• No results found

catena Poly­[[[aqua(1,10 phenanthroline κ2N,N′)copper(II)] μ benzene 1,4 dioxyacetato κ3O,O′:O′′] monohydrate]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly­[[[aqua(1,10 phenanthroline κ2N,N′)copper(II)] μ benzene 1,4 dioxyacetato κ3O,O′:O′′] monohydrate]"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m1231±m1233 DOI: 10.1107/S1600536804019014 S. Gaoet al. [Cu(C10H8O6)(C12H8N2)(H2O)]H2O

m1231

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

catena

-Poly[[[aqua(1,10-phenanthroline-

j

2

N

,

N

000

)-copper(II)]-

l

-benzene-1,4-dioxyacetato-

j

3

O

,

O

000

:

O

000000

]

monohydrate]

Shan Gao,* Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.003 AÊ

Rfactor = 0.033

wRfactor = 0.085

Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

Each CuII atom in the title coordination polymer, {[Cu(1,4-BDOA)(phen)(H2O)]H2O}n [where 1,4-BDOA2ÿ is the

benzene-1,4-dioxyacetate dianion (C10H8O62ÿ) and phen is 1,10-phenanthroline (C12H8N2)], shows a distorted octahedral coordination geometry, de®ned by three carboxyl O-atom donors from the benzene-1,4-dioxyacetate ligand, two N-atom donors from the phen ligand and one water molecule. The CuII ions are bridged by carboxylate groups, forming a one-dimensional chain structure. The Cu Cu separation within the polymer is 11.325 (2) AÊ. Furthermore, the chains are linked into a three-dimensional supramolecular network via

hydrogen bonds and±stacking interactions.

Comment

The rational design and construction of aromatic carboxylate coordination polymers is a rapidly developing research area of supramolecular chemistry, within which ligand design is an important aspect in adjusting the coordination framework and functionalities of the compounds formed. In contrast with the extensively studied coordination compounds with rigid ligands such as terephthalic acid and benzene tetracarboxylic acid (Leeet al., 2003; Gomez-Loret al., 2002; Gutschkeet al., 2001), the coordination chemistry and structural properties of ¯ex-ible multidentate ligands with versatile binding modes, such as benzene-1,4-dioxyacetic acid, have received little attention to date. As a contribution to this work, we have reported the structures of a number of mononuclear complexes incorpor-ating this ligand, namely [MnCl(1,10-phenanthroline)2 -(H2O)]2(1,4-BDOA)2H2O (Gao, Liu, Huo et al., 2004), [Mn(H2O)6](1,4-BDOA) (Liu, Huo, Gao, Zhao & Ng, 2004), [Co(H2O)6](1,4-BDOA) (Liu, Gao et al., 2004), [Co-(triethanolamine)2](1,4-BDOA) (Gao, Liu, Huo & Ng, 2004) and polymeric {[Cu(1,3-BDOA)(bipy)]H2O}n (bipy is 2,20

-bipyridine), in which the CuII atom exhibits a square-pyra-midal geometry and possesses an in®nite zigzag chain struc-ture (Liu, Huo, Gao, Zhaoet al., 2004). In the present work, we have isolated a new CuII complex, {[Cu(1,4-BDOA)-(phen)(H2O)]H2O}n, (I), where 1,4-BDOA2ÿis the

benzene-1,4-dioxyacetate dianion, and report its crystal structure here.

(2)

The asymmetric unit of (I) consists of a mononuclear complex, [Cu(1,4-BDOA)(phen)(H2O)], and one water mol-ecule of crystallization (Fig. 1). The 1,4-BDOA ligand acts as both a bidentate chelating ligand, through atoms O1 and O2, and a monodentate bridging ligand, through atom O5. Each CuII atom is six-coordinate in a distorted octahedral envir-onment, of which the equatorial plane is de®ned by atoms O1 and O2 from the 1,4-BDOA ligand, atom N2 from the phen ligand and the coordinated water molecule [r.m.s. deviation 0.06 (2) AÊ; deviation of the Cu atom from this plane 0.04 (2) AÊ]. The axial positions are occupied by atom O5ifrom the 1,4-BDOA group [symmetry code: (i) xÿ1,1

2ÿy,zÿ12] and the phen atom N1 [O5iÐCu1ÐN1 171.94 (6)]. The phen

molecule acts as a terminal ligand, with a typical mean CuÐN distance [2.020 (2) AÊ]. It should be noted that the CuÐO2 distance of 2.812 (2) AÊ is considerably longer, indicative of weaker interaction with the Cu (Billinget al., 1970). The O1Ð C13 [1.265 (2) AÊ] and O5ÐC22 [1.278 (2) AÊ] distances are longer than the O2ÐC13 [1.234 (2) AÊ] and O6ÐC22 [1.234 (2) AÊ] distances, in accord with the greater double-bond character of the latter double-bonds.

