organic papers
o1076
Daniel E. Lynch C6H21N43+C9H3O63ÿ5.5H2O DOI: 10.1107/S1600536803014387 Acta Cryst.(2003). E59, o1076±o1078 Acta Crystallographica Section EStructure Reports
Online
ISSN 1600-5368
Tris(2-ammonioethyl)amine
benzene-1,3,5-tricarboxylate 5.5-hydrate
Daniel E. Lynch
School of Science and the Environment, Coventry University, Coventry CV1 5FB, England
Correspondence e-mail: [email protected]
Key indicators Single-crystal X-ray study T= 298 K
Mean(C±C) = 0.004 AÊ H-atom completeness 98% Disorder in solvent or counterion Rfactor = 0.063
wRfactor = 0.208
Data-to-parameter ratio = 13.6
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved
The structure of the title compound, 2,20,200 -nitrilotri(ethyl-ammonium) benzene-1,3,5-tricarboxylate 5.5-hydrate, C6H21N43+C9H3O63ÿ5.5H2O, comprises the 1:1 organic salt
of tris(2-ammonioethyl)amine and benzene-1,3,5-tricarboxyl-ate in a complex hydrogen-bonded network which also includes four full water molecules and two with partial occupancies of 0.80 (2) and 0.70 (2).
Comment
A search of the April 2003 release of the Cambridge Struc-tural Database (Allen, 2002) reveals that both benzene-1,3,5-tricarboxylic acid and cyclohexane-1,3,5-benzene-1,3,5-tricarboxylic acid are involved in the structures of 61 salt, adduct, clathrate or hydrate complexes. Of these structures, 17 incorporate mol-ecules that do not contain either an amine group or hetero-cyclic N atom, whereas the remaining structures do contain other molecules with these features. Of the latter structures, only ®ve contain molecules with three or more N atoms, available for protonation from the acid H atoms, in the same molecule. Three of these are large selective tripod molecules (Ballesteret al., 1997, 2001), while the other two are deriva-tives of 1,4,8,11-tetraazacyclotetradecane (Burchell et al., 2001) and 1,3,5-triaminocyclohexane (Menger et al., 2002). Interestingly, the structures of neither tricarboxylic acid analogue with tris(2-aminoethyl)amine have been determined. Separate mixing of the two triacids with tris(2-aminoethyl)-amine resulted in crystals and subsequent determination of the structure of the organic salt of only the benzene analogue with the tripod amine.
The 1:1 organic salt, (I), of benzene-1,3,5-tricarboxylate with tris(2-ammonioethyl)amine consists of both ions in a complex hydrogen-bonded network which also includes four water molecules and two partial-occupancy water molecules (Fig. 1). Two of the base ammonium groups (N4Aand N7A) associate through all their H atoms to different carboxylate O atoms (except for N4AÐH43A O5W), while the third ammonium group (N10A) associates through two of its H atoms to three of the water molecules (O1W, O2Wand O6W), the third H atom (H11A) associating to O52B. Of the water molecules, O1WÐO4W mostly associate to carboxylate O atoms (O3WÐH31 and O4WÐH41 associate to O6W),
whereas O5W and O6Wassociate to other water molecules, although O6Wis 2.916 (3) AÊ from N10A(1ÿx, 1ÿy, 1ÿz). Partial occupancies for O5W [0.80 (2) occupancy] and O6W
[0.70 (2) occupancy], giving a total of 5.5 water molecules in the asymmetric unit, best ®ts the CHN analysis of the crystals (found: C 39.3, H 7.6, N 12.4%; C15H35N4O11.5requires C 39.6,
H 7.7, N 12.3%). Residual electron density of 0.68 e AÊÿ3was
located 1.01 AÊ from O2Wand is essentially equidistant from the two H atoms, creating HÐO2WÐpeak angles of 46±47. The ®rst four unassigned peaks in the difference map closely proximate O1WÐO4Wand their respective H atoms but are not in suitable positions to be considered as alternative H atoms.
