @> 5 N ; 1 . % 1 Q > \ \ 8 K8 8 - @ @= . % /-5 Q -8 . - = Q. $ 1 V EA2 Q. 5 - O = ; \. . K. B%A 8 . B\ \ . yN O 1 1025 ) 1 %2 \ 8 ( . y N < 8 208 . 5 6 /5 B 8 y > /- W8 T B1 9 > . /RB /5 B Q , A # 1 /5 B L 1 1 %2 8 24.3 Q=M 36.4 =M 8 39.3 =M . # 1 1 %28 Q , A 6 1 y % O 1 25 Q 788 Q 1025 8 E y N < 4.4 Q 192 Q 345 . > 1 130 1 • 1 8 ` 8 1 %2 8 1 L5 - ` 6 8 8 , A L5 - =A • 1 6 8 = @=% K . 8=5 E% 1 8 /- 1 S 5 8 N ; 1 <,8 8 80 9 =M =% N 1 8 8 . . Q 8=5 6=1 N < 1 8 = T-4 ? - #!i Q 8 N ; 1 1 8 89 N 9 B0 ) . 6 ;J 8 1 = Q. E Q@ = A5 Q 1384 .( F % 8 i I @> 5 6 /- @> 5 - L % /B > ~ . 8 = - \ > 1 8 M 6 @> 5 1 , R Z 6 N N %bA6 8 8 Q W r 7 /0 W 2 8 ^ - . bA6 j \ ] 1 { - 6 r = ; \ i 8 ; % 1 K 8 R Q 6 8 . A6 1 < > 1 . / @ W= ] 4 A \ W 7 .

(18)

1 -2 -GH ) > < 8=5 44 % =6 L iO N > 8 ` 6 9 "$5 . @ B; N -=%6 ) 1000 8 ? 4 300 -200 /- | ( , A /AB\ N O 1 y 20 # 1 E 3A z =5 O 1 63A 1 %2/AB\ 8 /AB\ , 5 /-788 8 1025 . . B > . > I TM > > , A 1 9 ^ -26 -25 r 1 %2 /AB\ , 5 Q/- . B1 j B - 2 N 1 8 ? ! W 10 -7 . B > j B - 2 29 -25 /- . B1 j B - 2 . B 8 B1 6 < 1 /B • O . =%` W r Q B1 A ) Q. iA6 8 R 2010 ( 1 . 1 - @ \ > iO L 1 @> 5 N ; 1 . % . % /- \ 8 K8 8 5 5 - O = ; \ . . K. B%A 8 . B\ \Q -8 . - = Q. $ 1 V EA2Q. . • O 1 1 > %6 N : ; $ @ 0 8 F i% L , 1 8 / A6 1 2 1 : ; Q !, N Q/- @=O = 6 ?= > ?= 8 I- 9 COHERENS Q FVCOM - 1 = /- @ . ?= COHERENS 6 1 8 /- =!1 - i % 8 = 6 ?= > ?= N Q @ \ W[ 5 8 L5 - > f8 ! iR Arkawa C > - BB; 1 8 @ @ T -Li r W @= @ T - "h \ - 1 6> . - 1 =% = K Li r /1 7 { - 1 q 8 ^ -. ?= COHERENS 1 Q@= 8 2 6 - = =% L5 =% B6 O ? 5 ; 6 ER28 6 8 D K? z . % . O > i 6 < "E COHERENS 1 Q 1 -8 1 = 8 "h \ cK iT 8 > D ; /B% N ! , B i I #- % "h \8 ? 4j 8 . >j 1 2 . 1 Ibrayev

(19)

8 0 - > 8 0 - 6 . 2 - 1 1 !, N ... 0 > @ T - 1 > 2 6 @ L A2> - \ E$%- L R\ SST 8 9 . 2/ - Q Q 6v " 8 ... > @ T - 1 ?= Open Source 1 ‚k-8 @= - 1 4 1 @= V 6t%- 5 =%` - \ @> = r 6= r 1 Q 3 \ - 1 !- ?= Q 2 6 ; @> = 1 2 1 iR Li 8 @ R , @ . W r # S Q 1 % Q B1 ; K Lz N ; l 1 # N =1 8 R 8 : 1Q 1 / - 8 , <`Q Q W r > < T ... . 2 <, Q?= -Q Q , - 8 W r !, $ 8 > - R B1 8 ^ ; NiA , <` . 0 - 6. 2Q , <` Q Q Q , -8 6 . 2Q % N LM 5 t > @ T - 1 @ $1 2 8 Li r 8 L iO Q 0 - > 8 0 6 9 ` 8 6 9 2 6 @= =K 8 = =6 • O E L0 8 . 1 -3 -&I DB < B1 0 - : ; W M @= @=6 O 6 @ 8 W [4 i% L ,=1 W r } 28 L5 - W =6 O A = E% 8 /- 8=0 1 B - : ; W] - N 8 S 8 /B • O 1 1 B1 A 8 B1 6 < 8 A \ 6 D i F 8 : ; $ @ 0 N %bA6 8 ; , ? W 7 8 =!1 @ - K 1 1 ^ -W r ? % i % /- @=O . <, i% N ; l 1 4> N ; , ? 8 . 1 W 2 E 8 cr ? Q y ? 8 ;.> - 1 W 2 /- / A6 B1 % . 6 . 2 8 = N : ; W r N %bA6 7 5 -=- l 1 8 S % >N O 1 !, 8 - 1= 1

(20)

1 -4 -< K B : ; 6 <, / % 1 9 : ; =!1 - 6 ?= > @ T - Q3 0 N > M f=6 /- : ; N / 8 L N ! 8 . = !- N %bA6 Q: ; 0 W r @ ; \ - 1 1 %234 % 5 - 6. 2 6 <, N ! 8 2 34 % N ! . @ T - =% B6 A< - W " B - 6 ?= > W 2 > - R 1 !, N /- @= . ?= I- = 1 COHERENS Q 1 / 8 N > W 2 8 @= ? A ?= 1 W 2 7 8 @= ? A ?= 1 8 / 8 E% ‚k- Q ; \ - 1 / 8 N > W 2 N < 8 z =5 4 1 ; \ !, I N . > q 6 @ / 8 /- @= /-=1 . A 7 /0 ?= Q/, 5 N 1 . t 8 @= 2 @> 5 L 8 ,8 I ? A 1 8 8 Q 2 6 / 8 /- @= B - % j \ @ <O68JK 2 = 6 @ . t 1 2 1 > - R N [ ] - 1 1 2 D 8 - % j \ @ <O68JK = 6 @ 8 1 %2 5 ) , =%1 ( \ L5 - . B1 ? 4 2 @= =K N %bA68 K /- ; \u01 @ v . ?= 8 B 1 - \ FVCOM 8 COHERENS Q / 8 L N AE > W 2 @= @ T - Q/- 1 / 8 ?= 1/ 8 N ? A 1 8 FVCOM N @= 1 W 2 = @= B < =i 1 ?= 8 . 1 -5 -I&% < . B : 1 -=% B6N ! L1 \ 1 1 =!1 -: ; 1 " 5W] ! . 2 -N ! L1 \ 8 @= % =5 = ; l W] ! N 7 6/ 8 =% B6 ) @ a 8 Q 6 . = Q 1. = . bA6 .( 3 -8 -8=0 2 . bA6 = ?8 = 6 :8 3 4 > . W] ! ... > - BB; T 1 S 5 1 E 8 L5 #- % i . ?= / 8 L ? A = 1 / !\ 8 1 . i =5 l = .

(21)

.

D8

L

(22)

2 -1 -) &" < * = . iA6 8 6 @ > %1 ) 2002 ( -8 1 . 2 / !S8 - 1 1 . 2 =!1 - ?= =%` 8 6 / - - 1 N %bA68 ] K , A 8 Q 1 %2@> 5 : 1 - = . t N Q?= L1 \ 4 1 3A 1 : ; @= • O 8 @ . O 5 - ; 6 ? - 28 =1 6 l5[ . = 1 A6 W =6 O 1 q 6 ] N %bA6 . / 1 / !\ 8 1 1 1 9 @ / 5/E2 8 M 6 5 . 2/ -. . iA6 8 a 1 i ) 2006 ( 8 N 1 =%1 % ` , R 6 . 2 ? % U - 1 1 i > - R 8 = W R- 0 Q = W !, > @ T - 1 8 1 %2 S 5 /- K . 6 O , <`8 Q 6 v " - 1 Q = !, ] - > @ . O ) Li 2 -1 ( ;8 K / A6 @= =K 1 ] 6 - . % ?8 = 4 1 Q=% B6 T% # a , <` /RB 8 , <` /RB v " 1 2 1 Q= @ /RB . ] - $ L /RB 8 U 28 1 . N , <` . = /- 1 %2 S 5> O 1 I- , <` S 5 =6= . O S 58 . L N O ; , R . 2 6 - $ u 1 = . = 5 8 N 1 , <` f[ 9 S A 4 1 3 A 6 0.1 8=5 O ; . 2 = 1 /- #!i 1 D ; 0.2 7 1 =% $ 9 %2f 4 1 q . @= 6 9 N 8 U $ u 1 , R . 2N 1 6 ] $ 1 $% I- 4 1 4 1 Q= 1 "h \ /E2 = - = / S 10 , 20 . Q 8 1 %2 S 5 @= D $ l !, @= /-=1 8 @= L5 6 % LS T :8 1 / 5 1 " 5 W] ! 290 8=5 iR 6 -10 4 -10 B1 "h \ W 5 /- %! N 1 /- 7 1 4 -10 =% B6 ` . / -8=5 @> = l > @= /-=1 3 -10 1 -10 7 1 . / - > @= /-=1 6 v " 8 q w , <` Q S 5 8 N 1 ; . 2 R 7 =6 . O 8 "h \ 6 =% r S 5 . 8 1 %2 6 S 5 Q 6 <O > !, 3 4 > R /- ; \ Li @ ; . .8 I- Q= w R "6 1 8 . ;= 1 , <` % `Q 1 @= @ \ S 5 6 D K8 I- 4 1 Q@= i >

(23)

-> W =6 O I- S 58 N 1 , R . 28 6 ] =! ; \ - 1 6 <O @= @=6 O 1 5 , 7 8=5 6/ S8 ] 3 , 4 /- @= /-=1 . Li 2 -1 : U Q9Qq, -1 %2 0 = , <`"68 "6Q "6w -, A ) 3A 9 ^ -/- TM ( 2 5 . iA6 8 % R ) 2007 ( j • 1 =!1 - ,= Q 6 j - 1 1 /- @ h N , ; 8 Z ;] . # > . =%1 ? 8 @ 1 -8 = 6 a ?= N B% - 1 1 ‚k , W] ! W M 1 1990 ? ;I @= A W L =R > 8 -@= @ T - N` 8 /-N 1 , <` f[ j - 1 8 @= ; l TM 1 % }/- - K . @= =%1 % `@ OK > =!1 8 8 QLR\ 3A j - 1 / - v " \ 1 %2 8 , A @> 5 OK • O @> 5 8 N 1 8 U QL B K v " "- 1 8 @ A • O /- @= . N > . 2 : . Q3 0 3 7 1 -13 0TM 7 1 -z=50m • O 0TM / - A W r @= z=50m 8=5 0.2 " q LM 8 /- 7 1 1 Boussinesq approximation