The bridging of the the CuIIions by the carboxylate groups of the 1,4-BDOA ligand results in the formation of a one-dimensional chain along the c axis. The antiparallel phen ligands lie on alternate sides of the chain. The shortest Cu Cu distance in the chain is 11.325 (2) AÊ, slightly longer than the value of 11.284 (3) AÊ in the one-dimensional copper polymer with the terephthalate ligand (Bianet al., 2003).

The bidentate oxyacetate group and the benzene ring are almost coplanar, with a C15ÐO3ÐC14ÐC13 torsion angle of 172.1 (2). In contrast, the monodentate oxyacetate group is

twisted out of the benzene ring plane, with a C18ÐO4ÐC21Ð C22 torsion angle of ÿ70.2 (2). The benzene ring is nearly

perpendicular to the plane of the phen ligand, with a dihedral angle of 87.3 (1). In addition, the chains are connected

through extensive hydrogen bonds, involving the coordinated and uncoordinated water molecules and the 1,4-BDOA

groups, with O O distances ranging from 2.689 (2) to 3.179 (2) AÊ and OÐH O angles ranging from 132 (2) to 170 (3) (Table 2). There are face-to-face±stacking

inter-actions between the benzene rings, at 3.611 (3) AÊ. With the help of such interactions, the polymeric chains assemble to form a three-dimensional supramolecular network (Fig. 2).

Experimental

Benzene-1,4-dioxyacetic acid was prepared according to the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). The title complex was prepared by the addition of a stoi-chiometric amount of Cu(acetate)2H2O (4.00 g, 20 mmol), NaOH

(1.60 g, 40 mmol) and 1,10-phenanthroline (3.98 g, 20 mmol) to a hot aqueous solution of 1,4-BDOAH2(4.52 g, 20 mmol), with subsequent

®ltration. Blue crystals of (I) were obtained after allowing the mixture to stand at room temperature for several days. Analysis, calculated for C22H20N2O8Cu: C 52.43, H 4.00, N 5.56%; found:

C 52.65, H 4.08, N 5.70%.

Crystal data

[Cu(C10H8O6)(C12H8N2)(H2O)]

-H2O

Mr= 503.95

Monoclinic,P21=c

a= 7.2444 (14) AÊ

b= 16.089 (3) AÊ

c= 18.276 (4) AÊ

= 98.85 (3)

V= 2104.8 (7) AÊ3

Z= 4

Dx= 1.590 Mg mÿ3

MoKradiation

Cell parameters from 12 433 re¯ections

= 3.2±27.5

= 1.09 mmÿ1

T= 293 (2) K Prism, blue

0.390.250.19 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.676,Tmax= 0.819

20 006 measured re¯ections

4809 independent re¯ections 4031 re¯ections withI> 2(I)

Rint= 0.024

max= 27.5

h=ÿ9!9

k=ÿ18!20

l=ÿ23!23

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.033

wR(F2) = 0.085

S= 1.04 4809 re¯ections 310 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0473P)2

+ 0.5695P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002 max= 0.46 e AÊÿ3 min=ÿ0.22 e AÊÿ3

metal-organic papers

m1232

S. Gaoet al. [Cu(C10H8O6)(C12H8N2)(H2O)]H2O Acta Cryst.(2004). E60, m1231±m1233 Figure 2

A packing diagram for (I), viewed down thecaxis.

Figure 1

A view of the title complex, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i)

xÿ1,1

(3)

Table 1

Selected geometric parameters (AÊ,).