Experimental
Equimolar amounts of benzene-1,3,5-tricarboxylic acid and tris(2-aminoethyl)amine were re¯uxed in ethanol for 20 min. Total evaporation of the solvent gave colourless prisms (m.p. 453 K).
Crystal data
C6H21N43+C9H3O63ÿ5:5H2O
Mr= 455.47 Triclinic,P1
a= 9.5850 (10) AÊ
b= 10.7110 (10) AÊ
c= 12.980 (2) AÊ
= 72.790 (10)
= 73.670 (10)
= 62.93 (8)
V= 1116.5 (8) AÊ3
Z= 2
Dx= 1.355 Mg mÿ3 MoKradiation Cell parameters from 25
re¯ections
= 6±14
= 0.12 mmÿ1
T= 298 (2) K Prism, colourless 0.600.500.50 mm
Data collection
Enraf±Nonius CAD-4 diffractometer 2/!scans
Absorption correction: scan (Xtal3.2; Hallet al., 1992)
Tmin= 0.930,Tmax= 0.942
4196 measured re¯ections 3937 independent re¯ections 2940 re¯ections withI> 2(I)
Rint= 0.027 max= 25.0
h= 0!11
k=ÿ11!12
l=ÿ14!15 3 standard re¯ections
every 200 re¯ections intensity decay: 25%
Re®nement
Re®nement onF2
R[F2> 2(F2)] = 0.063
wR(F2) = 0.208
S= 1.17 3937 re¯ections 289 parameters
H atoms treated by a mixture of independent and constrained re®nement
w= 1/[2(F
o2) + (0.1270P)2 + 0.3227P]
whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001
max= 0.68 e AÊÿ3
min=ÿ0.50 e AÊÿ3
Table 1
Hydrogen-bonding geometry (AÊ,).
DÐH A DÐH H A D A DÐH A
N4AÐH41A O11B 0.89 2.11 2.944 (3) 156
N4AÐH41A O12B 0.89 2.43 3.168 (3) 141
N4AÐH42A O52Bi 0.89 1.97 2.847 (3) 166
N4AÐH43A O31Bii 0.89 2.05 2.885 (4) 155
N4AÐH43A O5W 0.89 2.59 3.113 (3) 118
N7AÐH71A O52Bi 0.89 2.06 2.921 (3) 162
N7AÐH72A O31Biii 0.89 1.91 2.796 (3) 176
N7AÐH73A O51Biv 0.89 1.90 2.760 (4) 162
N10AÐH11A O52Bi 0.89 1.89 2.771 (3) 169
N10AÐH12A O1W 0.89 2.17 2.917 (3) 141
N10AÐH12A O6Wi 0.89 2.39 2.916 (3) 118
N10AÐH13A O2W 0.89 1.92 2.758 (3) 157
O1WÐH11 O11Bi 0.88 (3) 1.89 (3) 2.755 (3) 170 (3)
O1WÐH12 O11B 0.90 (4) 2.02 (4) 2.921 (4) 173 (3) O2WÐH21 O32Biii 0.86 (3) 1.84 (3) 2.694 (2) 171 (3)
O2WÐH22 O31Bv 0.84 (4) 2.06 (4) 2.828 (4) 153 (3)
O3WÐH31 O6Wii 0.85 (3) 1.97 (3) 2.814 (2) 173 (3)
O3WÐH32 O32Biv 0.86 (3) 1.97 (3) 2.814 (3) 170 (3)
O4WÐH41 O6Wii 0.86 (3) 1.90 (3) 2.730 (2) 162 (3)
O4WÐH42 O12B 0.89 (3) 1.85 (3) 2.730 (3) 172 (3) O5WÐH51 O3Wvi 0.85 (3) 2.03 (3) 2.878 (3) 180 (3)
O5WÐH52 O1Wi 0.84 (3) 2.13 (3) 2.916 (2) 156 (3)
O6WÐH61 O4Wvi 0.85 (3) 2.11 (3) 2.955 (3) 180 (3)
Symmetry codes: (i) 1ÿx;1ÿy;1ÿz; (ii) 1ÿx;ÿy;1ÿz; (iii)x;1y;zÿ1; (iv)
x;y;zÿ1; (v)ÿx;1ÿy;1ÿz; (vi) 1x;y;z.