(24)

h \ v " 8 @= "- OK =!1 8 8 QLR\ / -x = 500m 8 y = -30km OK > LR\ 0.5 7 1 -1 =% r 7 1 A . . iA6 8 A B ) 2006 ( W 5 @ D $ !, L5 - > 8 1 = ?= j - 1 A - 1 /- 1 / - r W 7 > E1 =!1 -/- @ . Q !, N 6 ] . 2 / !S8 . / - Qq 6 : 1 Q , A 6 1 S 8 , 4 8 1 %2 /- @= u01 . 8 /- W8 T @> 5 L . 2 / - =6 . O t N 1 @= R- 0 . 2 / - @ 8=0 cm/s 1.6 cm/s 15 . / - N O 1 @= R- 0 1 / - N ; l 1 /AB\ cm/s 7 1 % 8 0.06 X = Y = G /- @= ; @> = . /- < - K W M 1 5 - 2 : ; 6 ? - =% i t . 1 : ;N /- 6 3A . q 6 ] @= % 1 K r . O 3A 1 S 8 , 4 : 1 W =6 O 1 @= @ Q 1 <%6 A6 . . iA6 8 K j R ) 2009 ( - \ ; , O 8 @ @ T - 8=0 "$5 =!1 - ?= > =% % 1 K ^ - 8 3A . Q , <` W] ! L ?= N < - KQ Q 8 8 /- i Q 1 6 / 8 8 ; , 6@ Q 6 8 8 8Q R Q/1 4 Q ; =% B6?= 6 8 8> r2/ !\ N %bA68 . 8 / - Q ; , W] ! N 28 /- 1 %2/AB\ > . . iA6 8 Ta ) 2009 ( t . 2 8 @ \ W[ : ; 8 @= L 0 8 $ 1 6 @ Q 1 %2 5 % .8= > @ T - 1 L 0 8 $ \ - 1 1 6 @ = . • O 3 0 N 9 . - % /- / 8 6 D i > i " B @= =% ? % 9 %2 . 8 @ K @ \ W[ /AB\ 9 . - Q/ - 1 1 =6 /E2 3A 1 ^ - > W 2 / O K . - 1 8 8 y " B % 5 -=% ? . W r . - L - - . 2. = 9 8 O 1 % 8 /-=% $ 9 . - ? 4 1 O % 8 1 . \ 8 . iA6 ) 2012 ( - \ ?= I- !, Q MIKE3 1 :>8 > LM 5 W 2 Q 1 S 5 8 N 1 > Q 2 1 9 ^ - 5 ? R 7 @= $ > 8 0 -8 1 %2 8 % -=%6 N ; l 1 1 S 5 L A 4 1 8 ~ 4 1 \ !, 2 6 / 8 8 ; K W 7 8 !, N t @ : ; 2 1Barotropic

(25)

F ! 1 < - : ; 8 1 %2 S 5 < - K : ; Q < - K /- @ . O 8 1 %2 > 1 a/AB\ ` . 8 N 1 > 1 a A 4 1 > 9 ? 1 %2 8 S 5 . 2 ? /E2 \ 6 1 8 1 %2 1 /- ‚i!, 1 . 2 -2 -) &" M N < * = i% 8 1 . iA6 8 ) 2001 ( Q @ T - 1 ?= > ? R =!1 / . 2 ; , ;=% K T 5 - E1 % 1 K A . Q > - R N 2 ?= A4[ K W @= @ T -8 R 9 %2 L5 - E1 K > -4 1 Q@= D $ ^ - W 5 . I-6 1 I 1 QL5 - > 8 /T : I- 5 - ; , ? A 5 8 /T f M /- @= @ ^ S W8 T . N i y 2 . iA6 8 ) 2005 ( !, Q > @ T - 1 6 @ 8 W [4 8 ; @> = 6 1 Q @= i 6 L 0 $ 8 8 L5 -K = ) Li 2 -2 (. N t 3 0 6 - . % N %` . ; 3 6 9 1 5 =6 v 2 . B1 \ L5 - 5 8 6 8 8 8 6 ) Li 2 -3 ( # 1 9 8 W r 8 = =!1 - 2 L1 \ %<A6 Q 100 8 20 /- 9 ^ -) Li 2 -4 ( . -Q < "E F S ; 9 . - L W r | ! 3 A 6 ] 8 6 /AB\ 8 @ 1 r ? 5 ? - ? 4 /-; \ , - =%` "E . ? - 6 8 > 6 8 8 28 1980 8 1990 $ u 1 5 , <` =%1 % ` A i -8 = 6 = K 3 A [R\ %i 1 @= A - W r Q 289 . - L =% $ . B1 ? 4 . 1 Korotenko ITuzhikin KTermocline

(26)

Li 2 -2 : . = 6 0 -] 1 : L 8 ) /- /A-( Q @ ) x` /A-( . = 8 9 N K : @ /- ; ) Q. iA68 N i y 2005 (

(27)

Li 2 -3 : /- ; @ 9 ^ - A : 1 /- ; ) Q. iA68 N i y 2005 ( Li 2 -4 : A L 8 K a ( 9 b ( /- ; 9 c ( 1 %2 3 A 69 Q/- ; 9 ) 1 . = N < 2 . ! f 0 3 . = z =5 ( . iA68 % ) 2008 ( 1 = ?= > @ T - 1 0 Q Q. 2 W r L 0 8 $ 1 K = . ?= M W] ! Q 8 /- @= ; l 8 Q A \ I MKnysh

(28)

A \ : ; =6 . O ?= I- @= ; t B1 W r 6 9 - L . W= N O 1 /-Q ; W M @ Q9 . @ OR%2 y N A @=6 O L 8 ) Li 2 -5 ( . L 8 1 ? ! -8 1 3 A 9 5 W 2 % A6 % 8 1 1 L iO : ;@=%6 ! = @= N . >8 i 6 r 1 " 5 M 2 L ^ - F T 8 6 8 8 8 > /- 9 a 8 e 8 % Q?= N /- R 8 : 1 N 1 ? ! . 8 1 L N > < <` 8 c; 7 % 8 ^ - ; K 1 6 T, 8 <% > =%% N ! . ^ - . 2 > 1 6 ;J 8 > i ! R4 /2 Q ? A /AB\ 5 44 - 45 N, 47 30ʹ- 50 E . Li u 1 /- 6 8 < 8 <,8 8 •, 9 .= D a L , 1 - - . 2 N 1=6 8 - hyW 2= , 8 ^ -F T N %bA68 , <`. = ER2. . Li 2 -5 : O @> 5L OR%2 y >N < A ) iA68 % Q. 2008 ( /- • 1 < - K 1 ` L 3 A /AB\ . 1 T, 8 ^ - F T # . 2 8 @= 9 %2 - 1 L5 -? 4 W 2 ;Li 8 $ u 1 , A L5 -? 4 =%% $ , A 5 % 98 % . 1Baroclinic

(29)

. iA6 8 R ) 2010 ( /1 4 Q 6 8 8 8 4 1Q= @ @ T - =!1 -?= > 1 % 8 1 Q 6 /- @= @ 7 ?= N . , N ? N %bA6 8 : ; Q D 2 /- @= - 1 9 . L5 -? 4 2 1 . 3 0 N t > \ @ . B1 . . B1 8 . B > 8 28 9 a 8 e 5 N %bA6 /- w[ % 8 2 W r L , Q 8 8 . Q < 2 @8[ 1 /- N 9 8 8W 7 $ . ; "E t > i W 2 28Q: =% ` 1 /-8=5 %! N < 3A E% 100 -50 /- @= @= 9 ^ - ] 1 /AB\ ) Li 2 -6 (. 4 1 0 - < - K 6 2 y 8 R - 6 @ Q = ?= > @ T - 1 3 0 N R, Q@ K 1 %28 6 1 L < -8 < - K 6 b K I N = @= , A /AB\ . Li j - 1 ) 2 -7 ( 3A 0 - > 6: ;Q 25 100 = <%6 A6 0 - 6 : ; 1 1 1 y "6 8 R - "6 . N W 2 \ 8 q !S t = 1 3A 1 6 : ; /- @= ƒT5q ^ - > B ? 4 - N @= . 9 %2 - 1 O 1 1 %2/AB\ < - K 2 @ Li 2 -6 : 0 -W 2 6 N < ) cm/s ( 6@ a ( R -b ( c ( /- ; ) . iA6 8 R Q 2010 ( 1Cyclonic

(30)

Li 2 -7 : 6 N < W 2 ) cm/s ( 3A 50 6@ a ( R -b ( ) . iA6 8 R Q 2010 ( 8 N 1 > /AB\ < - K: ; 8 =% = K ; . @ : ; "E W M \ =%` 6 ; l ] 2 > @ 8 : ; . % 1 = /AB e , A 6> < - K 8 < - 6 b K 8 @= $ i` W r = 2 1 , A 8 . 1 . iA6 8 ) 2010 ( @ T - 1 ?= > HYCOM ; K L 6 O 8 8 TBA 6 / 8 ,8 Q B1 6 8 8 8 N %bA6 7 1 W r 8 N 9 : ;8 9 ^ -K = . ?= t Q 1 \ 6 b K 28 /- @ . O 9 %2 ~ . 9 cK iT L , 1 ) 3.3 ( > g!1 Q . 6 : ; 6 O • O ?= N Q= @ R • O W =6 O I- [R\ j /- @= . -R L , 1 E% ^ - : ; =6 . O ?= 6 > $ ? r I- ; 8 1 % > = i 1 Q/- ^ - •, 9 = 1 . Li 3R4 ) 2 -8 ( 9 : ;Q y~ 1 . B >? 4 @= • O 3 0 N /- < - K A 6 . L5 - ? 4 \ 5 - W 2 N %bA6 28 5 N \ 9 %2 . 8 9 %2 - 1 1 aL5 - ? 4 W 2 . B >? 4 MKara

(31)

Li 2 -8 : ?= > - R > @= /-=1 0 -W 2 6 N < HYCOM 6= ; km 3.3 ) / - 1? 4 2 cm/s 10 ( /-) Q. iA68 2010 ( /- ? A - 1 \ L5 - ? 4 . 1 e /AB\ > \ B1 . 2 Q. B1 ? 4 @= $ . f 4 /- @= \ 1 ? 4 2 @= =K $ u 1 . 8 "E <,

(32)