Cu1ÐN1 2.004 (2)

Cu1ÐN2 2.036 (2)

Cu1ÐO1 1.968 (1)

Cu1ÐO2 2.812 (2)

Cu1ÐO5ii 1.949 (1)

Cu1ÐO7 2.280 (2)

O1ÐC13 1.265 (2)

O2ÐC13 1.234 (2)

O5ÐC22 1.278 (2)

O6ÐC22 1.234 (2)

N1ÐCu1ÐN2 81.40 (6) N1ÐCu1ÐO2 91.24 (7) N1ÐCu1ÐO7 93.30 (6) N2ÐCu1ÐO2 103.54 (6) N2ÐCu1ÐO7 112.00 (7) O1ÐCu1ÐN1 92.12 (6) O1ÐCu1ÐN2 154.45 (6) O1ÐCu1ÐO2 51.65 (6)

O1ÐCu1ÐO7 92.94 (6) O5iiÐCu1ÐN1 171.94 (6)

O5iiÐCu1ÐN2 90.54 (6)

O5iiÐCu1ÐO1 95.13 (6)

O5iiÐCu1ÐO2 90.49 (6)

O5iiÐCu1ÐO7 89.86 (6)

O7ÐCu1ÐO2 144.46 (6)

Symmetry code: (ii) 1‡x;1 2ÿy;12‡z.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O7ÐH23A O2iv 0.85 (3) 1.98 (3) 2.731 (2) 147 (3)

O7ÐH23A O3iv 0.85 (3) 2.55 (2) 3.179 (2) 132 (2)

O7ÐH23B O6ii 0.85 (3) 1.92 (3) 2.689 (2) 151 (2)

O8ÐH24A O5ii 0.85 (3) 2.17 (3) 3.013 (2) 170 (3)

O8ÐH24B O7iii 0.86 (3) 2.19 (3) 3.040 (3) 168 (3) Symmetry codes: (ii) 1‡x;1

2ÿy;12‡z; (iii)xÿ1;y;z; (iv) 1‡x;y;z.

The H atoms of the water molecules were located in a difference map and re®ned with OÐH and H H distance restraints of 0.85 (1) and 1.39 (1) AÊ, respectively, and withUiso(H) = 1.5Ueq(O). C-bound

H atoms were placed in calculated positions, with CÐH = 0.93 AÊ and

Uiso(H) = 1.2Ueq(C), and were re®ned in the riding-model

approx-imation.

Data collection: RAPID AUTO(Rigaku, 1998); cell re®nement:

RAPID AUTO; data reduction: CrystalStructure (Rigaku/MSC,

2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), the Heilongjiang Province Natural Science Foundation (grant No. B0007), the Outstanding Teacher Foundation of Heilongjiang Province and Heilongjiang University for supporting this work.

References

Bian, H. D., Xu, J. Y., Gu, W., Yan, S. P., Liao, D. Z., Jiang, Z. H. & Cheng, P. (2003).Inorg. Chem. Commun.6, 573±576.

Billing, D. E., Hathaway, B. J. & Nicholls, P. J. (1970).J. Chem. Soc. A, pp. 1877±1890.

Gao, S., Liu, J. W., Huo, L. H. & Ng, S. W. (2004).Acta Cryst.E60, m462±m464. Gao, S., Liu, J. W., Huo, L. H., Zhao, H. & Zhao, J. G. (2004).Acta Cryst.E60,

m113±m115.

Gomez-Lor, B., GutieÂrrez-Puebla, E., Iglesias, M., Monge, M. A., Ruiz-Valero, C. & Snejko, N. (2002).Inorg. Chem.41, 2429±2431.

Gutschke, S. O. H., Price, D. J., Powell, A. K. & Wood, P. T. (2001).Angew. Chem. Int. Ed.10, 1920±1923.

Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Lee, S. W., Kim, H. J., Lee, Y. K., Park, K., Son, J. H. & Kwon, Y. U. (2003).

Inorg. Chim. Acta,353, 151±154.

Liu, J. W., Gao, S., Huo, L. H. & Ng, S. W. (2004).Acta Cryst.E60, m439±m440. Liu, J. W., Huo, L. H., Gao, S., Zhao, H. & Ng, S. W. (2004).Acta Cryst.E60,

m517±m518.

Liu, J. W., Huo, L. H., Gao, S., Zhao, H., Zhu, Z. B. & Zhao, J. G. (2004).Wuji Huaxue Xuebao(Chin. J. Inorg. Chem.),20, 707±710.

Mirci, L. E. (1990). Rom. Patent No. 07 43 205.