All H atoms on the amines were initially located in difference syntheses but were then included in the re®nement (along with all non-water H atoms), at calculated positions, as riding atoms with NÐ H set to 0.89 AÊ and CÐH set to 0.97 AÊ (CH2) and 0.93 AÊ (ArÐH)
and the isotropic displacement parameters were allowed to re®ne. All water H atoms, except H31, H41, H61 and H62, were then located in difference syntheses and positional parameters were re®ned, while the isotropic displacement parameters were set equal to 1.25Ueq(O).
Atoms H31, H41, H61 and H62 were included at calculated positions and positional parameters re®ned, while the isotropic displacement parameters were set equal to 1.25Ueq(O). No suitable position for
H62 could be located without causing intermolecular H62 H distances of < 2.0 AÊ.
Data collection:MolEN(Fair, 1990); cell re®nement:MolEN; data reduction: Xtal3.2 (Hall et al., 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:
PLATON97 (Spek, 1997); software used to prepare material for publication:SHELXL97.
The author thanks the EPSRC's Chemical Database Service at Daresbury.
References
Allen, F. H. (2002).Acta Cryst.B58, 380±388.
Acta Cryst.(2003). E59, o1076±o1078 Daniel E. Lynch C6H21N43+C9H3O63ÿ5.5H2O
o1077
organic papers
Figure 1
organic papers
o1078
Daniel E. Lynch C6H21N43+C9H3O63ÿ5.5H2O Acta Cryst.(2003). E59, o1076±o1078Ballester, P., Costa, A., Deya, P. M., Deslongchamps, G., Mink, D., Decken, A., Prohens, R., Tomas, S. & Vega, M. (1997). Chem. Commun. pp. 357± 358.
Ballester, P., Capo, M., Costa, A., Deya, P. M., Gomila, R., Decken, A. & Deslongchamps, G. (2001).Org. Lett.3, 267±270.
Burchell, C. J., Ferguson, G., Lough, A. J. & Glidewell, C. (2001).Acta Cryst.
C57, 311±314.
Fair, C. K. (1990).MolEN.Enraf±Nonius, Delft, The Netherlands.
Hall, S. R., Flack, H. D. & Stewart, J. M. (1992). Editors.Xtal3.2Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
Menger, F. M., Bian, J. & Azov, V. A. (2002).Angew. Chem. Int. Ed. Engl.41, 2581±2584.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.
supporting information
sup-1
Acta Cryst. (2003). E59, o1076–o1078
supporting information
Acta Cryst. (2003). E59, o1076–o1078 [doi:10.1107/S1600536803014387]
Tris(2-ammonioethyl)amine benzene-1,3,5-tricarboxylate 5.5-hydrate
Daniel E. Lynch
S1. Comment
A search of the April 2003 release of the Cambridge Structural Database (Allen, 2002) reveals that both
benzene-1,3,5-tricarboxylic acid and cyclohexane-1,3,5-benzene-1,3,5-tricarboxylic acid are involved in the structures of 61 salt, adduct, clatherate or
hydrate complexes. Of these structures, 17 incorporate molecules that do not contain either an amine group or
heterocyclic N atom whereas the remaining structures do contain other molecules with these features. Of the latter
structures, only five comprise molecules with three or more N atoms, available for protonation from the acid H atoms, in
the same molecule. Three of these are large selective tripod molecules (Ballester et al., 1997, 2001), while the other two
are derivatives of 1,4,8,11-tetraazacyclotetradecane (Burchell et al., 2001) and 1,3,5-triaminocyclohexane (Menger et al.,
2002). Interestingly, the structures of either tricarboxylic acid analogue with tris(2-aminoethyl)amine have not been
determined. Separate mixing of the two triacids with tris(2-aminoethyl)amine resulted in crystals and subsequent
determination of the structure of the organic salt of just the benzene analogue with the tripod amine.
