• No results found

5 (4 Methyl­piperazin 1 yl) 2 nitro­aniline

N/A
N/A
Protected

Academic year: 2020

Share "5 (4 Methyl­piperazin 1 yl) 2 nitro­aniline"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

5-(4-Methylpiperazin-1-yl)-2-nitroaniline

Chang-jun Luan, Cheng Guo,* Wei Wang, Jian-qiang Wang and Ren-jun Du

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People’s Republic of China

Correspondence e-mail: guocheng@njut.edu.cn

Received 7 April 2010; accepted 30 April 2010

Key indicators: single-crystal X-ray study;T= 293 K; mean(C–C) = 0.004 A˚;

Rfactor = 0.064;wRfactor = 0.192; data-to-parameter ratio = 13.5.

In the title compound, C11H16N4O2, the dihedral angle between the benzene ring and the plane of the four carbon atoms in the piperazine ring is 12.17 (3); the latter ring adopts a chair conformation. An intramolecular N—H O hydrogen bond generates an S(6) ring. In the crystal, the molecules are linked by N—H N hydrogen bonds, forming chains.

Related literature

For bond-length data, see: Allenet al.(1987). For the synthetic procedure and use of the title compound as an intermediate in the synthesis of tyrosine kinase inhibitors, see: Renhoweet al. (2009).

Experimental

Crystal data

C11H16N4O2

Mr= 236.28 Monoclinic,P21=c

a= 11.027 (2) A˚

b= 6.121 (1) A˚

c= 17.524 (4) A˚ = 103.79 (3) V= 1148.7 (4) A˚3

Z= 4

MoKradiation

= 0.10 mm1

T= 293 K

0.300.200.05 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Absorption correction: scan (Northet al., 1968)

Tmin= 0.971,Tmax= 0.995

2205 measured reflections

2090 independent reflections 1358 reflections withI> 2(I)

Rint= 0.042

3 standard reflections every 200 reflections

intensity decay: 1%

Refinement

R[F2> 2(F2)] = 0.064

wR(F2) = 0.192

S= 1.01 2090 reflections

155 parameters

H-atom parameters constrained

max= 0.25 e A˚3 min=0.18 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N3—H3C N1i

0.86 2.39 3.156 (4) 148

N3—H3D O1 0.86 2.06 2.669 (4) 127

Symmetry code: (i)xþ2;yþ1 2;zþ

1 2.

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97

(Sheldrick, 2008); program(s) used to refine structure:SHELXL97

(Sheldrick, 2008); molecular graphics:SHELXTL(Sheldrick, 2008); software used to prepare material for publication:SHELXTL.

The authors thank the Center of Test and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2192).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf–Nonius (1985).CAD-4 Software. Enraf–Nonius, Delft, The Nether-lands.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351–

359.

Renhowe, P. A., Pecchi, S., Shafer, C. M., Machajewski, T. D., Jazan, E. M., Taylor, C., Antonius-McCrea, W., McBride, C. M., Frazier, K., Wiesmann, M., Lapointe, G. R., Feucht, P. H., Warne, R. L., Heise, C. C., Menezes, D., Aardalen, K., Ye, H., He, M., Le, V., Vora, J., Jansen, J. M., Wernette-Hammond, M. E. & Harris, A. L. (2009).J. Med. Chem.52, 278–292. Sheldrick, G. M. (2008).Acta Cryst. A64, 112–122.

Acta Crystallographica Section E

Structure Reports Online

(2)

supporting information

Acta Cryst. (2010). E66, o1268 [https://doi.org/10.1107/S1600536810015953]

5-(4-Methylpiperazin-1-yl)-2-nitroaniline

Chang-jun Luan, Cheng Guo, Wei Wang, Jian-qiang Wang and Ren-jun Du

S1. Comment

The title compound, (I), has been reported as an intermediate for the synthesis of novel tyrosine kinase inhibitors

(Renhowe, P. A. et al., 2009). We herein report its crystal structure.