Rigaku (1998).RAPID AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails

Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

metal-organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, m1231–m1233

supporting information

Acta Cryst. (2004). E60, m1231–m1233 [https://doi.org/10.1107/S1600536804019014]

catena-Poly[[[aqua(1,10-phenanthroline-

κ

2

N,N

′)copper(II)]-

µ

-benzene-1,4-di-oxyacetato-

κ

3

O,O

:O

′′

] monohydrate]

Shan Gao, Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao

catena-Poly[[[aqua(1,10-phenanthroline-κ2N,N)copper(II)]-µ-benzene- 1,4-dioxyacetato-κ3O,O:O′′]

monohydrate]

Crystal data

[Cu(C10H8O6)(C12H8N2)(H2O)]·H2O

Mr = 503.95 Monoclinic, P21/c

Hall symbol: -P 2ybc a = 7.2444 (14) Å b = 16.089 (3) Å c = 18.276 (4) Å β = 98.85 (3)° V = 2104.8 (7) Å3

Z = 4

F(000) = 1036 Dx = 1.590 Mg m−3

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 12433 reflections θ = 3.2–27.5°

µ = 1.09 mm−1

T = 293 K Prism, blue

0.39 × 0.25 × 0.19 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 10 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.676, Tmax = 0.819

20006 measured reflections 4809 independent reflections 4031 reflections with I > 2σ(I) Rint = 0.024

θmax = 27.5°, θmin = 3.1°

h = −9→9 k = −18→20 l = −23→23

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.033

wR(F2) = 0.085

S = 1.04 4809 reflections 310 parameters 6 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0473P)2 + 0.5695P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.46 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m1231–m1233

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.70968 (3) 0.360518 (14) 0.827204 (11) 0.03493 (8) N1 0.7638 (2) 0.48258 (10) 0.83549 (9) 0.0398 (3) N2 0.7233 (2) 0.37280 (9) 0.93875 (8) 0.0359 (3) O1 0.58978 (19) 0.37151 (9) 0.72349 (7) 0.0446 (3) O2 0.3317 (2) 0.39150 (12) 0.77239 (8) 0.0565 (4) O3 0.1175 (2) 0.37726 (11) 0.64064 (8) 0.0538 (4) O4 −0.38531 (19) 0.41524 (9) 0.38212 (8) 0.0454 (3) O5 −0.34246 (19) 0.25780 (8) 0.33416 (7) 0.0401 (3) O6 −0.2045 (2) 0.30348 (10) 0.23979 (8) 0.0576 (4) O7 0.9935 (2) 0.32991 (12) 0.79481 (9) 0.0556 (4) O8 0.2826 (3) 0.21690 (13) 0.88278 (12) 0.0783 (5) C1 0.7918 (3) 0.53524 (14) 0.78219 (13) 0.0519 (5) C2 0.8216 (3) 0.61969 (15) 0.79547 (16) 0.0615 (6) C3 0.8209 (3) 0.65029 (14) 0.86487 (17) 0.0628 (7) C4 0.7913 (3) 0.59701 (13) 0.92316 (14) 0.0502 (5) C5 0.7860 (3) 0.62154 (15) 0.99824 (16) 0.0612 (7) C6 0.7598 (3) 0.56604 (16) 1.05071 (14) 0.0582 (6) C7 0.7386 (3) 0.47906 (14) 1.03394 (11) 0.0454 (5) C8 0.7184 (3) 0.41625 (16) 1.08581 (11) 0.0537 (6) C9 0.7026 (3) 0.33555 (16) 1.06383 (11) 0.0530 (5) C10 0.7049 (3) 0.31540 (14) 0.98960 (11) 0.0448 (4) C11 0.7408 (2) 0.45309 (12) 0.96072 (10) 0.0365 (4) C12 0.7649 (2) 0.51303 (12) 0.90485 (11) 0.0386 (4) C13 0.4149 (3) 0.38051 (12) 0.71915 (10) 0.0374 (4) C14 0.3119 (3) 0.37828 (12) 0.64042 (10) 0.0389 (4) C15 0.0030 (3) 0.38574 (13) 0.57315 (11) 0.0409 (4) C16 −0.1855 (3) 0.39939 (14) 0.57599 (11) 0.0467 (5) C17 −0.3093 (3) 0.40916 (13) 0.51155 (12) 0.0445 (5) C18 −0.2486 (3) 0.40438 (11) 0.44315 (11) 0.0376 (4) C19 −0.0629 (3) 0.38923 (13) 0.44018 (10) 0.0411 (4) C20 0.0636 (3) 0.37978 (13) 0.50523 (11) 0.0418 (4) C21 −0.3302 (3) 0.40348 (13) 0.31170 (11) 0.0459 (5) C22 −0.2878 (3) 0.31412 (12) 0.29309 (10) 0.0394 (4)