/AB\ @ 1 < - : ; Q@= $ 6 4 1 ^ - : ; <AO` . =% ƒT5 R - E : - 8 @= F8 /- ; : ; N . N 2 . > /AB\ 2 $%- 3A L , 1 : 6 „ 8 . A; @= $ ? ; ] 1 1 O 1 W =\ 1 =% ƒT5 . , =1 2 8 . iA6 ) 1987 ( 0 - Y 0 K ] 9 : ; Q =!1 - ?= I- 0 = @ \ - 1 . =!1 - - t Q /- @ • O W 2 N > /- ; 7 2 6=% . 2 -3 -. @ > =% R - \ …= =K % 1 K 1 2 6 :8 : 6 :8 Q @ 6 :8 l 6:8 8 1 $ . = " B 0 6:8 8 = 6 :8 F 8 1 l 6 :8 1 2 1 > ] 1"$5 =% 6 > @ T - 8 6 ? - R- 0 W =\ > @ T - Q = = 6 :8 h 8 / O KN %` "6 Q=%6 D $ 6 . > W R- 0 6 :8 N 8 = 1 :8 N E1 - \ 6 @= =K % 1 K 1 = 6 :8 6 ? -/- ;D $ 6:8 N I- B1W 0 8 = <AO` 6/ O K . ^ M Q =!1 - =!1 8 /- NiA = 6 :8 3 %AS 4 8=0 f[ :8 > 8 =% 1 5 8=0 . A, 6 8=0 "$5 7 6 :8 N > D = 6 8 =%% @ T -IB1 6 :8 =% E > R 8 ‚K 8 K = ; i1 . B1 F % = 6 :8 Qj - N 1 @ T - q 6 :8 > . 3 0 f=6 1 2 1 8 = . 1 Bathymetry IBadalov 3 Explict 4 Implict 5 Finite-difference 6 Finite-element 7 Finite-volume

(33)

% B6 O 1 /, E- 8 ; - =!1 - 6 ?= 1 /RB =!1 8 6 ?= N %bA6 8 = 2 L1 \ 6 8 1 W R- 0 "$5 . 1 N K L , 1 8 =% 1 \ =% B6 . 2 -3 -1 -8 COHERENS @ \ W[ 5 8 L5 - > 6 1 8 /- =!1 - i % 8 = 6 ?= . N A6 i y , 1 8 ; , 6 ?= 1 ?= 6=% 8 j . 6=% ?= N -8 1 8 @= @ /- - 1 8 L5 L1 \ j 1 . ? A 6 @= =K > - R ?= N 1 N ,8 1 /- @= @ T - =%1 ] 5 - 5 N %bA68 . ?= N 1 ?= N %bA6Q=6 . O i W M 1 < , i- 6/ A 8 8 > . . 1> 77 = W M 1 W] ! 8 @= = @= L5 . < "E 6 O > COHERENS N iT 8 > D ; /-1 2 1 Q 1 -8 1 = 8 A cK 1 N ! , B i I #- % "h \8 ? 4j 8 . >j . ?= N 6 iR 8 = N ! 1 -8 1 8 1 / %i > 6 iR .= W A< - "h \ 2 /- @= @ T -. /- N A< - W > @ T - A2 > L5 @ 8 @= > -@ - W N I- = 6 v " 3 { - W M 1 q 8 ^ - q 6 = > - @ - f M . TM N 1 W N ) q ( 8 ) ^ ( =%% r . ?= N > - >8 1 > 6D ; D A . -8 1 @ @ T - =!1 - >D ; E 8 r . 2 -3 -1 -1 -D :,O 8 W > 8 = 1 0 - =%` Q ,8 =!1 - - \ 6 ?= z = @ T . N 1 %1 / 1 = Bi 3A 8 =% B6 L B Li 1 ? @= 6 j \ 1 I . j \ L5 - N =%` > > W r E B1 3A 8 = @= b K -=%6 !\ 8 6 =% r 3 A 6 S 5 N =%` . - 7 8 3 \ > - R 3 A 6 9 Q9 . @> 5 . > "6 4 1 3A " 6 9 8 /- iO B1 . A { - =! . ` ^ - 3 A 6 5 N %` "6Q 8=0 \ W l5[ 1 - \ ?= 1 Resolution 2 Sigma 3 Profile

(34)

=% $ 6 / 8=0 . 6 ; K 1 N 1 %1 W ?= Q r z /B =% . 1 W 6 ?= /- L , N A6 z 3 A - \ 6 S 5 1 Q/ - 6> 1 =!1 -; \ @ T - W = 1 3A " 34 % 5 - 34 % 8 ; \ @ T . 1 ; AE < T w[ i% L , R Q=% T 3A " 6 9 9 . - : ; K A W " B - > @ T - 1 B1 8 ^ - 6 ] E1 > @= A< - W " B - = 1 cK . i Q 1 . • .8=1 A< - W Q= N % /B . = 6 ?= A i% 1 2 1 @= > - \ Q < 1 > ; K 8 - W r . ?= 1

O 1 W[iO % > N A< - W " B - =- l 1 Q=% B6 [iO

. LiO N O . ; W[A2 R- 0 D <%6 . A / 5 @> = W] ! . Q A< - W O . ; R- 0 1 /- %! N 1 < 1 > ; K 8 - W r S T 1 > • 1 † A2 8 N 1 L . /- • 1 . . ; N 1 %1 . LiO N . , <`. ; R- 0 > LR\. . 1 @8[ Q L5 cK iT W =\ 1 , <` N < . " 1 Q < 1 /RB iR > N 1 O f[ $ u 1 D $ N , <` W[A2 > . r 1 < LiO ; K 8 - W 28 8 = 6 / 1 \ -) B ( . ; . " [ 1 . . 8 @= 6 ; K . 1 > LR\ iR 8 B1 ; K #- % w /- N [\ " % fc5 I- Q?= . 1 . Q 8 N 1 > =% N ; K = % /\ =% fc5 w A /- NiA 5 -3A " 69 ‡ M . 2 -3 -1 -2 -8 P W ?= 6 , ! (x1 , x2 , x3) 8 W ( , , x3) @= . /1 7 0TM # > " B -f ) , ‚ . Bi ( /- @= @ T -6 0 (x1,x2) =% b1 0TM =% . 8 " B -8 r2 ? 4 @=%6 . O ) T% 8 \ @ " /Rz 1 a @ " ( r2| 8 ) /Rz T% 8 , A @ " 1 %2 @ " ( . " 9 W 5 8 =% / 5 > = ^ -8 O U 1 L 0 - ; .

(35)

2 -3 -1 -3 -Q B% - 1 # > / 5 @> = W] ! 1 = | 8 =%% @ T -? ! , ! @ i % 8 = 6 28 A -. 8 W] ! . % /0 Q@ cK " W] ! ‚ -2 /- >{ 1 : , ) ( 1 21 2 11 1 3 3 1 0 3 2 1 x x x u x x p fv x u w x u v x u u t u T + + + = + + + ) 2 -1 ( 12 22 1 2 3 0 2 3 3 1 2 1 (T ) , v v v v p v u v w fu t + x + x + x + = x + x x + x + x ) 2 -2 ( 0 3 p g x = ) 2 -3 ( < - K , ! 8 : 0 3 2 1 = + + x w x v x u ) 2 -4 ( 8 W] ! : ), ( ) ( ) ( 1 2 2 1 1 3 3 3 2 1 0 3 x T x x T x x T x x T c x T w x T v x T u t T H H T p + + + = + + + ) 2 -5 ( ), ( ) ( ) ( 2 2 1 1 3 3 3 2 1 x S x x S x x S x x S w x S v x S u t S H H T + + = + + + ) 2 -6 ( 1 Boussinesq approximation 2 Navier-Stokes

(36)

W 1 w 1 W] ! N (x1, x2, x3) Q= 1 t Q. > T Q S Q Q , <` p Q O (u,v,w) T, Q/ - 6 f ‚ , K Q UT # S Bi 8 A ib K 1 Q T # S K A 2 Q H 8 1 K # S 3 Q cp @J 8 ; 4 /1 7 O 9 . /- >=, % % B 6 T, =!1 I1 8 : 11 1 2 H u x = ) 2 -7 ( 21 12 2 1 ( ) H u v x x = = + ) 2 -8 ( 22 2 2 H v x = ) 2 -9 ( 1 - H Q /- K # S . 28 1 Q ^ - 8 3A 6 / - 8 I1 8 A 1 Q 8 Q =!1 - 6 . 2 = R- 0 8 1 I1 8 . / 2 = 1 =%6 /- > R Q 0 /AB\ ; K 8 8 3A @= W] ! . N A6 1 A< - W > L , ) ( @ T . = N 1 = A< - W 0 = /AB\ ‰ > 1 %! 0 z = - h 8 = 1 = ‰ > 1 %! 0 -/AB\ = z = 1 r . = h h V = h ) 2 -10 ( \8 H Q/- 9 L 3A h 8 3A N < = 1 9 ^ - 1 /RB F T . N 1 w R @ ; . M A / -w %! = =2 W . 1 O / - 8 $ > 1 1 : W= ) 2 -11 (

1 Vertical eddy viscosity 2 Vertical diffusion coeficient

3 Horizontal diffusion coeficient for salinity and temperature

(37)

> -?= 1 COHERENS Q iR j r =6 @> 2 1 1 = > =! @ T - D= @ T - Q > I ? A Q 68 7 @ 0 Qq 6=% > @ T - D= @ T -; 1 @ V ?= 8 ; , Q y , 1 6 ?= > . 8 W ) z 8 8 ( 1 ? 0 8 @ T - L1 \ Q?= 6 z /- ] 1 1 8 8 "h \ . ^ -0 = z /-< Q A 9 ^ -N @ . # S Bi 8 "h \ ib K 5 4 1 K T M 1 K 8 @ A4[ @ Q 0 . 5 4 @ 0 A4[ -k I- Q -1 ) 1982 ( N k, ;Q 2 . iA6 8 ) 1988 ( N , Q 3 ) 1996 ( /- 1 # a @= @ ?= 1 , ! 8 1 . 1 { 4 N 6 ? N %` "68 /- ; \ @ T - N O K 6 Š 1 3R % 8 @= ^ 0 W M iB% ; A-4 ) 1963 ( /1 7. K 1 > -?= 1 Q K 6 COHERENS 1 . / 1 { 4 5 6 1 @ 6 K 8 / 5 @> = Q A /- @= ? A 6/ 8=0 8 E 6 . = R- 0 >W M 1 , i- 8 / 5@> = K # S : 0 1 2

,

0 1 2 H

=

c

m

x x D

T H

=

c x x D

s T ) 2 -12 ( 4 1 ) 2 -13 ( 1, 2 x x Q =%1 iR cs0 ,cm0 | 8 B =% B6 = # S . ?= N # SN > -0.1 @= ; l = . N 1 . O p / < T /AB\ 8 , ! /AB\ A2W M 1 : d

q

p

p

p

p

=

0

+

=

0

+

0 ) 2 -14 ( 1 Mellor , Yamada 2 Galperin 3 Luyten 4 Smagorinsky 5 Advection 2 1 2 2 2 2 1 2 ( ) 2 1 ) ( ) ( x v x u x v x u DT = + + +

(38)

R- 0 >W M 1 , ! O : ) 2 -15 (

g

x

p

0 3 0

=

qd q ! >W M 1 : = 3 3 x d bdx q ) 2 -16 ( b q ! >W M 1 /- 8 % : ) 2 -17 ( 0 0

)

(

=

g

b

8 9 , <` /- •, 9 , <` . > I 1 Q 2 O 8 B a q ! >W M 1^ -: a

P

x

g

P

0

=

0

(

3

)

+

) 2 -18 ( i d i a i i x q x P x g x P = + + 0 0 1 1 ) 2 -19 ( 1 2 8 1 = i , ! /- /A-?8 A2 8 ) 2 -14 ( O 8 O 1 /AB\ D - A2 8 O J 2 /- O . ; . /- @= @ T - @= - % j \ ?8 =2 /, 5W] ! > N 1 @8[ . 2 15 2 14 13 12 2 3 4 11 3 10 2 9 8 7 5 6 4 5 3 4 2 3 2 1 ) ( ) ( ) , ( S a T a T a a s T a T a T a T a a S T a T a T a T a T a a S T + + + + + + + + + + + + + + = ) 2 -20 ( ) 2 ( ) 4 3 2 ( 5 4 3 2 14 13 2 3 3 11 2 16 9 8 4 6 3 5 2 4 3 2 T a a s T a T a T a a s T a T a T a T a a T + + + + + + + + + + = ) 2 -21 ( 1 & ' !() *)+ , - .*) . 2 !.*) / 0 ) . 1 ' !() *)+ , - .*) .