In the molecular structure of (I), (Fig.1), bond lengths (Allen et al., 1987) and angles are within normal ranges. N2, N3

and N4 atoms are almost coplanar with the benzene ring to which they are bonded [deviations of 0.078 (1), 0.052 (1) and

0.078 (1) Å]. The plane of C2—C3—C4—C5 is nearly parallel with the benzene ring plane (the torsion angle is 12.17 (3)

°). By contrast, due to the piperazine moiety adopting a chair conformation N1—C2—C5 and N2—C3—C4 form two

separate planes with torsion angle of 45.87 (2) ° and 25.92 (3) °, respectively, with respect to the benzene ring. The

crystal structure of the title compound exhibits N—H···O, C—H···O, and N—H···N intra- and intermolecular hydrogen

bonds to form a three dimensional network.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the b axis.

S2. Experimental

The title compound, (I) was prepared by a literature method (Renhowe, P. A. et al., 2009). Crystals suitable for X-ray

analysis were obtained by dissolving (I) (0.5 g) in methanol (20 ml) and evaporating the solvent slowly at room

temperature for about 7 d.

S3. Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, 0.97 Å for methylene and

0.96 Å for methyl groups. Refinement was performed using a riding model with Uiso(H) = xUeq(C), where x = 1.5 for

(3)
[image:3.610.135.475.75.235.2]

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50%

probability level.

Figure 2

[image:3.610.137.476.286.619.2]
(4)

5-(4-Methylpiperazin-1-yl)-2-nitroaniline

Crystal data

C11H16N4O2

Mr = 236.28 Monoclinic, P21/c

a = 11.027 (2) Å b = 6.121 (1) Å c = 17.524 (4) Å β = 103.79 (3)° V = 1148.7 (4) Å3

Z = 4 F(000) = 504

Dx = 1.366 Mg m−3

Melting point: 428 K

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 25 reflections θ = 9–13°

µ = 0.10 mm−1

T = 293 K Block, yellow

0.30 × 0.20 × 0.05 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω/2θ scans

Absorption correction: ψ scan (North et al., 1968)

Tmin = 0.971, Tmax = 0.995

2205 measured reflections

2090 independent reflections 1358 reflections with I > 2σ(I) Rint = 0.042

θmax = 25.3°, θmin = 1.9°

h = 0→13 k = 0→7 l = −21→20

3 standard reflections every 200 reflections intensity decay: 1%

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.064

wR(F2) = 0.192

S = 1.01 2090 reflections 155 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.1P)2 + 0.3P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.25 e Å−3

Δρmin = −0.18 e Å−3

Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.038 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

N1 0.6711 (2) 0.0465 (4) 0.16875 (13) 0.0438 (6)

(5)

C1 0.5525 (3) 0.1090 (6) 0.11543 (19) 0.0603 (9)

H1A 0.5683 0.2064 0.0760 0.090*

H1B 0.5007 0.1809 0.1447 0.090*

H1C 0.5107 −0.0193 0.0907 0.090*

N2 0.8586 (2) 0.0019 (4) 0.31264 (13) 0.0397 (6)

O2 1.2787 (2) −0.3532 (4) 0.58981 (13) 0.0662 (7)

C2 0.7330 (3) 0.2397 (5) 0.20898 (17) 0.0484 (8)

H2A 0.6826 0.3007 0.2422 0.058*

H2B 0.7409 0.3493 0.1705 0.058*

C3 0.8606 (3) 0.1827 (5) 0.25841 (16) 0.0466 (8)

H3A 0.9143 0.1440 0.2240 0.056*

H3B 0.8960 0.3103 0.2883 0.056*

N3 1.2683 (2) 0.2156 (4) 0.45524 (16) 0.0613 (8)

H3C 1.2595 0.3315 0.4267 0.074*

H3D 1.3359 0.1954 0.4909 0.074*

C4 0.7741 (3) −0.1801 (5) 0.28094 (18) 0.0478 (8)