H1 0.7913 0.5150 0.7345 0.062*

H2 0.8420 0.6550 0.7572 0.074*

H3 0.8401 0.7068 0.8739 0.075*

H5 0.8010 0.6774 1.0110 0.073*

H6 0.7554 0.5843 1.0987 0.070*

H8 0.7159 0.4300 1.1351 0.064*

H9 0.6903 0.2939 1.0980 0.064*

H10 0.6931 0.2600 0.9752 0.054*

H14A 0.3450 0.4267 0.6136 0.047*

H14B 0.3483 0.3291 0.6155 0.047*

H16 −0.2277 0.4019 0.6215 0.056*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, m1231–m1233

H19 −0.0216 0.3853 0.3946 0.049*

H20 0.1889 0.3695 0.5030 0.050*

H21B −0.2199 0.4369 0.3092 0.055*

H21A −0.4289 0.4241 0.2741 0.055*

H23B 0.949 (4) 0.2927 (13) 0.7642 (12) 0.083* H23A 1.068 (3) 0.3602 (14) 0.7751 (14) 0.083* H24B 0.214 (4) 0.251 (2) 0.8543 (18) 0.118* H24A 0.393 (2) 0.220 (2) 0.8728 (19) 0.118*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m1231–m1233

Geometric parameters (Å, º)

Cu1—N1 2.004 (2) C4—C12 1.398 (3)

Cu1—N2 2.036 (2) C5—C6 1.345 (4)

Cu1—O1 1.968 (1) C5—H5 0.9300

Cu1—O2 2.812 (2) C6—C7 1.436 (3)

Cu1—O5i 1.949 (1) C6—H6 0.9300

Cu1—O7 2.280 (2) C7—C8 1.409 (3)

O1—C13 1.265 (2) C7—C11 1.404 (3)

O2—C13 1.234 (2) C8—C9 1.359 (4)

O5—C22 1.278 (2) C8—H8 0.9300

O6—C22 1.234 (2) C9—C10 1.397 (3)

N1—C1 1.330 (3) C9—H9 0.9300

N1—C12 1.358 (2) C10—H10 0.9300

N2—C10 1.331 (3) C11—C12 1.434 (3)

N2—C11 1.353 (2) C13—C14 1.516 (3)

O3—C15 1.383 (2) C14—H14A 0.9700

O3—C14 1.409 (2) C14—H14B 0.9700

O4—C18 1.384 (2) C15—C20 1.382 (3)

O4—C21 1.418 (3) C15—C16 1.391 (3)

O5—Cu1ii 1.949 (1) C16—C17 1.375 (3)

O7—H23A 0.85 (3) C16—H16 0.9300

O7—H23B 0.85 (3) C17—C18 1.390 (3)

O8—H24A 0.85 (3) C17—H17 0.9300

O8—H24B 0.86 (3) C18—C19 1.377 (3)

C1—C2 1.391 (3) C19—C20 1.393 (3)

C1—H1 0.9300 C19—H19 0.9300

C2—C3 1.361 (4) C20—H20 0.9300

C2—H2 0.9300 C21—C22 1.520 (3)

C3—C4 1.409 (4) C21—H21A 0.9700

C3—H3 0.9300 C21—H21B 0.9700

C4—C5 1.434 (4)

N1—Cu1—N2 81.40 (6) C5—C6—C7 121.1 (2)

N1—Cu1—O2 91.24 (7) C5—C6—H6 119.4

N1—Cu1—O7 93.30 (6) C6—C5—C4 121.8 (2)

N2—Cu1—O2 103.54 (6) C6—C5—H5 119.1

N2—Cu1—O7 112.00 (7) C7—C6—H6 119.4

O1—Cu1—N1 92.12 (6) C7—C8—H8 120.0

O1—Cu1—N2 154.45 (6) C7—C11—C12 119.9 (2)

O1—Cu1—O2 51.65 (6) C8—C7—C6 125.1 (2)

O1—Cu1—O7 92.94 (6) C8—C9—C10 119.7 (2)

O5i—Cu1—N1 171.94 (6) C8—C9—H9 120.1

O5i—Cu1—N2 90.54 (6) C9—C8—C7 120.0 (2)