(39)

S a T a T a a S T a T a T a T a a S 15 2 14 13 12 2 1 4 11 3 16 2 9 8 7 ( ) 2 2 3 + + + + + + + + = ) 2 -22 ( #B5 1 , <` S,Kg /m3 #B5 1 psu 8 T #B5 1 °c /-. W M 1/, 5 , ! 6 K @> = ?8=2 2 -1 q ! . 8 ? 2 -1 . B&, = ! (Luyten et al., 1999) a5 6 -10 × 12008 / 1 -a4 4 -10 × 001685 / 1 a3 3 -10 × 0952 / 9 -a2 2 -10 × 7939 / 6 a1 842594 / 999 a10 7 -10 × 2467 / 8 -a9 5 -10 × 6438 / 7 a8 3 -10 × 0899 / 4 -a7 824493 / 0 a6 5363 / 6 × 3 -10 a15 4 -10 × 8314 / 4 a14 6 -10 × 6546 / 1 -a13 4 -10 × 0227 / 1 a12 4 -10 × 72466 / 5 -a11 9 -10 × 3875 / 5 2 -3 -1 -4 -+ . ,HH' > - BB; Q i - W] ! 8 iR -8 1 3 -M -8 1 A - 8 A< - iR D $ . Q =!1 - 6 / A 6 T, xi / - 6 1 1 w 1 u , v 6/ A 8 ; \ 6> / ;=6 \ =!1 -? -I-8 , i-. > - BB; %i > @ T -/- W M N 1 > > D ; K8 8 1 W] ! 1 Q 2 4 1 % 8 1 W] ! 8 =!1 8 =% > - =2 =!1 - W M 1 i . D ; >D ; > 1 g =!1 - > /- =!1 8 ) R > ] A! 10 20 1 1 (. 2 -3 -1 -5 -8 . B8 B& S, T 1 Arakawa C

(40)

Q 6 ? -8 /, 5 9 3A L 8 N < A2> , i- 6 / A A6 =!1 h [ H r Q ^ - > 9 ^ -8 B1 % ; 1Q s $ Q b $ 6 / A A6 =!1 - /, 5 8 = \ A2> , i-T S = \ . 6 T, =!1 8 6 1 Q =!1 8 /, 5 Q 6 @ ; ) 3A @= ; ? < W 2 )* B1 % Q $b ( \. 2 6 1 6 T, =!1 - /, 5 8 \ = . % K 8 ] 1 6 28 I-8 = w 1 < T 1 6 / A A6 8 A 6 . 2 = \ . 2 -4 -. 8 FVCOM > - ?= = 6 :8 A2 > 6 % . A, 8 6 % LS T :8 . 4 1 6 . > @ B; 4 1 - \ / ; l /- @= @ T -. 6 % LS T :8 / R- 0 / N %bA68 > - BB; %i N - - . 1 1 /- 6= 8 @ E18 2 . 8 /B Q=% B6 @= b K -=%6 5 - 1 #- % > $ 1 \ /B% Q:8 N 1 . > 4 6 @> = }/- . -=%6 cK f ! / 1 \ 6 % . A, :8 / N ; 1 = 8 /- E . i 1 B1 8 /- i1 :8 N A S =!1 - 6= ; > B1 z z 6 I- 3 \ 4 1 "l% 5 -> . =!1 - ?= FVCOM 3 E 6= > - ?= @ <O > 0 ?= M % i 4 N` I-5 @ <O 6

Massachusetts – Dartmouth (UMASS-D)

iA6 1 - 1 7 - % j \ B-? 6 j 88 8 /- @= D $ 8 R6 . =!1 - ?= N - Q - .8=1 6 iR /- 6 % "$5 ?= N %bA6 8 @ 1 M W] ! 8 > ^ @ T - " 5 W] ! B T Li > 8=0 LS T 8 8=0 . A, 6 ?= f[ 1 /- @ @ T - " 5 W] ! , < Li > ?= N Q=%% . 1 , < W] ! N $ > Q = 4 8 W R- 0 I-@ , - z z ) 8=0 . A, :8 R ( L5 1 Advantage of computational 2 Coding efficiency

3 Finite-Volume Coastal Ocean Model)

4 Marine Ecosystem Dynamics Modeling Laboratory 5 Dr. C. Chen

6 Massachusetts – Dartmouth (UMASS-D) 7.Dr. R. Beardsley

(41)

S R- 0 @> 5 L 8 ? % . A, "6 D 2 < B K 1 E1 8=0 "$5 :8 Q= . 8 i %i = > FVCOM 6 % LS T 6 :8 ~ N E1 L ) ; - l > R- 0 . 1 = T 8 6= > - BB; ( 6 % . A, :8 8 ) I 0 -=%6. 1 #- % ( . 2 -4 -1 -Q W] ! -?= FVCOM L W] ! @> = Q/ 5 K < -Q Q 8 , <` /-. ?= W] ! /AB\ COHERENS @= @ 8 8 @ E 1 /-. /- N %` 1^ -8 q > I : % = + ,'-./0123 4 54 6 (73 4 54 4 684 = 3 4 54 6 ) 2 -23 ( % =9H /;<=> ? = 4 @ = 3 4 A6 ) 2 -24 ( 4 1 Qn (x, y, t) /- ^ - ; •, T, E` L : N K 1 8 @ U 1 Q =% 1U 1 2 ; 8 j B0 Q 3 . Sw (x, y, , t) @ U 4 Q/- ^ - Q/-C p Q9 ^ - @J 8 ; A h Q ; K # S ` # Q B1 n . O W 3 @ Li @= ) 2 -9 ( /-. 1 Downward shortwave 2 Longwave radiation 3 Latent fluxes 4Shortwave flux

(42)

Li 2 -9 : B1# 8 .8=1 > I { 4 FVCOM K # S 1 9 8 1 . 1 ( /1 7 = 2 ( K :8 iB% ; A-/- N %`/ 5@> = 1 K :8 N : 9B = CDEFGH3 $6 CD3 I $ 56 3 I 56 ) 2 -25 ( 4 1 C 8 /- /1 7 K Fu /5 B ) / 5 @> = ? % 6 . A, ( Q Am / - . ; 1 . A, /5 B 8 ) iT 1 ?= ( < B1 ) 6 / - . ; 6 @> = 6 1 =1 .( ? 8 ? % . A, 5 1 #- % 28 , i- 6 / A 1 "6 1 O . ; 3 0 /l a 2 9 1 ? z 1 28 ) T ( 1 =6 N %` Q : 9/ = CDEFJ K H3 $ 6 CD3 I $ 56 3 I 56 ) 2 -26 ( 5 , 5 LM 8 NO /- L K = . 1 Resolution 2 tracer concentration

(43)

1 K Q A ; K # S 8 ib K A %RB` FVCOM ! -8 9 - \ A4[ B1 . ?= F N f8 ! A4[ B1 ?= q - ql . 2 q y 8 /- A4[ OR%2 l j • 1 "4[ 1 . 6 O FVCOM ?= >8 1 .y 8 MY- 2.5 /-q, L ( 6 @ 8=0 1 N K 8 ] 1 I- 8 @ 1 = K . iA6 8 N k, ; ) 1998 ( /- @= { . 9 ( > A4[ y 8 @= 8 ^ -L 1 @= 1U /Bi I- 8 U • R 1 8 2 ) 2004 ( /- @= =%1 K . U ( O K =%1 K ‚ 8 O w[ = K > : 18 8 . B I- \ =%1 % ` 1 5 3 ) 1994 ( . - \ A4[ ?= 4 (GOTM) > 1N 6?= A N 1 5 = @= f8 ! B1 . GOTM >

% @= b K A4[ B1 6?= . - b @ - 6 K E A4[ ?8y =!

/- @= L iO Q 28>=, % . A4[ B1 6?= L 6?8y N Q MY-2.5 8 (k - a) /-) 4 1 k = ql 8 A4[ OR%2 y a /- A4[ f[ .( = ? k- a ?= "4[ B1 ?= R B1 . % /- 98 % A4[ B1 q - ql /-. 2 -4 -2 -:,O 5/ ! Q 0 "l% r B1 ; K > -@ - . $ 1 "h \ Li r W > /- @= q ! N %` @ T -: = = P ) 2 -27 ( 2 N 1 0 1 -=% r q . /- >W M 1 W N " 5W] ! : P$ PI 5 Q = ) 2 -28 ( $P $ P $IP 5 $W RIP 1 Macro- Scale 2 Mellor , Blumberg 3 Clayson, Kantha

4 General Ocean Turbulent Model

(44)

= P V P bS T UP VbW S X b PY + P .B $ PZ[ ) 2 -29 ( IP $IP I P 5 I\ Q R$P = P 5 P ,S T 5UP V ,WQ S ] X Q, P 5Y + P Q .B I Q PZ^ ) 2 -30 ( %P %$P %IP 5 %\ Q = + P Q ./ % Q P_ PZT ) 2 -31 ( (P ($P (IP 5 (\ Q = + P Q ./ ( Q PZS ) 2 -32 ( , = ,3%4 (6 ) 2 -33 ( W " B -/- @= q ! N %` K A2Q : PZ[b cd9B $e 509B 3 $ 5 I 68 ) 2 -34 ( PZ^ b c9B 3 $ 5 I 6e 50d9B I 58 ) 2 -35 ( PfZT4 ZS4 Zgh4 Zghij b c 9/ 5 9/ 5 e 3%4 (4 k 4 k l6 ) 2 -36 ( 4 1 Am 8 Ah # 1 # S =% B6 ; K# S 8 ibRK . 2^ - > I =0 W M 1 /-/- > : $ Q4 I Q = P ,S.Bfmn[4 mn^j4 \ = op p , 4

(45)

% Q = P ,'". q1r3 4 54 6 (73 4 54 4 6s ( Q= (3p op6P ./, t ) 2 -37 ( 2q 8 = -1 /-> /- W R : $ Q4 I Q = P ,S.Bfmu[4 mu^j4 \ = 1u F4 % Q= 9HP rv ./ 9H r v % r ( Q= 9HP rv ./ 9H r v ( r ) 2 -38 ( 2 -4 -3 -. &/ :,O Q M = FVCOM 4 1 @= W " B - 1 f | r 1 /- NiA = = 28 / 5 @> = W] ! N > 8 Li L , 1 - \ W[A2 =% r r2 . 1 8 E2 j 1 @> 5 Q/- #- % % 6 1 1 N /T; . ‚K i% FVCOM Q= 1@ T - L1 \ E2 @> 5 6 1 B /- @= - 8 W . 6 0 = <1 l 8 W " B -x ) e - 1 ( 8 y ) - 1 ? A ( 1 8 @ = 1 >W M 1 E I1 8 : = wxyz{3| |S64 A = w3{ {S6 ) 2 -39 ( 4 1 r Q N > F ! c Q r2 ? 4 d Q r2 | 0 c 8 0 d | 8 ? 4 /- %R r2 . A W TM z ] 1 - 1 . /Rz 8 N > ^ - /-. N Li W " B -) 2 -10 ( /- @= @ . O .

