• No results found

endo 4 Phenyl 7 n propyl 2 oxa 6 thia 3 aza­bi­cyclo­[3 2 01,4]­hept 3 ene 6,6 dioxide

N/A
N/A
Protected

Academic year: 2020

Share "endo 4 Phenyl 7 n propyl 2 oxa 6 thia 3 aza­bi­cyclo­[3 2 01,4]­hept 3 ene 6,6 dioxide"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, o1043±o1044 DOI: 10.1107/S1600536802014666 Gainsford and Woolhouse C13H15NO3S

o1043

organic papers

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

endo

-4-Phenyl-7-

n

-propyl-2-oxa-6-thia-3-aza-bicyclo[3.2.0

1,4

]hept-3-ene 6,6-dioxide

Graeme J. Gainsford* and Anthony D. Woolhouse

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand

Correspondence e-mail: g.gainsford@irl.cri.nz

Key indicators

Single-crystal X-ray study T= 130 K

Mean(C±C) = 0.007 AÊ Rfactor = 0.057 wRfactor = 0.121

Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

Two independent molecules of the title compound, C13H15NO3S, containing the novel endo-thiabicyclo[3.2.01,4

]-hept-3-ene ring, crystallize in a triclinic cell. Both fused rings in the bicyclic system are non-planar, with the ®ve-membered C3NO rings adopting envelope conformations.

Comment

The title compound, (I), was prepared as part of a study of the use of carnivore odours in mammal pest control. It is closely related to two previously reported structures: exo -7-aza-6-oxa-4-n-propyl-3-thiabicyclo[5.4.11,7.12,5]undecane 3,3-dioxide

(Woolhouse et al., 1993) and the exo-stereoisomer exo -7-phenyl-3-n-propyl-5-oxa-2-thia-6-azabicyclo[3.2.01,4

]hept-6-ene 2,2-dioxide (Gainsford & Woolhouse, 2002), being formed from a thiete sulfone (Gainsford & Woolhouse, 1994).

The crystal structure of (I) consists of two nearly identical independent molecules (one of these is shown in Fig. 1) and their centrosymmetrically related molecules. Most inter-molecular interactions are between each independent mol-ecule and their centrosymmetrically related molmol-ecules, e.g.

Received 26 July 2002 Accepted 9 August 2002 Online 6 September 2002

Figure 1

(2)

C113ÐH113 O122i, with C113 O122i = 3.303 (5) AÊ

[symmetry code: (i) 1ÿx, 1ÿy, 1ÿz], making two in®nite chains along thebcrystal axis. The Cj1ÐCj4ÐOj5ÐNj6ÐCj7 ®ve-membered rings, where j = 1 or 2, have envelope conformations, with ¯ap atoms Cj4 at distances of 0.222 (7) and 0.185 (8) AÊ from the four-atom plane for j = 1 and 2, respectively. The four-membered C3S fused rings are not

planar, with mean deviations from the mean plane of 0.0787 (3) and 0.0487 (3) AÊ forj= 1 and 2, respectively. The angles between the mean planes through the two rings are identical at 66.0 (3). This is unlike theexo-molecule where

the fused four- and ®ve-membered rings are planar (Gainsford & Woolhouse, 2002). The pendant planar phenyl rings Cj8Ð Cj13 are twisted by 5.2 (2) and 6.9 (3) for j = 1 and 2,

respectively, from their bound ®ve-membered ring. The same comments about the oxygen Oj5 binding in fused-ring systems constructed by cycloaddition apply (see Gainsford & Wool-house, 2002).

Experimental

Compound (I) was prepared as described previously by Gainsford & Woolhouse (2002). Crystals were grown from an ethyl acetate± hexane mixture.