O5i—Cu1—O1 95.13 (6) C9—C8—H8 120.0

O5i—Cu1—O2 90.49 (6) C9—C10—H10 118.9

O5i—Cu1—O7 89.86 (6) C10—N2—Cu1 129.6 (1)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, m1231–m1233

Cu1—O7—H23A 130 (2) C10—C9—H9 120.1

Cu1—O7—H23B 93 (2) C11—N2—Cu1 112.2 (1)

N1—C1—C2 122.1 (2) C11—C7—C6 118.5 (2)

N1—C1—H1 118.9 C11—C7—C8 116.5 (2)

N1—C12—C4 123.6 (2) C12—N1—Cu1 113.4 (1)

N1—C12—C11 116.0 (2) C12—C4—C3 116.0 (2)

N2—C10—C9 122.3 (2) C12—C4—C5 118.2 (2)

N2—C10—H10 118.9 C13—O1—Cu1 111.1 (1)

N2—C11—C7 123.5 (2) C13—C14—H14A 109.6

N2—C11—C12 116.5 (2) C13—C14—H14B 109.6

O1—C13—C14 113.5 (2) C15—O3—C14 117.3 (2)

O2—C13—O1 124.95 (18) C15—C16—H16 120.0

O2—C13—C14 121.5 (2) C15—C20—C19 120.0 (2)

O3—C14—C13 110.1 (2) C15—C20—H20 120.0

O3—C14—H14A 109.6 C16—C17—C18 120.6 (2)

O3—C14—H14B 109.6 C16—C17—H17 119.7

O3—C15—C16 116.1 (2) C17—C16—C15 120.0 (2)

O4—C18—C17 115.6 (2) C17—C16—H16 120.0

O4—C21—C22 115.1 (2) C18—O4—C21 116.6 (2)

O4—C21—H21A 108.5 C18—C17—H17 119.7

O4—C21—H21B 108.5 C18—C19—C20 120.3 (2)

O5—C22—C21 116.6 (2) C18—C19—H19 119.9

O6—C22—O5 126.8 (2) C19—C18—O4 124.95 (18)

O6—C22—C21 116.6 (2) C19—C18—C17 119.5 (2)

C1—N1—Cu1 128.3 (2) C19—C20—H20 120.0

C1—N1—C12 118.3 (2) C20—C15—O3 124.3 (2)

C1—C2—H2 120.2 C20—C15—C16 119.6 (2)

C2—C1—H1 118.9 C20—C19—H19 119.9

C2—C3—C4 120.5 (2) C22—O5—Cu1ii 125.0 (1)

C2—C3—H3 119.8 C22—C21—H21A 108.5

C3—C2—C1 119.5 (2) C22—C21—H21B 108.5

C3—C2—H2 120.2 H14A—C14—H14B 108.1

C3—C4—C5 125.8 (2) H21B—C21—H21A 107.5

C4—C3—H3 119.8 H23B—O7—H23A 109 (2)

C4—C5—H5 119.1 H24B—O8—H24A 108 (2)

C4—C12—C11 120.4 (2)

Cu1—N1—C1—C2 177.64 (16) C1—C2—C3—C4 0.4 (4) Cu1—N1—C12—C4 −177.11 (14) C2—C3—C4—C12 0.4 (3) Cu1—N1—C12—C11 4.2 (2) C2—C3—C4—C5 −179.5 (2) Cu1—N2—C10—C9 −174.50 (15) C3—C4—C5—C6 −178.9 (2) Cu1—N2—C11—C7 174.87 (14) C3—C4—C12—N1 −1.1 (3) Cu1—N2—C11—C12 −5.84 (19) C3—C4—C12—C11 177.57 (18) Cu1—O1—C13—O2 8.5 (3) C4—C5—C6—C7 0.9 (4) Cu1—O1—C13—C14 −172.63 (13) C5—C4—C12—N1 178.87 (18) Cu1ii—O5—C22—O6 4.9 (3) C5—C4—C12—C11 −2.5 (3)

Cu1ii—O5—C22—C21 −175.22 (12) C5—C6—C7—C8 177.3 (2)