(46)

Li 2 -10 : 8 W " B -= ) 3D ( 8 8 W " 5/ 5 W] ! 6 Li =!1 -/- N %` : $ + }'~#•€ • | ‚xyz{ { ƒ „ … ‚• w ;<={ • w †‚• = ‡• }'~#• ˆ ‡• ,S}'~#•T |U• V ‰Š… S ‹ X …‰ • |Y + • … Œ• … •Ž•‹‹ ) 2 -40 ( ‚ + }'~#•€ ‚• | ‚ xyz{ { ƒ ‚„ … • w ;<={ ‚• w † • = ‡• } •• ‡• ,S}T {U• V ‰Š… S ‹ X …‰ • {Y + • … Œ• ‚ … •Ž‘‹‹ ) 2 -41 ( + }'~#•c • | ‚xyz{• { e „ … = ) 2 -42 ( ?• + }'~#•c ? • | ?‚xyz{• { e ?„ … = + • Q ./ % Q Pp PZT

(47)

) 2 -43 ( ’• + }'~#•c ’ • | ’‚xyz{• { e ’„ … = + • Q ./ ( Q PZS ) 2 -44 ( ‰ = ‰3?4 ’4 N6 ) 2 -45 ( 4 1 ω, v, u 6 0 6 / - # 1 y, x W A / - 8 Q T Q S Q & O a 8 %R , <` A2 ? ! /- , <` 1 Q P Q O f Q , K g 8 O ; 9 km 8 ib K A %RB` # S kh @ 1 ib K ; K # S 1 @= R- 0 ] 1 @= V "4[ B1 6 ?= > @ T - /-. e . ; @ U 1 A . Fv 8 Fu 8 FT 8 FS /- K8 ; Q / 5@> = K W[A2# 1 /- @= R- 0 iB% ; A- K :8 > @ T - 1 . N 1 w R W !\ 8 A / - 8 /- N %` : ω = $ }'~#•3Q P ˆ ˆ6 I }3Q P • •6 Q P ) 2 -46 ( 1 perturbation

(48)

2 -4 -4 -T 8 . B 8 B& S, Li 31 ) 2 -11 ( ?= 6 r FVCOM /- W MN 1 ? - 6= ; u,v \ 8 6 r Q@ ; w H, ,(, D, S, ), q2, q2l, Am, kh \ = . Li 2 -11 : iR 6? - ?= 6 r ; \/ !\ ) @ ; • ? - Q (

(49)

D -

L

:8

(50)

3 -1 -= 6 ; @> = - 1 1 = 1 QL N LM =5 9 %2 1 a % , =%1 8 8 = k- 6 = K /- @ ) Li 3 -1 (. 6 ; @> = N = 1 > M R 2004 y 2005 - \ @ <O68JK I-2 D 8 6 @> = L 9 8 . 2 @ \ W[ | 8 3A L5 - 1 A = 200 @= D $ 4 1 }/-L 17 R @ 1 8 6 @ 1 @ < B 2004 y Q 2005 8 2005 D $ 8 /- @= t%-. 2 I- 6 . 2 RCM9 Œ% -@ \ W[ | e A 20 Q 50 8 200 = @= ;@> = ) Li 3 -2 ( . ?= 6 @ > - @ @ 0 . > ‚K COHERENS /- @= @ { ?= 1 ? A 1 . ?= 6 $ @ 0 N %bA6 FVCOM /- @= @ ^ S . 1 1 6 @ ? A 8 . Li 3 -1 : = 6@ / !\

(51)

Li 3 -2 : 8 1Q. 2 6@ ;@> = 6@ < B / !\ CTD 3 -2 -. B.& ' 3 -2 -1 -) "&? . B /- @= ; @> = q 6 3A 6 8 - W 2 = @ 4 . A6 . ?8 @ < B ) 1 w 1 Œ% 20 ( e A @ < - 8 5 8 18 Q D8 @ < B ) Œ% 50 ( e A @ < - 8 5 8 47 8 D - @ < B ) Œ% 200 ( @ < - -e A t%-. 2 3 Q 58 8 122 /- @= # . Li 3 -3 : ?8 @ < B 0 - >8 0 - ]W 2/ ) @= ;@> = 6@ ( 10/30/2004 12/19/2004 02/07/2005 -20 0 20 40 60 80 Time V el oc ity (c m /s ) U components of currents:"station 1" surface current depth current 10/30/2004 12/19/2004 02/07/2005 -20 0 20 40 60 80 Time V el oc ity (c m /s ) V components of currents:"station 1"

(52)

Li 3 -4 : ?8 @ < B K % - 18 0 -W 2/ -) @= ;@> = 6@ ( 10/30/2004-100 11/04/2004 11/09/2004 11/14/2004 11/19/2004 11/24/2004 11/29/2004 12/04/2004 0 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in November(U): "Station1"

-10 0 10 w in d ve lo ci ty (m /s ) surface current wind 10/30/2004-100 11/04/2004 11/09/2004 11/14/2004 11/19/2004 11/24/2004 11/29/2004 12/04/2004 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in November(V): "Station1"

-20 -10 0 10 w in d ve lo ci ty (m /s ) 11/29/2004-100 12/04/2004 12/09/2004 12/14/2004 12/19/2004 12/24/2004 12/29/2004 01/03/2005 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in December(U): "Station1"

-10 0 10 w in d ve lo ci ty (m /s ) surface current wind 11/29/2004-100 12/04/2004 12/09/2004 12/14/2004 12/19/2004 12/24/2004 12/29/2004 01/03/2005 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in December(V): "Station1"

-20 -10 0 10 w in d ve lo ci ty (m /s ) 12/29/2004-100 01/03/2005 01/08/2005 01/13/2005 01/18/2005 01/23/2005 01/28/2005 02/02/2005 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in January (U): "Station1"

-10 -8 -6 -4 -2 0 2 4 6 8 10 w in d ve lo ci ty (m /s ) surface current wind 12/29/2004-100 01/03/2005 01/08/2005 01/13/2005 01/18/2005 01/23/2005 01/28/2005 02/02/2005 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in January(V): "Station1"

-15 -10 -5 0 5 w in d ve lo ci ty (m /s )

(53)

Li ) 3 -3 ( ?8 @ < B 1 w 1 ) Œ% 20 ( . 9 . - ? 4 L5 - > W 2 /- ` 3A 8 ^ - W 2 f[ 8 =% B6 B1 . / - N O 1 K @ < B N 0 -W 2 cm/s 67 . B > 8 cm/s 73 /-. Li ) 3 -4 ( 6 @ =6 . O >=5 0 -W 28 1N 1 1 Qq . Li N 1 2 1 Q 0 - W 2 8 1 N 1 . A > < BRA6 8 w R 6 . > # a [ 5 - W 2 8 1 1 N 7 @= \ 1 7 M 6 . > =%` 6 A @=6 O O /- j B0 8 • . Li ) 3 -5 ( =6= . O D8 @ < B 0 - >8 0 - W 2 / . 3A @ < B N % 50 ?8 @ < B 1 O 0 - 8 0 - > 6 ] W 2 / - Q/-=% B6 < =i 1 B1 . K W 2 / - N O 1 @ < B N cm/s 94 . B > 8 cm/s 82 /-. Li 3 -5 : D8 @ < B 0 - >8 0 - ]W 2/ ) @= ;@> = 6@ ( 1 8 0 - W 2 @ < B N = =A6 8 = @= B < =i 1 < BRA6 l > % = ; @> = 1 1 T !S w R @ < B N 0 -W 2 Q?8 @ < B =% A6 ) Li 3 -6 .( 8 =% B > <%6 A68 w R D8 8 ?8 @ < B L5 - 1 A 0 -W 2 W 2/ -/- ?8 @ < B > O 1 = f[ 1 D8 @ < B . L5 - 1 A W 2 N 1 1 8 L5 - 1 A W 2 N 1 4 R N %bA6 Q = 28 M 1 O L5 - > W 2 8 A @=6 O L5 - 1 A . 10/30/2004 12/19/2004 02/07/2005 0 50 100 Time (hour) V el o ci ty (c m /s ) U components of currents:"station 2" surface current depth current 10/30/2004 12/19/2004 02/07/2005 0 50 100 Time (hour) V e lo ci ty (c m /s ) V components of currents:"station 2"

(54)

Li 3 -6 : D8 @ < B K % - 18 0 -W 2/ -) @= ;@> = 6@ ( 10/30/2004 11/04/2004 11/09/2004 11/14/2004 11/19/2004 11/24/2004 11/29/2004 12/04/2004 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in November(U): "Station2"

-10 -5 0 5 10 w in d ve lo ci ty (m /s ) surface current wind 10/30/2004-100 11/04/2004 11/09/2004 11/14/2004 11/19/2004 11/24/2004 11/29/2004 12/04/2004 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in November(V): "Station2"

-20 -15 -10 -5 0 5 w in d ve lo ci ty (m /s ) 11/29/2004-100 12/04/2004 12/09/2004 12/14/2004 12/19/2004 12/24/2004 12/29/2004 01/03/2005 0 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in December(U): "Station2"

-10 0 10 w in d ve lo ci ty (m /s ) surface current wind 11/29/2004-100 12/04/2004 12/09/2004 12/14/2004 12/19/2004 12/24/2004 12/29/2004 01/03/2005 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in December(V): "Station2"

-20 -10 0 10 w in d ve lo ci ty (m /s ) 12/29/2004-100 01/03/2005 01/08/2005 01/13/2005 01/18/2005 01/23/2005 01/28/2005 02/02/2005 0 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in January(U): "Station2"

-10 0 10 w in d ve lo ci ty (m /s ) surface current wind 12/29/2004-100 01/03/2005 01/08/2005 01/13/2005 01/18/2005 01/23/2005 01/28/2005 02/02/2005 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in January(V): "Station2"

-20 -10 0 10 w in d ve lo ci ty (m /s )

(55)