Crystal data C13H15NO3S Mr= 265.32 Triclinic,P1

a= 5.282 (4) AÊ

b= 11.241 (3) AÊ

c= 22.588 (6) AÊ = 79.65 (2)

= 89.67 (4)

= 76.58 (3)

V= 1282.4 (11) AÊ3

Z= 4

Dx= 1.374 Mg mÿ3 MoKradiation Cell parameters from 24

re¯ections = 5.8±14.6

= 0.25 mmÿ1 T= 130 (2) K Needle, colourless 0.840.320.18 mm Data collection

Siemens/NicoletR3mfour-circle diffractometer

!scans

3583 measured re¯ections 3157 independent re¯ections 2378 re¯ections withI> 2(I)

Rint= 0.035

max= 22.5

h= 0!5

k=ÿ11!11

l=ÿ24!24 3 standard re¯ections

every 97 re¯ections intensity decay: none

Re®nement Re®nement onF2 R[F2> 2(F2)] = 0.057 wR(F2) = 0.121 S= 1.16 3157 re¯ections 316 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0097P)2 + 3.7137P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.31 e AÊÿ3

min=ÿ0.29 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0068 (8)

Table 1

Selected geometric parameters (AÊ,).

S12ÐO121 1.425 (4)

S12ÐO122 1.434 (3)

S12ÐC11 1.822 (5)

S22ÐO221 1.425 (4)

O25ÐN26 1.409 (5)

N16ÐC17 1.287 (6)

O121ÐS12ÐO122 118.9 (2)

C11ÐS12ÐC13 80.5 (2) C17ÐN16ÐO15C14ÐC11ÐS12 110.8 (4)88.9 (3)

C14ÐO15ÐN16ÐC17 9.8 (5)

C23ÐS22ÐC21ÐC24 ÿ6.3 (3) C13ÐS12ÐC11ÐC17C23ÐS22ÐC21ÐC27 91.5 (4)95.6 (4)

All H atoms were constrained to ride on their parent atom, with a

Uisovalue 1.2 times theUeqvalue of the parent atom.

Data collection: SHELXTL (Siemens, 1983); cell re®nement:

SHELXTL; data reduction:SHELXTL; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 in WinGX (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and

PLATON(Spek, 1990).

The authors thank Dr J. Wikaira and Professor Ward T Robinson of the University of Canterbury for their assistance.

References

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Gainsford, G. J. & Woolhouse, A. D. (1994).Acta Cryst.C50, 606±607. Gainsford, G. J. & Woolhouse, A. D. (2002).Acta Cryst.E58, o715±o716. Sheldrick, G. M. (1990).Acta Cryst.A46, 467±473.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Siemens (1983). R3M Software. Version 4.11. Siemens Analytical X-ray

Instruments Inc., Madison, Wisconsin, USA. Spek, A. L. (1990).Acta Cryst.A46, C-34.

(3)

supporting information

sup-1

Acta Cryst. (2002). E58, o1043–o1044

supporting information

Acta Cryst. (2002). E58, o1043–o1044 [doi:10.1107/S1600536802014666]

endo

-4-Phenyl-7-

n

-propyl-2-oxa-6-thia-3-azabicyclo[3.2.0

1,4

]hept-3-ene

6,6-dioxide

Graeme J. Gainsford and Anthony D. Woolhouse

S1. Comment

The title compound, (I), was prepared as part of a study of the use of carnivore odours in mammal pest control. It is

closely related to two previously reported structures: exo-7-aza-6-oxa-4-n-propyl-3-thiabicyclo[5.4.11,7.12,5]undecane

3,3-dioxide (Woolhouse et al., 1993) and the exo-stereoisomer exo

-7-phenyl-3-n-propyl-5-oxa-2-thia-6-azabicyclo-[3.2.01,4]hept-6-ene 2,2-dioxide (Gainsford & Woolhouse, 2002), being formed from a thiete sulfone (Gainsford &

Woolhouse, 1994). The crystal structure of (I) consists of two nearly identical independent molecules (one of these is

shown in Fig. 1) and their centrosymmetrically related molecules. Most intermolecular interactions are between each

independent molecule and their centrosymmetrically related molecules, e.g. C113—H113···O122i, with C113···O122i =

3.303 (5) Å [symmetry code: (i) 1 − x, 1 − y, 1 − z], making two infinite chains along the b crystal axis. The Cj1—Cj4—

Oj5—Nj6—Cj7 five-membered rings, where j = 1 or 2, have envelope conformations, with flap atoms Cj4 at distances of