The 1:1 organic salt, (I), of benzene-1,3,5-tricarboxylate with tris(2-ammonioethyl)amine consists of both molecules in
a complex hydrogen-bonded network which also includes four water molecules and two partial occupancy water
molecules (Fig. 1). Two of the base ammonium groups (N4A and N7A) associate through all their H atoms to different
carboxylate O atoms (except for N4A—H43A···O5w), while the third ammonium group (N10A) associates through two
of its H atoms to three of the water molecules (O1w, O2w and O6w), while the third H atom (H11A) associates to O52B.
Of the water molecules, O1w–O4w mostly associate to carboxylate O atoms (O3w—H31 and O4w—H41 associate to
O6w) whereas O5w and O6w associate to other water molecules, although O6w is 2.916 (3) Å from N10A(1 − x, 1 − y, 1
− z). Partial occupancies for O5w (0.80 occupancy) and O6w (0.70 occupancy), giving a total of 5.5 waters, best fits the
CHN analysis of the crystals (found: C 39.3, H 7.6, N 12.4%; C15H35N4O11.5 requires C 39.6, H 7.7, N 12.3%). Residual
electron density of 0.68 e Å−3 was located 1.01 Å from O2w and is essentially equidistant from the two H atoms creating
H—O2w peak angles of 46–47°. The first four unassigned peaks in the difference map closely proximate O1w–O4w and
their respective H atoms but are not in suitable positions to be considered as alternative H atoms.
S2. Experimental
Equimolar amounts of benzene-1,3,5-tricarboxylic acid and tris(2-aminoethyl)amine were refluxed in ethanol for 20 min.
Total evaporation of the solvent gave colourless prisms (m.p. 453 K).
S3. Refinement
All H atoms on the amines were initially located in difference syntheses but were then included in the refinement (along
with all non-water H atoms), at calculated positions, as riding models with N—H set to 0.89 Å and C—H set to 0.97 Å
(CH2) and 0.93 Å (Ar—H) and the isotropic displacement parameters were allowed to refine. All water H atoms, except
supporting information
sup-2
Acta Cryst. (2003). E59, o1076–o1078
isotropic displacement parameters were set equal to 1.25Ueq of the preceeding normal atom. Atoms H31, H41, H61 and
H62 were included at calculated positions and positional parameters refined while the isotropic displacement parameters
were set equal to 1.25Ueq of the preceeding normal atom. No suitable position for H62 could be located without causing
[image:5.610.130.485.151.398.2]intermolecular H62···H distances of < 2.0 Å.
Figure 1