Li ) 3 -7 ( 0 -W 2 / -Q 0 - > q 8 @ < B -=6= . O D . 3A N @ < B 200 8 @ 1 W 2 / -> 0 - 6 ] q Q > 4 1 /- O W8 T /- @= - B1 q W 2 N / . > \ K W 2 / - @ < B N 6 B1 0 - > 8 0 - ] ~ 1 6 ] N 1 / - f[ . B > 8 /- . B > /- Bi = R 3A ^ -> W 2/ - 8 /- @ = K . Li 3 -7 : D -@ < B 0 - >8 0 - ]W 2/ ) @= ;@> = 6@ ( W 2 / - @> = @ < B W8 T N 1 =% B6"6 R R D - 8 D8 @ < B 0 -= ; 1 A / - D . O 1 @ < B - 4 1 W 2 Q ; @> = \ =% B6/ 5 ? 5 9 a 1e /E2 L5 - > . ?= 6= ; @> = i% L , 1 !, N R, COHERENS R 5000 \ 8 ‚K @ 1 t%- . 2 - N . i ) 20 Q 50 Q 200 ( iR 6= ; > = ; 8 6 @ 3A ‚k- 8 1 .8 . > - A6 @= /- ; \ Q . N . 2 6 @ B 1 ‚K 3A 1 6 @ > Q?= 1 % 200 ) @ 1 1 @ N #- % i% L , 1 ( @ T -/- @= 10/30/2004-50 12/19/2004 02/07/2005 0 50 100 Time V el oc ity (c m /s )

u components measurment currents: "Station3"

surface current subsurface current depth 10/30/2004-50 12/19/2004 02/07/2005 0 50 100 Time V el oc ity (c m /s )

(56)

Li 3 -8 : 18 0 -W 2/ -D -@ < B K % -) @= ;@> = 6@ ( . 10/30/2004 11/04/2004 11/09/2004 11/14/2004 11/19/2004 11/24/2004 11/29/2004 12/04/2004 -50 0 50 100 Time cu rr e n t ve lo ci ty (c m /s

) diagrams of current and wind in November(U): "Station3"

-10 -5 0 5 10 w in d ve lo ci ty (m /s ) surface current wind 10/30/2004 11/04/2004 11/09/2004 11/14/2004 11/19/2004 11/24/2004 11/29/2004 12/04/2004 -50 0 50 Time cu rr e n t ve lo ci ty (c m /s

) diagrams of current and wind in November(V): "Station3"

0 w in d ve lo ci ty (m /s ) 11/29/2004-100 12/04/2004 12/09/2004 12/14/2004 12/19/2004 12/24/2004 12/29/2004 01/03/2005 0 100 Time cu rr e n t ve lo ci ty (c m /s

) diagrams of current and wind in December(U): "Station3"

-10 0 10 w in d ve lo ci ty (m /s ) surface current wind 11/29/2004-100 12/04/2004 12/09/2004 12/14/2004 12/19/2004 12/24/2004 12/29/2004 01/03/2005 -50 0 50 100 Time cu rr e n t ve lo ci ty (c m /s

) diagrams of current and wind in December(V): "Station3"

-15 -10 -5 0 5 w in d ve lo ci ty (m /s ) 12/29/2004-100 01/03/2005 01/08/2005 01/13/2005 01/18/2005 01/23/2005 01/28/2005 02/02/2005 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in January(U): "Station3"

-10 -8 -6 -4 -2 0 2 4 6 8 10 w in d ve lo ci ty (m /s ) surface current wind 12/29/2004-100 01/03/2005 01/08/2005 01/13/2005 01/18/2005 01/23/2005 01/28/2005 02/02/2005 -50 0 50 100 cu rr e n t ve lo ci ty (c m /s ) Time

diagrams of current and wind in January(V): "Station3"

-15 -10 -5 0 5 w in d ve lo ci ty (m /s )

(57)

3 -2 -2 -. - . B 8 3A @ \ W[ # > O 18 @ \ W[ 8 . W r 8 9 200 T - 1 , =%1 8 8 = k- 6 LM =5 9 %2 1 a % > @ 6 ; @> = = K 6 L ) R ( E1 Q ) ( . B > 8 ) y ( /- @= D $ /- @= Li ) 3 -9 ( v A @= ;@> = 6@ N 6 9 @ A @ < B /- @= . @ j - 1 = 6 ) @= ; @> = ( Li ) 3 -9 ( @=6 O 6 .= - L , 1 K L /- 2 L1 \ / S 0 - ] / S . = 6 @ 3R4 . B > L /- @= fc5 N [ . 1 F8 N [ ] Q 6 $ = .= D ; 1 E1 L $ 0 - ] >8 @ A ; Li . Li 3 -9 : , % E18 . B >Q KL 6v " ) @= ;@> = 6@ ( 5 10 15 20 25 -20 -15 -10 -5 0 Temperature (c) D ep th (m )

profile of Temperature (Station 1)

fall winter spring 5 10 15 20 25 -20 -15 -10 -5 0 Temperature (c) D ep th (m )

profile of Temperature (Station 2)

fall winter spring 5 10 15 20 25 -30 -20 -10 0 Temperature (c) D ep th (m )

profile of Temperature (Station 3)

fall winter spring 5 10 15 20 25 -40 -30 -20 -10 0 Temperature (c) D ep th (m )

profile of Temperature (Station 4)

fall winter spring 5 10 15 20 25 -60 -40 -20 0 Temperature (c) D e p th (m )

profile of Temperature (Station 5)

fall winter spring 5 10 15 20 25 -80 -60 -40 -20 0 Temperature (c) D e p th (m )

profile of Temperature (Station 6)

fall winter spring 5 10 15 20 25 -200 -150 -100 -50 0 Temperature (c) D e p th (m )

profile of Temperature (Station 7)

fall winter spring 5 10 15 20 25 -300 -200 -100 0 Temperature (c) D ep th (m )

profile of Temperature (Station 8)

fall winter spring 5 10 15 20 25 -200 -150 -100 -50 0 Temperature (c) D e p th (m )

profile of Temperature (Station 9)

fall

winter spring

(58)

Li 1 2 1 ) 3 -10 ( @=6 O @= - W r % N KL "h \ B1 /- " . N 1 @ \ W[ > U 12.5 12.4 r @ 1 . ] 1 N %bA6 Li 3 -10 : , % E18 . B >Q KL 6v " ) @= ;@> = 6@ ( 11.8 12 12.2 12.4 12.6 -20 -15 -10 -5 0 Salinity D e p th (m )

profile of Salinity (Station 2)

fall winter spring 11.8 12 12.2 12.4 12.6 -20 -15 -10 -5 0 Salinity D e p th (m )

profile of Salinity (Station 1)

fall winter spring 11.8 12 12.2 12.4 12.6 -40 -30 -20 -10 0 Salinity D e p th (m )

profile of Salinity (Station 4)

fall winter spring 11.8 12 12.2 12.4 12.6 -30 -20 -10 0 Salinity D e p th (m )

profile of Salinity (Station 3)

fall winter spring 11.8 11.9 12 12.1 12.2 12.3 12.4 -80 -60 -40 -20 0 Salinity D e p th (m )

profile of Salinity (Station 6)

fall winter spring 11.8 11.9 12 12.1 12.2 12.3 12.4 -60 -40 -20 0 Salinity D e p th (m )

profile of Salinity (Station 5)

fall winter spring 11.8 12 12.2 12.4 12.6 -300 -200 -100 0 Salinity D ep th (m )

profile of Salinity (Station 8) fall winter spring 11.8 12 12.2 12.4 12.6 -200 -150 -100 -50 0 Salinity D e p th (m )

profile of Salinity (Station 7)

fall winter spring 11.8 12 12.2 12.4 12.6 -200 -150 -100 -50 0 Salinity D e pt h (m )

profile of Salinity (Station 9)

fall winter spring

(59)

8 / %i N [ 12.35 1 N [ ] > 8 @ 1 12.15 /- @= . L /- @= q !S K 1 /RB =%1 ] N %bA6 8 6 B1 W r . B > . T- 28L , 1 8 @ A = K \ =%1 ] A @> = 1 E1 L A % 8 = /- @ = K 6 L5 - i . "h \ - W r /T; . F A$ /- @ 1 ` % N . 3 -3 -8 . D U* COHERENS 3 -3 -1 -8 - V, . B P -&,H> *B : B1 -=%6 6 @ 1 R Q % > -6@ j - 1 1 GEBCO @ 1 = . Q 6 @ N \ " iT A2 > 6 @ < 1 /RB @ 1 ETOPO1 /- \ iT > /\ 1 ] 1 =% B6 . B1 -=%6 6 @ ) GEBCO ( Q > ‚K .8 1 8 ?= 1 ‚k- 8 5 3A L\ = 7 8 @= ; i1 . 1 Q 5 6 @ N I-B = ?= Q > - A6 = @= ) Li 3 -11 ( . Li 3 -11 : ?= 1@= 8 B1 ; K COHERENS ) (

(60)

W -> . B : Q 6 @ N - 1 6 @ re-analysis ECMWF LM 0.5 × 0.5 /- @= {[M - % j \ @ <O68JK @ 1 2 ) Q. iA68 6 l 2013 ( . @ N / - 6 T, L 6 u 8 v > 10 Q# D I- 1 .8 > ‚K @ 1 8 ?= 1 6@ N ?= B = I- N %bA6}= @= 6 >LM -15 7 = 1 1 ] 1 /\ > W 2Li # N =1 = @= 1 .8 . M -B % 7 . . B : - 6 @ > Q 6 @ N re-analysis ECMWF LM 0.5 × 0.5 2 /- @= 1 .8 l % 1 /- @= U -. -@ > X& .&> Y- = ( ZH > [ . B : !1 i% L , 1 /1 4 A2> 6 @ > g RB re-analysis ECMWF Q = 28 - 6 @ > 6 @ N NCEP/NCAR re-analysis LM 2.5 × 2.5 2 /- @= U -‚k- 8 @= 1 .8 l % 1 /-. -. - . B ) \" &-:( 8 6 @ 1 9 6 ] 1 ?= Q @ > 6 6 8 Kara et al (2010) /- @= @ T -@ N 8 @= 1 .8 % 6 = . -B N . . B : 6 8 8 8 1 6 8 L <,8Q? 8 ) 8 8 -( Q 6@ > 1 GRDC 6 4 1 @= @ T -) A 3 -1 ( 8 1 8 8 = T-@ > 9 W 0 6 @= @ T - /-. ?= Q 6 8 N 8 8 j - 1 6 > 1 > @ 1 8 > -) ? - -iR W8 T W 1 /- @= 9 ( 8 1 1 8 <,8 > 6 8 6 < Q > 8 ) ? -( /- @= ; l .