0.222 (7) and 0.185 (8) Å from the four-atom plane for p = 1 and 2, respectively. The four-membered C3S fused rings are

not planar, with mean deviations from the mean plane of 0.0787 (3) and 0.0487 (3) Å for j = 1 and 2, respectively. The

angles between the mean planes through the two rings are identical at 66.0 (3)°. This is unlike the exo-molecule where the

fused four- and five-membered rings are planar (Gainsford & Woolhouse, 2002). The pendant planar phenyl rings Cj8–

Cj13 are twisted by 5.2 (2) and 6.9 (3)° for j = 1 and 2, respectively, from their bound five-membered ring. The same

comments about the oxygen Oj5 binding in fused-ring systems constructed by cycloaddition apply (see Gainsford &

Woolhouse, 2002).

S2. Experimental

Compound (I) was prepared as described previously by Gainsford & Woolhouse (2002). Crystals were grown from an

ethyl acetate–hexane mixture.

S3. Refinement

(4)
[image:4.610.127.487.74.369.2]

Figure 1

The molecular structure of one of the two independent molecules of (I). Displacement ellipsoids are drawn at the 50%

probability level. H atoms have arbitrary radii.

(I)

Crystal data

C13H15NO3S Mr = 265.32 Triclinic, P1

a = 5.282 (4) Å

b = 11.241 (3) Å

c = 22.588 (6) Å

α = 79.65 (2)°

β = 89.67 (4)°

γ = 76.58 (3)°

V = 1282.4 (11) Å3

Z = 4

F(000) = 560

Dx = 1.374 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 24 reflections

θ = 5.8–14.6°

µ = 0.25 mm−1 T = 130 K Needle, colourless 0.84 × 0.32 × 0.18 mm

Data collection

Siemens/Nicolet R3m four-circle diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

3583 measured reflections 3157 independent reflections 2378 reflections with I > 2σ(I)

Rint = 0.035

θmax = 22.5°, θmin = 2.3° h = 0→5

k = −11→11

l = −24→24

(5)

supporting information

sup-3

Acta Cryst. (2002). E58, o1043–o1044 Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.057 wR(F2) = 0.121 S = 1.16 3157 reflections 316 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0097P)2 + 3.7137P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.31 e Å−3 Δρmin = −0.29 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0068 (8)

Special details

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. A standard 1.0 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. An extinction paramter was refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S12 0.2613 (2) 0.69088 (12) 0.46531 (6) 0.0227 (4)

S22 0.2616 (3) 0.33210 (12) −0.02285 (6) 0.0252 (4)

O121 −0.0047 (7) 0.6840 (3) 0.46455 (16) 0.0309 (9)

O122 0.4493 (6) 0.6030 (3) 0.43921 (15) 0.0253 (9)

O15 0.3399 (6) 0.9248 (3) 0.53905 (15) 0.0256 (9)

O221 0.5282 (7) 0.3370 (3) −0.01971 (16) 0.0346 (10)

O222 0.0758 (7) 0.4388 (3) −0.05378 (15) 0.0276 (9)

O25 0.2259 (7) 0.0468 (3) 0.05684 (17) 0.0338 (10)

N16 0.1571 (8) 0.8792 (4) 0.57727 (18) 0.0237 (10)

N26 0.4029 (8) 0.0741 (4) 0.0958 (2) 0.0319 (11)

C11 0.3846 (9) 0.7102 (5) 0.5373 (2) 0.0198 (12)

H11 0.523 (9) 0.643 (4) 0.554 (2) 0.024*

C13 0.3144 (10) 0.8471 (5) 0.4437 (2) 0.0242 (13)

H13 0.140 (10) 0.894 (5) 0.443 (2) 0.029*

C14 0.4592 (10) 0.8300 (4) 0.5047 (2) 0.0198 (12)

H14 0.644 (9) 0.827 (4) 0.503 (2) 0.024*

C17 0.1781 (9) 0.7628 (4) 0.5775 (2) 0.0193 (12)

C18 0.0097 (4) 0.6945 (2) 0.61509 (9) 0.0214 (12)

C19 −0.1806 (6) 0.7560 (2) 0.64896 (11) 0.0262 (13)