The molecular configuration and atom-numbering scheme for the title compound, showing 50% probability displacement
parameters.
2,2′,2′′-Nitrilotri(ethylammonium) benzene-1,3,5-tricarboxylate 5.5-hydrate
Crystal data
C6H21N43+·C9H3O63−·5.5H2O
Mr = 455.47 Triclinic, P1
a = 9.585 (1) Å
b = 10.711 (1) Å
c = 12.980 (2) Å
α = 72.79 (1)°
β = 73.67 (1)°
γ = 62.93 (8)°
V = 1116.5 (8) Å3
Z = 2
F(000) = 490
Dx = 1.355 Mg m−3 Melting point: 453 K K Mo Kα radiation, λ = 0.71073 Å Cell parameters from 25 reflections
θ = 6–14°
µ = 0.12 mm−1
T = 298 K Prism, colourless 0.60 × 0.50 × 0.50 mm
Data collection
Enraf-Nonius CAD-4 diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
2θ/ω scans
Absorption correction: ψ scan (Xtal3.2; Hall et al., 1992)
Tmin = 0.930, Tmax = 0.942 4196 measured reflections 3937 independent reflections 2940 reflections with I > 2σ(I)
Rint = 0.027
θmax = 25.0°, θmin = 1.7°
supporting information
sup-3
Acta Cryst. (2003). E59, o1076–o1078
k = −11→12
l = −14→15
3 standard reflections every 200 reflections intensity decay: 25%
Refinement
Refinement on F2 Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.063
wR(F2) = 0.208
S = 1.17 3937 reflections 289 parameters 0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(F
o2) + (0.127P)2 + 0.3227P] where P = (Fo2 + 2Fc2)/3
(Δ/σ)max < 0.001 Δρmax = 0.68 e Å−3 Δρmin = −0.50 e Å−3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq Occ. (<1)
N1A 0.1266 (3) 0.5040 (2) 0.23580 (17) 0.0301 (5)
C2A 0.1778 (3) 0.3546 (3) 0.2953 (2) 0.0355 (6)
H21A 0.1034 0.3172 0.2938 0.046 (9)*
H22A 0.1751 0.3517 0.3712 0.031 (7)*
C3A 0.3427 (3) 0.2606 (3) 0.2474 (2) 0.0376 (7)
H31A 0.3646 0.1615 0.2820 0.052 (9)*
H32A 0.3490 0.2704 0.1697 0.036 (8)*
N4A 0.4638 (3) 0.2996 (3) 0.26388 (19) 0.0372 (6)
H41A 0.4637 0.2836 0.3352 0.054 (10)*
H42A 0.4408 0.3918 0.2353 0.053 (10)*
H43A 0.5594 0.2469 0.2310 0.035 (8)*
C5A 0.0737 (3) 0.5213 (3) 0.1345 (2) 0.0370 (7)
H51A −0.0358 0.5316 0.1516 0.052 (9)*
H52A 0.1384 0.4361 0.1034 0.031 (7)*
C6A 0.0860 (4) 0.6502 (3) 0.0511 (2) 0.0404 (7)
H61A 0.0513 0.6579 −0.0147 0.049 (9)*
H62A 0.0171 0.7362 0.0803 0.049 (9)*
N7A 0.2519 (3) 0.6374 (2) 0.02381 (18) 0.0337 (5)
H71A 0.2851 0.6265 0.0847 0.052 (10)*
H72A 0.2565 0.7162 −0.0223 0.043 (9)*
H73A 0.3140 0.5619 −0.0074 0.035 (8)*
C8A −0.0004 (3) 0.5986 (3) 0.3064 (2) 0.0378 (7)
H81A −0.0762 0.5564 0.3443 0.048 (9)*
H82A −0.0560 0.6894 0.2612 0.031 (7)*
C9A 0.0601 (4) 0.6253 (3) 0.3899 (2) 0.0430 (7)
H91A −0.0297 0.6763 0.4407 0.056 (10)*
H92A 0.1234 0.5343 0.4312 0.040 (8)*