(61)

8 iR – /- . iR !1 -"h \ 30 W ] 1 1 8 150 /- 7 . = K w / w = 1 1 @ 8 1 “ D • –—=3+ † 4 “˜•™š d›‡˜•œ• 6 6? -8 ˜•œ• 3A z =5 1Courant-Friedrichs-Lewy + ,+++ -++++ -,+++ .++++ .,+++

Jan Feb Mar Apr

A 3 -1 ( M 6 8 1 8 ' *B : F > ?= =%1 iR 2 ) 8=5 5 ( 8 @= ; l . =!1 8 > 15 8 . 1 1 @ =!1 - 8 7 ` @> = 1 = 1 =!1 8 >D ; @ 1 : “ =!1 8 >D ; Q “˜•™š - @> = L\ =5 /- - 1 .

r May Jun Jul Aug Sep Oct Nov Dec

River discharge (

-*B . *> +Z-0.046 × 0.046 A< - /-. > D ; 1 N = L5 =% . < W R 1 ) 3 -1 ( 4 1 D 1 % 9 c Volga Kura Ural

(

m /s)

(62)

+ †= + dF#žr • ) 3 -2 ( . F 8 N >: ; 8 >/ -• /- r2| 8 > . 3 -4 -&? ] 8 . B COHERENS !, N Q /- @= 2 /, 5 - ?= . 1 1 / 8 7 /0 E% ?= = 1 @ 8 , -) 2004 ( ,8 I N %bA6Q 8 8 2 / 8 L < > 8 @= 2 ) 8 9 ( =% A L5 8 W] ! I N ?= 4 1 @= l% M . 2 QD8 > 8 /- @= ? A ?= 6 8 8 8 W 7 E% < 6 / 8 ‚k- 8 @= l% M /, 5N 2 Q > I . % 1 2 / 8 W 7 A Q % 1 % 8 I . 8 8?= 1 ,8 .= - 1 ?= ? ! /, 5 1 Q W= 1 5 2 ? -/- @= . 2 q 6 /, 5 B 8 t 3 \ - 1 1 L - 1 N %bA6 8 < =i 1 ?= 6 @ > 6 4 1 2 6 / 8 N < Q9 : ; <, 1 E 7 8 2 / 8 6 . = N < > 1 . /- @= ,8 =2 8 6Li /- @= R- 0 -8 % O 1N %bA68 6/ 8 N A @=6 O 6 Li 6/ 8 % A . P ( B ) ^ - . _ . ? ) 8 2004 ( 6 6 N < \ 9 %2 L5 - = % O 1 Qj @ = % A 1 , A , A 5 /- @= -. Li 1 2 1 ) 3 -12 ( 1 K N < < 1 /RB \ 9 %2 5 : 1 v 8 @ 1 N O 1 \ 9 %2 5 5 Q = % O 1 .

(63)

Li 3 -12 : N < 2 6/ 8 6. = 6 Q 1 KQ 6 RB /1 4 8 : 1v ) j 2004 ( W ( - . B ) ^ " % . ? ) 8 2004 ( \ 9 %2 L5 - = % O 1 Q @ 6 6 N < /- @= - = % A 1 , A \ ? A 5 . 1 2 1 Li ) 3 -13 ( K N < 8 , A 5 1 /- @ 1 ] 1 RB . \ 5 : 1 v N %bA6 = % O 1 5 < 1 /RB 1 %28 /-.

(64)

Li 3 -13 : Q 6 2 6/ 8 6. = 6 N < RB /1 4 8 : 1v Q 1 K ) 2004 ( M -$N. " >) ^ ) 2004 ( ? - N < 1 <, 2004 Li 31 ) 3 -14 ( j 8 @ 6 Li N 31 /-Q @ 1 q !S RB 1 W= @ 8 = R k- 8 /- ; 6 \ L5 - ~ 1 1 W /- <AO` .

(65)

Li 3 -14 : < ? - 1. = 6 N 2004

(66)

Li 3 -14 : < 1. = 6 N N N < 8 % O 1N %bA6 W M 1 6@ ,8 =2 /- @= .

(67)

?8=2 3 -1 ( ? -q 6@ @> 5L : 1v % O 18 N < 2004 8 . B ^ @ >X& ) kg/m s ( * > @ >X& ) kg/m s ( y 6 -10 × 7.136 5 -10 × 1.9 6 -10 × 9.158 5 -10 × 2.3 j 5 -10 × 1.11 5 -10 × 5.4 L 8 5 -10 × 2.04 5 -10 × 7.3 6 -10 × 4.76 6 -10 × 3.2 . 2 6 -10 × 2.015 5 -10 × 1.3 ] 2 6 -10 × 4.5 5 -10 × 2.3 /- ; 7 -10 × 1.932 6 -10 × 3 R k-6 -10 × 5.418 5 -10 × 2.9 R 5 -10 × 1.306 5 -10 × 5.6 R 5 -10 × 2.134 5 -10 × 5.1 R -5 -10 × 2.108 5 -10 × 6.6 ?8=2 3 -2 ( ? -q 6@ @> 5L 1 K % O 18 N < 2004 8 . B ^ .&> Y- = (%) * > .&> Y- = (%) y 0.43 0.58 0.48 0.61 j 0.69 0.83 L 8 0.44 0.52 0.53 0.83 . 2 0.26 0.45 ] 2 0.29 0.45 /- ; 0.22 0.37 R k-0.27 0.39 R 0.34 0.46 R 0.49 0.61 R -0.50 0.61

(68)

?8=2 3 -3 ( 6 % O 18 N < ? -q 6@ @> 5L 2004 8 . B ^ B. ) C ( * > B. ) C ( y 5.71 12.91 6.33 12.35 j 8.5 13.4 L 8 11.61 15.96 17.72 22.75 . 2 22.79 28 ] 2 24.06 28.20 /- ; 26.40 30.24 R k-22.71 26.90 R 17.17 22.06 R 12.91 18.46 R -6.06 12.35 ?8=2 3 -4 ( ? -q 6@ @> 5L 6 O % O 18 N < 2004 . B 8 ^ B % ) Pa ( * > B % ) Pa ( y 98921 104222 99026 104349.9 j 99395 104604.3 L 8 98901 104093.9 98502 103547.9 . 2 98423 103321.6 ] 2 98371 103370 /- ; 98303 103149.6 R k-98949 103900.3 R 98373 104546.1 R 99150 104394.8 R -99389 104759.9

(69)

?8=2 3 -5 ( ? -q 6@ @> 5L /1 4 % O 18 N < 2004 8 . B ^ B > [ ) % ( * > B > [ ) % ( y 0.82 0.96 0.77 0.93 j 0.48 0.57 L 8 0.68 0.86 0.46 0.60 . 2 0.40 0.55 ] 2 0.52 0.75 /- ; 0.46 0.68 R k-0.56 0.75 R 0.69 0.84 R 0.80 0.91 R -0.83 0.97 ?8=2 3 -6 ( ? -q 6@ @> 5L 1/ - % O 18 N < 2004 8 . B ^ > & ) m/s ( * > > & ) m/s ( y 2.35 5.45 1.15 2.69 j 0.93 2.97 L 8 1.07 3.39 1.09 3.12 . 2 1.28 3.62 ] 2 2.25 5.42 /- ; 2.17 4.62 R k-1.88 4.21 R 1.22 4.04 R 1.17 3.24 R -1.37 3.84

(70)

3 -4 -8 . D U* FVCOM N 2 q I 8 ?= /- @= . ?8 /, 5 Q 8 . Bi @> = l > ?= 6 iR ?= 6 iR 1 O E @> = 8 =% B6 / %i COHERENS 1 6 @> = 4 1 @ 5000 = @= E . D8 /, 5 Q %2 /AB\ 4 1 @ 1 . Bi a ?= 6 iR 1 6 iR 3000 6 iR , A /AB\ 8 6500 w < 8 Q 6 ? - @> = 4 1 iR 5000 = @= @ . ?= Q 1 @= @ ?8 L 4 . A6 FVCOM W 2 ; Li L N AE 1 / 8 E% @= 2 , 5 . 1 /-?= 6 28 1 . 6 28 t 8 @= ? A COHERENS 7 /0 E% , 5 /- @= B @ 1 1/ 8 . 3 -4 -1 -8 - V, . B

P

-&,H> *B : 6 @ ?= =% A6 B1 -=%6 COHERENS Q 6 @ j - 1 GEBCO @ 1 . ?= N iR $ 1 Q D > SMS @ T -= @ Q D N > @ T - 1 I = 1 5 -> - A6 z z 6 ? - Q D N 3A 6 @ . 8 > ‚K 8 /- @= - % 1 D N . N @> = a . Bi = iR L 6? -8 9 . Bi 1 > - A6 D ~ W A l% > @ T - 1 B1 6 @ SMS Q /- D $ L1 \ 1 I- - 4 1 LA N . 2 1 iR F 8 > !, N ?= /- @= @ T . Li ) 3 -15 ( . Bi 6 @> = 1 6 ? - Q?= iR 5000 /-/- . Bi 34 % A iR L w " @=6 O 4 . A6 8 . iR N 18047 8 . A, 35312 28@ ; .

(71)

Li 3 -15 : D I- @= $ . Bi z z 6 iR SMS 1 Li ) 3 -16 ( { S8 8 A%; 1 1 . Bi 6 @> = 1 1 %2 iR z z 6 ? -> AB\ =6 . O ] 1 .

(72)

Li 3 -16 : AB\ D I- @= $ . Bi z z 6 iR SMS 1 ) O 1{ S8 1 ( 1 %2/AB\ 4 1 =% B6W8 T @> = l > ?= iR 6 ? -Q 2 D8 /, 5 1 %2 Q i` 6 ? -) 3000 ( 8 @> = 6 ? -, A 5 ) 6500 ( 8 < R\ /, 5 1 O 6 ? - 6 @> = 34 % 2 ) 5000 ( /-. =! iR N 24365 8 . A, 47873 28@ ; . N W 2 1 3 \ = 8 - 1 . Q 5 - 34 % g!1 6 ? - . 1 / 34 % . Li ) 3 -17 ( @= W8 T 6 ? - 1 iR . 1 %2 /AB\ \ 8 =! /AB\ 8 @= @ W M 1 @= > Q iT W =\ L , 1 6 ? -L1 \ N 8 w W M 1 Q 6 ? - " 6 8 6 ? - @> = . 1 • 1 L , 1 , A /- @=6 O . Li 1 %2 9 %2 /AB\ 6 ? - Q E1 { S8 1 ) 3 -18 ( . O /- @= @ .

(73)

Li 3 -17 : D I- @= $ . Bi a 6? - 1 z z 6 iR SMS 1

(74)

Li 3 -18 : AB\ > D I- @= $ . Bi a z z 6 iR SMS 1 ) O 1{ S8 1 ( W -> . B : - 1 6 @ Q?= @= @ T - 1 6 @ ECMWF LM 0.5 × 0.5 {[M - % j \ @ <O68JK @ 1 2 ?= 8 /- @= @ T -. 6 @ N / - 6 T, L u 8 v > 10 z z = =2 iR 1 1 .8 > ‚K @ 1 Li Q = @= 8?= 1 .