H19 −0.2029 0.8427 0.6480 0.031*

(6)

H110 −0.4681 0.7328 0.7074 0.036*

C111 −0.3054 (5) 0.5639 (2) 0.68568 (10) 0.0307 (14)

H111 −0.4131 0.5193 0.7098 0.037*

C112 −0.1152 (6) 0.5024 (2) 0.65181 (12) 0.0261 (13)

H112 −0.0929 0.4157 0.6528 0.031*

C113 0.0424 (5) 0.56766 (18) 0.61652 (10) 0.0254 (13)

H113 0.1724 0.5256 0.5934 0.031*

C114 0.4570 (9) 0.8744 (4) 0.38663 (15) 0.0309 (13)

H14A 0.6102 0.8046 0.3860 0.037*

H14B 0.5217 0.9502 0.3870 0.037*

C115 0.2907 (12) 0.8934 (5) 0.3294 (2) 0.0397 (15)

H15A 0.1258 0.9555 0.3320 0.048*

H15B 0.2469 0.8141 0.3256 0.048*

C116 0.4327 (14) 0.9380 (6) 0.2741 (3) 0.057 (2)

H16A 0.4735 1.0173 0.2775 0.068*

H16B 0.3215 0.9494 0.2379 0.068*

H16C 0.5945 0.8760 0.2711 0.068*

C21 0.1452 (10) 0.2656 (5) 0.0489 (2) 0.0251 (13)

H21 0.004 (10) 0.322 (5) 0.056 (2) 0.030*

C23 0.2068 (11) 0.1887 (5) −0.0421 (2) 0.0288 (14)

H23 0.385 (10) 0.142 (5) −0.045 (2) 0.035*

C24 0.0845 (11) 0.1605 (5) 0.0199 (3) 0.0283 (13)

H24 −0.096 (10) 0.160 (4) 0.019 (2) 0.034*

C27 0.3611 (10) 0.1936 (5) 0.0931 (2) 0.0251 (13)

C28 0.5188 (4) 0.2460 (2) 0.13003 (9) 0.0257 (13)

C29 0.7282 (6) 0.1707 (2) 0.16611 (11) 0.0321 (14)

H29 0.7705 0.0833 0.1674 0.039*

C210 0.8756 (5) 0.2231 (3) 0.20023 (11) 0.0358 (15)

H210 1.0187 0.1717 0.2249 0.043*

C211 0.8136 (5) 0.3509 (3) 0.19827 (10) 0.0365 (15)

H211 0.9144 0.3868 0.2216 0.044*

C212 0.6042 (6) 0.4263 (2) 0.16220 (12) 0.0325 (14)

H212 0.5619 0.5136 0.1609 0.039*

C213 0.4568 (5) 0.3738 (2) 0.12808 (11) 0.0270 (13)

H213 0.3136 0.4253 0.1034 0.032*

C214 0.0410 (9) 0.2064 (4) −0.09788 (15) 0.0332 (14)

H24A −0.1185 0.2721 −0.0959 0.040*

H24B −0.0130 0.1282 −0.0992 0.040*

C215 0.1773 (12) 0.2421 (5) −0.1553 (3) 0.0440 (16)

H25A 0.2415 0.3172 −0.1530 0.053*

H25B 0.3299 0.1738 −0.1590 0.053*

C216 0.0012 (16) 0.2674 (8) −0.2102 (3) 0.087 (3)

H26A −0.0454 0.1904 −0.2155 0.105*

H26B 0.0909 0.2985 −0.2457 0.105*

(7)

supporting information

sup-5

Acta Cryst. (2002). E58, o1043–o1044 Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S12 0.0243 (7) 0.0209 (8) 0.0233 (8) −0.0014 (6) 0.0018 (6) −0.0100 (6)

S22 0.0293 (8) 0.0181 (8) 0.0259 (8) −0.0025 (6) 0.0086 (6) −0.0018 (6)

O121 0.030 (2) 0.033 (2) 0.033 (2) −0.0068 (17) 0.0018 (17) −0.0153 (18)

O122 0.030 (2) 0.021 (2) 0.024 (2) 0.0011 (16) 0.0039 (16) −0.0116 (16)