H4A 0.7577 −0.2645 0.3242 0.057*

H4B 0.8149 −0.2755 0.2506 0.057*

N4 1.2841 (2) −0.1869 (5) 0.55073 (15) 0.0527 (7)

C5 0.6513 (3) −0.1026 (5) 0.22932 (17) 0.0506 (8)

H5A 0.6035 −0.2276 0.2048 0.061*

H5B 0.6033 −0.0292 0.2615 0.061*

C6 0.9667 (2) −0.0433 (4) 0.36840 (15) 0.0367 (7)

C7 1.0669 (2) 0.1023 (5) 0.38534 (15) 0.0398 (7)

H7A 1.0610 0.2307 0.3563 0.048*

C8 1.1758 (2) 0.0647 (5) 0.44396 (16) 0.0415 (7)

C9 1.1820 (2) −0.1317 (5) 0.48727 (15) 0.0422 (7)

C10 1.0839 (3) −0.2817 (5) 0.46870 (17) 0.0475 (8)

H10A 1.0901 −0.4120 0.4966 0.057*

C11 0.9799 (3) −0.2428 (5) 0.41112 (17) 0.0444 (7)

H11A 0.9169 −0.3471 0.3995 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C8 0.0391 (15) 0.0386 (16) 0.0455 (16) −0.0015 (13) 0.0075 (13) −0.0057 (13) C9 0.0398 (15) 0.0469 (17) 0.0377 (15) 0.0063 (13) 0.0051 (12) 0.0029 (13) C10 0.0470 (17) 0.0444 (18) 0.0510 (17) 0.0014 (14) 0.0116 (14) 0.0123 (14) C11 0.0391 (15) 0.0395 (16) 0.0527 (17) −0.0031 (13) 0.0071 (13) 0.0101 (14)

Geometric parameters (Å, º)

N1—C5 1.455 (3) N3—H3C 0.8600

N1—C2 1.460 (4) N3—H3D 0.8600

N1—C1 1.466 (3) C4—C5 1.514 (4)

O1—N4 1.246 (3) C4—H4A 0.9700

C1—H1A 0.9600 C4—H4B 0.9700

C1—H1B 0.9600 N4—C9 1.422 (4)

C1—H1C 0.9600 C5—H5A 0.9700

N2—C6 1.377 (3) C5—H5B 0.9700

N2—C3 1.462 (3) C6—C7 1.395 (4)

N2—C4 1.473 (3) C6—C11 1.421 (4)

O2—N4 1.236 (3) C7—C8 1.401 (4)

C2—C3 1.507 (4) C7—H7A 0.9300

C2—H2A 0.9700 C8—C9 1.415 (4)

C2—H2B 0.9700 C9—C10 1.396 (4)

C3—H3A 0.9700 C10—C11 1.356 (4)

C3—H3B 0.9700 C10—H10A 0.9300

N3—C8 1.355 (3) C11—H11A 0.9300

C5—N1—C2 106.8 (2) N2—C4—H4B 109.1

C5—N1—C1 111.2 (2) C5—C4—H4B 109.1

C2—N1—C1 109.8 (2) H4A—C4—H4B 107.8

N1—C1—H1A 109.5 O2—N4—O1 120.6 (3)

N1—C1—H1B 109.5 O2—N4—C9 119.7 (3)

H1A—C1—H1B 109.5 O1—N4—C9 119.7 (3)

N1—C1—H1C 109.5 N1—C5—C4 111.3 (2)

H1A—C1—H1C 109.5 N1—C5—H5A 109.4

H1B—C1—H1C 109.5 C4—C5—H5A 109.4

C6—N2—C3 118.0 (2) N1—C5—H5B 109.4

C6—N2—C4 118.6 (2) C4—C5—H5B 109.4

C3—N2—C4 115.7 (2) H5A—C5—H5B 108.0

N1—C2—C3 110.8 (2) N2—C6—C7 122.0 (2)

N1—C2—H2A 109.5 N2—C6—C11 120.6 (2)