(75)

A

YO>

(76)

4 -1 -L N Q ?= > @ T - 1 9 : ; <, = > - R > LM 5 t COHERENS @= /-j - 1 > - R N @> = @ <O68JK 2 = 6 ; - % j \ 2 D 8 ) 6 @ CTD , @ 8=0 W 2 / - 8 ( - 1 w 1 ? 2004 /- @= D $ . 8 8 / 8 Q 2 / 8 68 ? A 1 > - ?= N 8 ? A N %bA6 ,8 I . % 1 9 1 9 : ; <, 8 W 2 Q ; Li / 8 q L > 6 7 8 ; \ - 1 , - 8 6 4 W 2 Q /- ; \ !, . = 6 ; @> = 1 > - ?= > LM 5 t Q 8 - @= B 2 • O > - R > LM 5 t /0M . = > - R COHERENS > 8 ,8 I ? A 1 @= D $ > ‚K Q/-E` , 2 ? -Q L5 ‚k-8 @= - K /, 5 1 = ? - 6 28 "$%K 2 @= t Q . L N /- @= . N L Q N %bA6 R 1 > 0 - W 2 <, - 1 1 = > -= ?= I-FVCOM % > 0 -W 2 <, N 1 B ‚k- 8 ;W M ?= 1 COHERENS 8 FVCOM @= D $ /-. 4 -2 -8 . Z- b" , COHERENS 8 . &> 2004 4 -2 -1 -&? . > - 8 D > 8 2 N Q I ? - 1 1 / 8 2004 ?= 1 @= ? A L5 / 5 @> = W] ! ?= 8 = A L5 2 N 8 W] ! ,8@ A . 6 28 . 2 > LM 5 ?= 6 @ > 1 ? -Li W M ) 4 -1 ( /- @=6 O L1 \ . ?8=2 4 . A6 ) 3 -6 ( Q @=6 O W= y 1 @ 1 \ 6 @ < 1 /RB ) y 1 / - % O 1 5.45 8 7 1 ] 2 5.42 @ 1 7 1 ( 4 1 Q L5 - W 2 W= 8 ; O @= u 1 1 34 % < > 1 a 9 %2 8 1 %2Q \ L5 - ~ O 1 8 N %bA6 W 2/

(77)

-O 1 / - ? - 6 @ N 1 > @ 1 1 > W 2 / - N < 4 1 } y 1.81 ] 2 8 7 1 -2.05 7 1 - /-. 1 /E2 31 N %bA6 @ y Q > 8 1 %2 \ L5 - W 2 Li -8 @ 1 ? A 1 9 %2 1 a L5 -Q W 2 1 /A-9 %2 @ 1 ‚K }/-4 1 <, /T; . W 2 1 7 /0 y K W M 1 /- @ 1 < . j Q 6 @ 8 2 Q/- @= - 1 / -> N < L\ =5 4 1 @= q !S 1> W @ W 2/ m/s 1.19 8 j m/s 1.21 @ 1 /-. 6 @ N N %bA6 E% \ 9 %2 8 ? A 5 - 5 Q \w < 1 /RB 1 <, 6. i 1 <, 1 2 1 NA @= =K 3R4 " % @=6 O O 1 W= 1 W 2 Q/-Q /E2 W 2 /- ? A - 1 . 2 @ . K e 9 %2 L5 . 5 1 W= @ L5 - \ @ A 1 F8 8 /- @= \ B1 . W= ] 2 @ . 2 . 6 @ N E 3R4 @=6 O f 4 1 \ L5 - > 2 @= =K $ 1 \ 34 % N 1 . = . 1 \ . NA @= =K /B 34 % N . 6 @ > @ 18 8 @= q !S 1 %2 W 2 N R k-8 /- ; \ 8 - 4 1 R k- @ 4 1 @ =$ ; Li 1 F8 R @ = @= .

(78)

Li 4 -1 : < N W 2 6 ) E% 1/ 8 7 /0 (

(79)

Li 4 -1 : < N W 2 6 ) E% 1/ 8 7 /0 (

(80)

4 -2 -2 -2 8 / 8 ? A 1?= Q? 8 8 E` 1 4 1 Q/- @= ? A ?= 1 8 / 8 E% 2 N 3 4 > 8 = T- 8 <,8 Q 6 = @= ? A ?= 1 8 > 1 > . Li ) 4 -2 ( 28 6 1 6 4 1 ?= > 6 @ /- @= @ . O . Li 4 -2 : < N W 2 6 ) E% 6 8 / 8 7 /0 ( Li 31 ) 4 -2 ( L 6 8 > W 2 / - @=6 O 6 @ O 1 @> 5 , A > 1 a L5 - W 2 <, ; Li "6 Q/B l5[ L1 \ = ?

(81)

-/- AE B1 1 %2 < - K : ; - "6 8 1 %2 . W= 8 1 L , 1 @ 6 8 > W 2 Li 8 @= \ B1 <,8 /- AE 7 , A 1 a 5 W 2 ; . 4 -2 -3 -B N - "&? > - "&? ^ > H" 6 Li 1 2 1 ) 4 -1 ( Q ) 4 -2 ( ?8=2 8 ) 3 -6 ( W 2 • O 1 @= 6 @ Q ] 2 Q y . L , /- ? - 6 @ < > \ /- ; 8 R -\ 1 " y . > 4 . 2 8 6 @ 6 8 8 8 > W 2 / -O 1 B1 6 @ < > 8 /-/ 8 I- @= $ W 2 N 8 Q W 2 ; Li 7 8 "E . 6 8 I- @= $ W 2/ - R 4 1 S W 2/ -1 /RB N . 2 8 6 @ /- 1 > / 8 7 . 1 \ @=%6 . O =-/- 6 8 . ?8=2 4 -7 : B 6@ @> 5L 6 8 8 8> W 2/ -8 1> W 2/ - 6N < ? -q 2004 DDDDD . B 8 ? - 6@ / -N < 1 m/s) ( / -N < > W 2 1 ) cm/s ( / -N < > W 2 8 8 8 6 ) cm/s ( / - % O 1 > W 2 1 ) cm/s ( / - % O 1 > W 2 8 8 8 6 ) cm/s ( y 2.35 1.81 0.14 15.8 22.78 1.15 1.19 0.17 7.5 24.60 j 0.93 1.21 0.17 7.5 22.36 L 8 1.07 1.56 0.22 9.4 30.41 1.09 1.25 0.40 8.1 64 . 2 1.28 1.35 0.23 8.7 30.41 ] 2 2.25 2.05 0.17 15.6 20.31 /- ; 2.17 1.58 0.16 8.2 18.39 R k-1.88 1.56 0.16 8.3 17.89 R 1.22 1.57 0.16 10.8 18.07 R 1.17 1.3 0.16 8.3 19.27 R -1.37 1.98 0.17 9.7 20.14

(82)

6 8 8 8> W 2 8 1 > W 2 / - % O 1 B 1 " % @=6 O 6 8 8 8 1 W 2 / - % O 1 ) <,8 1 8 8 L0 ( 1 / 8 > O 1 B1 L , /-. /- <,8 8 1 > = 8 W= . D>] /- V 1 @= /-=1 > O 1 6 8 8 1 7 ?8=2 ) 4 -7 ( R 8 1 =6 8 1 3 \ 4 1 =% A 8 / 8 > 8 1 / 8 > > -=%6 . O W 2 / - N %bA6 8 ; Li 8 $ 6 8 . N 1 1 L , $ }= =6 @> 5 , <` W r $ u 1 -8 N 18 % R 7 . % 1 1 . > W 2 AE- " B a 4 1 / ; l /- , <` . L , 1 "6 6 8 4> , <` r $ u 1 . O 8 T 8 " 1=%6 7 B1 , <`> W 2N %bA68 8 % E 8 = @= @> 5 . 4 -2 -4 -&? . B - D 8 D > 8 2 N Q 6 O Q 6 Q 1 K A2 > 2 6 / 8 A v 8 RB /1 4 : 1 > I . % 1 8 6 / 8 8 8 % 9 8 ,8 I . % 1 1 /- @= ? A ?= . @ . O 2 N t W 2 / -34 % g!1 : ; <, ; W =\ 8 W= /-. 28 1 1 %2 8 34 % - 6 b K 4 > 1 6 b K N W 2 / - 4 1 @= =%% = K 6 6 . . <, N < Li ?= > - R I- 0 - W 2 , -) 4 -3 ( /- @= @ . O N 1 2 1 Li 8 /AB\ . .= \ 8 , A 1 W 2 / - . 1 q !S . / -1 W 2 1 %2 <AO` 4 1 @=6 O . , - <, ) 2004 ( \ L5 - > 2 . @=6 O 9 a - 1 . 5 N %bA6 a @= $ < - ib K 9 . b KN 28? - 6 @ L R 6 @ > g!1 ) Li 4 -4 ( 1 W= .= q !S 1 2 1 @= i` # 1 1 /E2 r 8 /- @ = K ; 9 %2 /A- 1 8 . > R - /- ; @ > b K N l @> = ; O 8 /- @= \ 8 ; 1 QW 2 . 1 a 9 %2 L5 -< - ib K y @ ) 37.2°N, 50.8° E ( 1 a /AB\ @= 28 1 \ 4 1 4 1 < • 1 b K Q. < - K ) 38.2°N, 50.2°E ( < - K b KN > AB\ 28 q !S W =\ 1

(83)

=r < - b K W 2 > . ; e /A- 1 < - K b K N @ B1 < - b K N R k- @ } ; \ < - b K ] 1 /AB\ 4 1 1 8 \ < - K b K - 8 @= ; \ . ] 1 /AB\ /- N 1 > . > " % @=6 O 9 a - 1 \ L5 -> 2/- ; @ 8 @ I- 8 /- @= % N 2 @= =K $ u 1 8 /- % 1 % > . W 2 N 7 @=6 O , - <, \ L5 - NA . Li 4 -3 : < , - 0 -W 2N ) 2004 ( ?= @= > - R COHERENS Li B 1 6 ) 4 -1 ( 8 ) 4 -4 ( Q A > W 2 <, " % @=6 O 6 / 8 l5[ L1 \ 4 1 Q 1 > W 2 <, 1 /RB ,8 I 8 2 . 2 6 / 8 < ? A \ 8 N %bA6 8 c< 7 % 9 8 R 8 1 1 ? A ,8 I W8 T q 6 3A 8 34 % 9 , <` Q @= $ , <` . ; N 8 @= = =6 % 2 $ u 1 . 1 /RB % . ; i% L , 1 4 >

(84)

W r > @= 1 W 2 ) 2004 ( 2 1 /RB W 2 ‚K Q/- " B1 . Li 4 -4 : < 0 -W 2 6 N B1 . ; ; \ %

References

Related documents

To analyze the endothelial phenotype in vitro before and after extracorporeal cytokine removal, we tested the septic shock patient ’ s serum on human umbilical vein endothelial

Abstract: Fibromyalgia syndrome (FMS) is a chronic disorder characterized by widespread and persistent musculoskeletal pain and other frequent symptoms such as fatigue, insomnia,

Regarding the total number of publications in MEDLINE and registered studies in ClinicalTrials.gov, the level of research activity seems to be lower in bladder cancer compared

The following data were extracted from each study (where possible): the amount of missing data (i.e. proportion of observa- tions with missing data or the proportion of complete

The studied variables included demographic data, medical history, risk factors (history of ocular trauma, use of contact lenses, associated eye diseases, systemic diseases,

Radio modem, cellular, and also satellite communication with an automatic channels choice of communication in the conditions of the powerful electromagnetic fields having

With this background, the study was undertaken to assess genetic diversity among Korea lines and Africa adapted rice varieties using morphological traits and

The 16 management officers interviewed include three plan- ning directors (PD), two deputy directors (PDD), four senior town planning officers (STP), and seven