O15 0.036 (2) 0.021 (2) 0.022 (2) −0.0087 (17) 0.0101 (17) −0.0091 (16)

O221 0.033 (2) 0.033 (2) 0.039 (2) −0.0113 (18) 0.0076 (18) −0.0078 (19)

O222 0.036 (2) 0.018 (2) 0.025 (2) 0.0008 (17) 0.0047 (17) −0.0027 (16)

O25 0.043 (2) 0.016 (2) 0.039 (2) −0.0047 (18) 0.0018 (19) −0.0004 (18)

N16 0.031 (3) 0.024 (3) 0.018 (2) −0.008 (2) 0.008 (2) −0.007 (2)

N26 0.033 (3) 0.026 (3) 0.033 (3) −0.003 (2) 0.002 (2) −0.001 (2)

C11 0.020 (3) 0.016 (3) 0.026 (3) −0.003 (2) 0.000 (2) −0.011 (2)

C13 0.025 (3) 0.022 (3) 0.026 (3) −0.004 (2) 0.004 (2) −0.006 (2)

C14 0.020 (3) 0.019 (3) 0.021 (3) −0.001 (2) 0.005 (2) −0.009 (2)

C17 0.024 (3) 0.013 (3) 0.019 (3) −0.002 (2) −0.001 (2) −0.003 (2)

C18 0.022 (3) 0.024 (3) 0.017 (3) −0.004 (2) 0.000 (2) −0.002 (2)

C19 0.029 (3) 0.023 (3) 0.027 (3) −0.002 (2) 0.006 (2) −0.010 (2)

C110 0.032 (3) 0.033 (3) 0.025 (3) −0.006 (3) 0.005 (3) −0.008 (3)

C111 0.039 (3) 0.036 (4) 0.019 (3) −0.017 (3) 0.003 (3) 0.001 (3)

C112 0.035 (3) 0.021 (3) 0.022 (3) −0.008 (2) 0.000 (2) 0.000 (2)

C113 0.027 (3) 0.023 (3) 0.024 (3) −0.001 (2) 0.001 (2) −0.008 (2)

C114 0.041 (3) 0.023 (3) 0.027 (3) −0.006 (3) 0.007 (3) −0.006 (3)

C115 0.064 (4) 0.026 (3) 0.030 (4) −0.010 (3) −0.001 (3) −0.008 (3)

C116 0.087 (5) 0.049 (4) 0.023 (4) 0.004 (4) 0.007 (3) −0.004 (3)

C21 0.022 (3) 0.018 (3) 0.033 (3) 0.000 (2) 0.004 (3) −0.005 (3)

C23 0.031 (3) 0.015 (3) 0.039 (4) −0.003 (2) 0.008 (3) −0.003 (3)

C24 0.026 (3) 0.019 (3) 0.038 (4) −0.002 (2) 0.002 (3) −0.004 (3)

C27 0.027 (3) 0.016 (3) 0.029 (3) 0.000 (2) 0.009 (2) 0.000 (2)

C28 0.022 (3) 0.028 (3) 0.025 (3) −0.005 (2) 0.009 (2) −0.003 (3)

C29 0.030 (3) 0.034 (3) 0.025 (3) 0.001 (3) 0.004 (3) 0.001 (3)

C210 0.023 (3) 0.052 (4) 0.026 (3) −0.001 (3) 0.002 (3) 0.000 (3)

C211 0.041 (4) 0.048 (4) 0.023 (3) −0.015 (3) 0.010 (3) −0.007 (3)

C212 0.040 (3) 0.030 (3) 0.028 (3) −0.012 (3) 0.010 (3) −0.002 (3)

C213 0.032 (3) 0.027 (3) 0.020 (3) −0.005 (3) 0.003 (2) −0.001 (2)

C214 0.046 (4) 0.021 (3) 0.034 (4) −0.008 (3) 0.005 (3) −0.006 (3)

C215 0.069 (5) 0.026 (3) 0.035 (4) −0.005 (3) 0.009 (3) −0.007 (3)