(9)

supporting information

sup-6

Acta Cryst. (2004). E60, m1231–m1233

N1—Cu1—N2—C11 6.23 (12) C6—C7—C8—C9 −178.8 (2) N1—Cu1—O1—C13 −93.79 (13) C6—C7—C11—N2 179.56 (18) N1—C1—C2—C3 −0.6 (4) C6—C7—C11—C12 0.3 (3) N2—C11—C12—N1 1.2 (2) C7—C8—C9—C10 −0.6 (3) N2—C11—C12—C4 −177.54 (16) C7—C11—C12—N1 −179.49 (16) N2—Cu1—N1—C1 176.60 (18) C7—C11—C12—C4 1.8 (3) N2—Cu1—N1—C12 −5.65 (13) C8—C7—C11—N2 0.6 (3) N2—Cu1—O1—C13 −19.4 (2) C8—C7—C11—C12 −178.68 (17) O1—Cu1—N1—C12 149.51 (13) C8—C9—C10—N2 0.4 (3) O1—Cu1—N1—C1 −28.24 (18) C10—N2—C11—C7 −0.7 (3) O1—Cu1—N2—C10 104.5 (2) C10—N2—C11—C12 178.56 (16) O1—Cu1—N2—C11 −70.48 (19) C11—N2—C10—C9 0.2 (3) O1—C13—C14—O3 172.02 (17) C11—C7—C8—C9 0.1 (3) O2—C13—C14—O3 −9.1 (3) C12—N1—C1—C2 0.0 (3) O3—C15—C16—C17 179.52 (19) C12—C4—C5—C6 1.2 (3) O3—C15—C20—C19 180.0 (2) C14—O3—C15—C20 12.4 (3) O4—C18—C19—C20 179.58 (18) C14—O3—C15—C16 −168.95 (19) O4—C21—C22—O5 14.3 (2) C15—O3—C14—C13 172.08 (17) O4—C21—C22—O6 −165.89 (18) C15—C16—C17—C18 0.9 (3) O5i—Cu1—N2—C10 1.35 (17) C16—C15—C20—C19 1.4 (3)

O5i—Cu1—N2—C11 −173.61 (12) C16—C17—C18—O4 −179.95 (18)

O5i—Cu1—O1—C13 82.67 (13) C16—C17—C18—C19 0.4 (3)

O7—Cu1—N1—C1 64.84 (18) C17—C18—C19—C20 −0.8 (3) O7—Cu1—N1—C12 −117.42 (13) C18—O4—C21—C22 70.2 (2) O7—Cu1—N2—C10 −88.72 (18) C18—C19—C20—C15 −0.1 (3) O7—Cu1—N2—C11 96.32 (13) C20—C15—C16—C17 −1.8 (3) O7—Cu1—O1—C13 172.79 (13) C21—O4—C18—C17 −174.68 (17) C1—N1—C12—C4 0.9 (3) C21—O4—C18—C19 5.0 (3) C1—N1—C12—C11 −177.81 (16)

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) x−1, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O7—H23A···O2iii 0.85 (3) 1.98 (3) 2.731 (2) 147 (3)

O7—H23A···O3iii 0.85 (3) 2.55 (2) 3.179 (2) 132 (2)

O7—H23B···O6i 0.85 (3) 1.92 (3) 2.689 (2) 151 (2)

O8—H24A···O5i 0.85 (3) 2.17 (3) 3.013 (2) 170 (3)

O8—H24B···O7iv 0.86 (3) 2.19 (3) 3.040 (3) 168 (3)

References

Related documents

This is under the assumption that all agents are the same, since all of them know the exact model (De Grauwe, 2008, p. Second, the New Keynesian model must set monetary objectives

In looking at the entire sample in the Lottery-Low ( Lottery-High ) treatment, the average expected payoff of the observed attacker strategies that allocate resources to only

Now, if we look at the migration pattern according to the duration of residence, we find that for majority of the states, as of 2001, a large volume of migrants came to their

The only factors that happen to be significant are C (fertilizer factor), D (water level factor), E (water frequency factor), CD (the interaction of fertilizer and water

stosunku do roku poprzedniego) oraz w Wielkiej Brytanii (wzrost o 35 tys. osób, czyli około.. 5% w stosunku do

A total of 341 clinical isolates of staphylococci isolated from pus, urine, blood culture and sterile body fluids were subjected to conventional tests like Tube Coagulase

The existence of a negative influence between debt to equity ratio by profit growth occurs because of the high proportion of debt that the company will be higher the liabilities

Our joint model of words and states is an extension of the Nested Pitman-Yor Language Model (Mochihashi et al., 2009) of a string, which in turn is an extension of a Bayesian n