C3—C2—H2A 109.5 C7—C6—C11 117.4 (2)

N1—C2—H2B 109.5 C6—C7—C8 123.2 (3)

C3—C2—H2B 109.5 C6—C7—H7A 118.4

H2A—C2—H2B 108.1 C8—C7—H7A 118.4

N2—C3—C2 113.1 (2) N3—C8—C7 118.6 (3)

N2—C3—H3A 109.0 N3—C8—C9 124.2 (2)

C2—C3—H3A 109.0 C7—C8—C9 117.2 (2)

N2—C3—H3B 109.0 C10—C9—C8 119.9 (2)

(7)

H3A—C3—H3B 107.8 C8—C9—N4 123.3 (3)

C8—N3—H3C 120.0 C11—C10—C9 121.9 (3)

C8—N3—H3D 120.0 C11—C10—H10A 119.0

H3C—N3—H3D 120.0 C9—C10—H10A 119.0

N2—C4—C5 112.5 (2) C10—C11—C6 120.3 (3)

N2—C4—H4A 109.1 C10—C11—H11A 119.8

C5—C4—H4A 109.1 C6—C11—H11A 119.8

C5—N1—C2—C3 64.5 (3) C6—C7—C8—N3 179.3 (3)

C1—N1—C2—C3 −174.7 (2) C6—C7—C8—C9 −0.1 (4)

C6—N2—C3—C2 −170.8 (2) N3—C8—C9—C10 −177.0 (3)

C4—N2—C3—C2 40.4 (3) C7—C8—C9—C10 2.4 (4)

N1—C2—C3—N2 −53.1 (3) N3—C8—C9—N4 3.6 (4)

C6—N2—C4—C5 171.8 (2) C7—C8—C9—N4 −177.1 (2)

C3—N2—C4—C5 −39.5 (3) O2—N4—C9—C10 −5.1 (4)

C2—N1—C5—C4 −64.2 (3) O1—N4—C9—C10 175.8 (3)

C1—N1—C5—C4 175.9 (3) O2—N4—C9—C8 174.4 (3)

N2—C4—C5—N1 52.0 (3) O1—N4—C9—C8 −4.8 (4)

C3—N2—C6—C7 13.8 (4) C8—C9—C10—C11 −1.8 (4)

C4—N2—C6—C7 161.8 (2) N4—C9—C10—C11 177.7 (3)

C3—N2—C6—C11 −166.2 (2) C9—C10—C11—C6 −1.2 (5)

C4—N2—C6—C11 −18.2 (4) N2—C6—C11—C10 −176.7 (3)

N2—C6—C7—C8 177.3 (2) C7—C6—C11—C10 3.3 (4)

C11—C6—C7—C8 −2.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N3—H3C···N1i 0.86 2.39 3.156 (4) 148

N3—H3D···O1 0.86 2.06 2.669 (4) 127

C10—H10A···O2 0.93 2.35 2.671 (4) 100

Figure

Figure 1The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50%

References

Related documents

The main objective of this paper is to determine the natural frequency and mode shape of a single rectangular cantilever beam condition and to compare the results obtained

Lastly, the study provides strong evidence that fathers’ financial burden associated with child support arrears are likely to affect fathers’ residential union formation with a

Step 4: Adjust the calculated infiltration rate from Step 3 so that it can be correctly used as EnergyPlus input by multiplying it by the ratio of the wind speed at the roof line

Since the choice between systems is vague, it is up to the energy modeling and life cycle cost analysis to determine the system to be used.. The life cycle cost analysis is a study

The model also shows that if a government can credibly commit itself to an announced two-step reform in which it first uses a transaction tax temporarily and then replaces it with

In order to critically evaluate the relationship existing between fiscal policy instruments and economic growth in Nigeria for the period 1970-2015, the following selected

227: Published in: Journal of Comparative Economics, “Ownership Concentration and Corporate Performance in the Czech Republic” 27(3), September 1999, pp. 226: Unemployment