C216 0.105 (7) 0.092 (6) 0.031 (4) 0.042 (5) 0.005 (4) −0.008 (4)

Geometric parameters (Å, º)

S12—O121 1.425 (4) C114—H14B 0.9900

S12—O122 1.434 (3) C115—C116 1.522 (8)

S12—C11 1.822 (5) C115—H15A 0.9900

S12—C13 1.822 (5) C115—H15B 0.9900

S22—O221 1.425 (4) C116—H16A 0.9800

(8)

S22—C21 1.825 (5) C116—H16C 0.9800

S22—C23 1.828 (5) C21—C27 1.499 (7)

O15—N16 1.414 (5) C21—C24 1.544 (7)

O15—C14 1.454 (5) C21—H21 0.89 (5)

O25—N26 1.409 (5) C23—C214 1.495 (6)

O25—C24 1.439 (6) C23—C24 1.550 (8)

N16—C17 1.287 (6) C23—H23 0.97 (5)

N26—C27 1.300 (6) C24—H24 0.96 (5)

C11—C17 1.499 (7) C27—C28 1.466 (6)

C11—C14 1.548 (7) C28—C29 1.3900

C11—H11 0.94 (5) C28—C213 1.3900

C13—C114 1.509 (6) C29—C210 1.3900

C13—C14 1.540 (7) C29—H29 0.9500

C13—H13 0.95 (5) C210—C211 1.3900

C14—H14 0.97 (5) C210—H210 0.9500

C17—C18 1.475 (5) C211—C212 1.3900

C18—C19 1.3900 C211—H211 0.9500

C18—C113 1.3900 C212—C213 1.3900

C19—C110 1.3900 C212—H212 0.9500

C19—H19 0.9500 C213—H213 0.9500

C110—C111 1.3900 C214—C215 1.516 (7)

C110—H110 0.9500 C214—H24A 0.9900

C111—C112 1.3900 C214—H24B 0.9900

C111—H111 0.9500 C215—C216 1.499 (9)

C112—C113 1.3900 C215—H25A 0.9900

C112—H112 0.9500 C215—H25B 0.9900

C113—H113 0.9500 C216—H26A 0.9800

C114—C115 1.521 (7) C216—H26B 0.9800

C114—H14A 0.9900 C216—H26C 0.9800

O121—S12—O122 118.9 (2) C116—C115—H15B 109.4

O121—S12—C11 114.5 (2) H15A—C115—H15B 108.0

O122—S12—C11 110.9 (2) C115—C116—H16A 109.5

O121—S12—C13 114.9 (2) C115—C116—H16B 109.5

O122—S12—C13 110.9 (2) H16A—C116—H16B 109.5

C11—S12—C13 80.5 (2) C115—C116—H16C 109.5

O221—S22—O222 118.8 (2) H16A—C116—H16C 109.5

O221—S22—C21 113.2 (2) H16B—C116—H16C 109.5

O222—S22—C21 112.3 (2) C27—C21—C24 101.0 (4)

O221—S22—C23 114.7 (2) C27—C21—S22 113.2 (4)

O222—S22—C23 111.2 (2) C24—C21—S22 89.7 (3)

C21—S22—C23 80.6 (2) C27—C21—H21 126 (3)

N16—O15—C14 108.5 (3) C24—C21—H21 114 (3)

N26—O25—C24 109.2 (4) S22—C21—H21 106 (3)

C17—N16—O15 110.8 (4) C214—C23—C24 118.5 (5)

C27—N26—O25 110.3 (4) C214—C23—S22 114.9 (4)

C17—C11—C14 100.9 (4) C24—C23—S22 89.4 (3)

(9)

supporting information

sup-7

Acta Cryst. (2002). E58, o1043–o1044

C14—C11—S12 88.9 (3) C24—C23—H23 115 (3)

C17—C11—H11 119 (3) S22—C23—H23 101 (3)

C14—C11—H11 117 (3) O25—C24—C21 105.2 (4)

S12—C11—H11 112 (3) O25—C24—C23 112.7 (4)

C114—C13—C14 118.8 (4) C21—C24—C23 99.5 (4)

C114—C13—S12 117.4 (4) O25—C24—H24 109 (3)

C14—C13—S12 89.1 (3) C21—C24—H24 114 (3)

C114—C13—H13 115 (3) C23—C24—H24 116 (3)

C14—C13—H13 113 (3) N26—C27—C28 120.9 (4)

S12—C13—H13 99 (3) N26—C27—C21 112.8 (5)

O15—C14—C13 111.9 (4) C28—C27—C21 126.3 (4)

O15—C14—C11 104.7 (4) C29—C28—C213 120.0

C13—C14—C11 99.4 (4) C29—C28—C27 121.3 (2)

O15—C14—H14 108 (3) C213—C28—C27 118.7 (2)

C13—C14—H14 116 (3) C210—C29—C28 120.0

C11—C14—H14 116 (3) C210—C29—H29 120.0

N16—C17—C18 120.4 (4) C28—C29—H29 120.0

N16—C17—C11 113.1 (4) C29—C210—C211 120.0

C18—C17—C11 126.5 (4) C29—C210—H210 120.0

C19—C18—C113 120.0 C211—C210—H210 120.0

C19—C18—C17 120.5 (2) C212—C211—C210 120.0

C113—C18—C17 119.5 (2) C212—C211—H211 120.0

C18—C19—C110 120.0 C210—C211—H211 120.0

C18—C19—H19 120.0 C211—C212—C213 120.0

C110—C19—H19 120.0 C211—C212—H212 120.0

C19—C110—C111 120.0 C213—C212—H212 120.0

C19—C110—H110 120.0 C212—C213—C28 120.0

C111—C110—H110 120.0 C212—C213—H213 120.0

C112—C111—C110 120.0 C28—C213—H213 120.0

C112—C111—H111 120.0 C23—C214—C215 113.4 (4)

C110—C111—H111 120.0 C23—C214—H24A 108.9

C111—C112—C113 120.0 C215—C214—H24A 108.9

C111—C112—H112 120.0 C23—C214—H24B 108.9

C113—C112—H112 120.0 C215—C214—H24B 108.9

C112—C113—C18 120.0 H24A—C214—H24B 107.7

C112—C113—H113 120.0 C216—C215—C214 112.2 (5)

C18—C113—H113 120.0 C216—C215—H25A 109.2

C13—C114—C115 113.8 (4) C214—C215—H25A 109.2

C13—C114—H14A 108.8 C216—C215—H25B 109.2

C115—C114—H14A 108.8 C214—C215—H25B 109.2

C13—C114—H14B 108.8 H25A—C215—H25B 107.9

C115—C114—H14B 108.8 C215—C216—H26A 109.5

H14A—C114—H14B 107.7 C215—C216—H26B 109.5

C114—C115—C116 111.1 (5) H26A—C216—H26B 109.5

C114—C115—H15A 109.4 C215—C216—H26C 109.5

C116—C115—H15A 109.4 H26A—C216—H26C 109.5

(10)

C14—O15—N16—C17 9.8 (5) C14—C13—C114—C115 −178.2 (4)

C23—S22—C21—C24 −6.3 (3) S12—C13—C114—C115 76.5 (5)

C13—S12—C11—C17 91.5 (4) C13—C114—C115—C116 172.1 (5)

C23—S22—C21—C27 95.6 (4) O221—S22—C21—C27 −17.3 (5)

C24—O25—N26—C27 9.0 (5) O222—S22—C21—C27 −155.3 (4)

O121—S12—C11—C17 −21.7 (4) O221—S22—C21—C24 −119.1 (3)

O122—S12—C11—C17 −159.6 (3) O222—S22—C21—C24 102.9 (3)

O121—S12—C11—C14 −123.2 (3) O221—S22—C23—C214 −121.0 (4)

O122—S12—C11—C14 98.9 (3) O222—S22—C23—C214 17.3 (5)

C13—S12—C11—C14 −10.0 (3) C21—S22—C23—C214 127.7 (4)

O121—S12—C13—C114 −114.8 (4) O221—S22—C23—C24 117.6 (3)

O122—S12—C13—C114 23.6 (5) O222—S22—C23—C24 −104.1 (3)

C11—S12—C13—C114 132.4 (4) C21—S22—C23—C24 6.2 (3)

O121—S12—C13—C14 122.8 (3) N26—O25—C24—C21 −12.3 (5)

O122—S12—C13—C14 −98.8 (3) N26—O25—C24—C23 95.1 (5)

C11—S12—C13—C14 10.1 (3) C27—C21—C24—O25 10.7 (5)

N16—O15—C14—C13 92.5 (4) S22—C21—C24—O25 124.2 (4)

N16—O15—C14—C11 −14.2 (5) C27—C21—C24—C23 −106.2 (4)

C114—C13—C14—O15 116.9 (5) S22—C21—C24—C23 7.4 (4)

S12—C13—C14—O15 −121.9 (4) C214—C23—C24—O25 123.4 (5)

C114—C13—C14—C11 −133.0 (4) S22—C23—C24—O25 −118.4 (4)

S12—C13—C14—C11 −11.9 (3) C214—C23—C24—C21 −125.6 (5)

C17—C11—C14—O15 12.9 (5) S22—C23—C24—C21 −7.4 (4)

S12—C11—C14—O15 127.6 (3) O25—N26—C27—C28 179.4 (4)

C17—C11—C14—C13 −102.8 (4) O25—N26—C27—C21 −1.4 (6)

S12—C11—C14—C13 11.9 (3) C24—C21—C27—N26 −6.0 (6)

O15—N16—C17—C18 179.0 (3) S22—C21—C27—N26 −100.4 (5)

O15—N16—C17—C11 −0.7 (6) C24—C21—C27—C28 173.2 (4)

C14—C11—C17—N16 −7.9 (5) S22—C21—C27—C28 78.8 (5)

S12—C11—C17—N16 −101.7 (4) N26—C27—C28—C29 4.3 (5)

C14—C11—C17—C18 172.5 (4) C21—C27—C28—C29 −174.8 (4)

S12—C11—C17—C18 78.7 (5) N26—C27—C28—C213 −176.3 (4)

N16—C17—C18—C19 2.5 (5) C21—C27—C28—C213 4.5 (6)

C11—C17—C18—C19 −177.9 (4) C213—C28—C29—C210 0.0

N16—C17—C18—C113 −177.5 (3) C27—C28—C29—C210 179.4 (3)

C11—C17—C18—C113 2.1 (6) C28—C29—C210—C211 0.0

C113—C18—C19—C110 0.0 C29—C210—C211—C212 0.0

C17—C18—C19—C110 −180.0 (2) C210—C211—C212—C213 0.0

C18—C19—C110—C111 0.0 C211—C212—C213—C28 0.0

C19—C110—C111—C112 0.0 C29—C28—C213—C212 0.0

C110—C111—C112—C113 0.0 C27—C28—C213—C212 −179.4 (2)

C111—C112—C113—C18 0.0 C24—C23—C214—C215 176.0 (4)

C19—C18—C113—C112 0.0 S22—C23—C214—C215 72.3 (5)

Figure

Figure 1

References

Related documents

18 th Sunday in Ordinary Time Saint Rose of Lima Parish Parroquia Santa Rosa de Lima.. August

In addition, this example, of a university President celebrating the building of ‘a very strong network of alumni in China and Hong Kong', highlighted the significance for

Although theoretically the likelihood of finding evidence that dumped imports have in- jured the domestic industry should fall as the industry increases its output, the results from

In a surprise move, the Central Bank of Peru (BCRP) reduced its benchmark interest rate by 25 basis points (bps) to 3.25% in mid-January following disappointing economic growth data

Although total labor earnings increase with the unskilled unions’ bargaining power, we can say nothing when the increase in production is due to stronger skilled unions, since

Using a nationwide database of hospital admissions, we established that diverticulitis patients admitted to hospitals that encounter a low volume of diverticulitis cases have

The unit I teach, the site of this research, involves students exercising self- determination in a collaborative, creative mode; a phenomenon Meill and Littleton (2004:18) describe

Most algorithms for large item sets are related to the Apri- ori algorithm that will be discussed in Chapter IV-A2. All algorithms and methods are usually based on the same