N10A 0.1576 (3) 0.7091 (3) 0.3383 (2) 0.0435 (6)
H11A 0.2445 0.6593 0.2959 0.050 (9)*
H12A 0.1857 0.7275 0.3901 0.046 (9)*
supporting information
sup-4
Acta Cryst. (2003). E59, o1076–o1078
C1B 0.4084 (3) 0.2055 (3) 0.6652 (2) 0.0289 (6)
C11B 0.4038 (3) 0.2376 (3) 0.5447 (2) 0.0361 (6)
O11B 0.4415 (3) 0.3378 (3) 0.48424 (17) 0.0571 (7)
O12B 0.3571 (4) 0.1696 (3) 0.51031 (18) 0.0614 (7)
C2B 0.3635 (3) 0.0985 (3) 0.7357 (2) 0.0285 (6)
H2B 0.3399 0.0417 0.7071 0.028 (7)*
C3B 0.3534 (3) 0.0754 (3) 0.8479 (2) 0.0272 (6)
C31B 0.2961 (3) −0.0363 (3) 0.9230 (2) 0.0298 (6)
O31B 0.2836 (2) −0.12126 (19) 0.87925 (15) 0.0352 (5)
O32B 0.2610 (3) −0.0369 (2) 1.02305 (16) 0.0447 (5)
C4B 0.3878 (3) 0.1603 (3) 0.8908 (2) 0.0290 (6)
H4B 0.3769 0.1478 0.9662 0.040 (8)*
C5B 0.4384 (3) 0.2640 (3) 0.8215 (2) 0.0272 (6)
C51B 0.4750 (3) 0.3564 (3) 0.8688 (2) 0.0301 (6)
O51B 0.4109 (3) 0.3742 (2) 0.96312 (16) 0.0456 (6)
O52B 0.5704 (2) 0.4114 (2) 0.80818 (16) 0.0376 (5)
C6B 0.44795 (15) 0.28551 (13) 0.70956 (10) 0.0296 (6)
H6B 0.4816 0.3551 0.6632 0.046 (9)*
O1W 0.28635 (15) 0.62163 (13) 0.53915 (10) 0.0643 (7)
H11 0.3675 0.6448 0.5266 0.080*
H12 0.3263 0.5333 0.5247 0.080*
O2W 0.01827 (15) 0.91810 (13) 0.16977 (10) 0.0664 (7)
H21 0.0887 0.9370 0.1178 0.083*
H22 −0.0638 0.9943 0.1650 0.083*
O3W 0.13861 (15) 0.14870 (13) 0.17162 (10) 0.1002 (12)
H31 0.1470 0.0911 0.2331 0.125*
H32 0.1826 0.0847 0.1323 0.125*
O4W 0.19582 (15) −0.00158 (13) 0.56437 (10) 0.1127 (13)
H41 0.1759 0.0081 0.5012 0.141*
H42 0.2513 0.0518 0.5409 0.141*
O5W 0.80533 (15) 0.26304 (13) 0.26316 (10) 0.1050 (16) 0.80
H51 0.9038 0.2293 0.2361 0.131* 0.80
H52 0.7970 0.3086 0.3088 0.131* 0.80
O6W 0.86206 (15) 0.02992 (13) 0.61994 (10) 0.0872 (14) 0.70
H61 0.9580 0.0208 0.6040 0.109* 0.70
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
supporting information
sup-5
Acta Cryst. (2003). E59, o1076–o1078
N10A 0.0435 (15) 0.0493 (15) 0.0384 (13) −0.0195 (13) −0.0017 (12) −0.0137 (12) C1B 0.0273 (13) 0.0291 (13) 0.0268 (13) −0.0105 (11) −0.0047 (10) −0.0022 (10) C11B 0.0398 (16) 0.0372 (15) 0.0308 (14) −0.0166 (13) −0.0080 (12) −0.0025 (12) O11B 0.0826 (18) 0.0752 (16) 0.0314 (11) −0.0556 (15) −0.0162 (11) 0.0099 (11) O12B 0.109 (2) 0.0617 (15) 0.0367 (12) −0.0521 (15) −0.0273 (13) 0.0002 (10) C2B 0.0288 (13) 0.0254 (12) 0.0316 (13) −0.0116 (10) −0.0046 (10) −0.0053 (10) C3B 0.0258 (13) 0.0237 (12) 0.0299 (13) −0.0098 (10) −0.0026 (10) −0.0049 (10) C31B 0.0276 (13) 0.0274 (13) 0.0321 (14) −0.0117 (11) −0.0039 (10) −0.0029 (10) O31B 0.0432 (11) 0.0299 (10) 0.0373 (10) −0.0213 (9) −0.0040 (8) −0.0055 (8) O32B 0.0618 (14) 0.0510 (12) 0.0293 (10) −0.0372 (11) 0.0034 (9) −0.0062 (9) C4B 0.0293 (13) 0.0303 (13) 0.0265 (13) −0.0130 (11) −0.0028 (10) −0.0050 (10) C5B 0.0248 (13) 0.0267 (12) 0.0304 (13) −0.0117 (10) −0.0024 (10) −0.0061 (10) C51B 0.0320 (14) 0.0296 (13) 0.0294 (13) −0.0151 (11) −0.0004 (11) −0.0072 (10) O51B 0.0587 (14) 0.0501 (12) 0.0373 (11) −0.0335 (11) 0.0102 (10) −0.0202 (9) O52B 0.0413 (12) 0.0429 (11) 0.0381 (10) −0.0288 (10) 0.0018 (8) −0.0099 (8) C6B 0.0308 (14) 0.0283 (13) 0.0301 (13) −0.0152 (11) −0.0024 (10) −0.0036 (10) O1W 0.0659 (17) 0.0718 (17) 0.0622 (16) −0.0350 (14) −0.0161 (13) −0.0064 (13) O2W 0.0500 (15) 0.0679 (16) 0.0657 (16) −0.0254 (13) −0.0085 (12) 0.0097 (13)
O3W 0.130 (3) 0.101 (3) 0.096 (2) −0.068 (2) 0.003 (2) −0.043 (2)
O4W 0.129 (3) 0.143 (3) 0.113 (3) −0.092 (3) −0.026 (2) −0.024 (3)
O5W 0.072 (3) 0.166 (5) 0.111 (3) −0.051 (3) 0.006 (2) −0.091 (3)
O6W 0.122 (4) 0.080 (3) 0.079 (3) −0.042 (3) −0.038 (3) −0.020 (2)
Geometric parameters (Å, º)
N1A—C2A 1.471 (4) C1B—C6B 1.386 (3)
N1A—C8A 1.465 (4) C1B—C2B 1.394 (4)
N1A—C5A 1.472 (4) C1B—C11B 1.509 (4)
C2A—C3A 1.506 (4) C11B—O12B 1.237 (4)
C2A—H21A 0.97 C11B—O11B 1.262 (3)
C2A—H22A 0.97 C2B—C3B 1.386 (4)
C3A—N4A 1.483 (4) C2B—H2B 0.93
C3A—H31A 0.97 C3B—C4B 1.386 (4)
C3A—H32A 0.97 C3B—C31B 1.513 (3)
N4A—H41A 0.89 C31B—O32B 1.245 (3)
N4A—H42A 0.89 C31B—O31B 1.269 (3)
N4A—H43A 0.89 C4B—C5B 1.390 (4)
C5A—C6A 1.511 (4) C4B—H4B 0.93
C5A—H51A 0.97 C5B—C6B 1.385 (3)
C5A—H52A 0.97 C5B—C51B 1.508 (3)
C6A—N7A 1.478 (4) C51B—O51B 1.234 (3)
C6A—H61A 0.97 C51B—O52B 1.269 (3)
C6A—H62A 0.97 C6B—H6B 0.9300
N7A—H71A 0.89 O1W—H11 0.8796
N7A—H72A 0.89 O1W—H12 0.9009
N7A—H73A 0.89 O2W—H21 0.8596
C8A—C9A 1.509 (4) O2W—H22 0.8379
supporting information
sup-6
Acta Cryst. (2003). E59, o1076–o1078
C8A—H82A 0.97 O3W—H32 0.8559
C9A—N10A 1.478 (4) O4W—H41 0.8595
C9A—H91A 0.97 O4W—H42 0.8862
C9A—H92A 0.97 O5W—H51 0.8500
N10A—H11A 0.89 O5W—H52 0.8397
N10A—H12A 0.89 O6W—H61 0.8496
N10A—H13A 0.89
C2A—N1A—C8A 110.0 (2) N10A—C9A—C8A 112.1 (2)
C2A—N1A—C5A 111.0 (2) N10A—C9A—H91A 109.2
C8A—N1A—C5A 110.7 (2) C8A—C9A—H91A 109.2
N1A—C2A—C3A 112.6 (2) N10A—C9A—H92A 109.2
N1A—C2A—H21A 109.1 C8A—C9A—H92A 109.2
C3A—C2A—H21A 109.1 H91A—C9A—H92A 107.9
N1A—C2A—H22A 109.1 C9A—N10A—H11A 109.5
C3A—C2A—H22A 109.1 C9A—N10A—H12A 109.5
H21A—C2A—H22A 107.8 H11A—N10A—H12A 109.5
N4A—C3A—C2A 111.0 (2) C9A—N10A—H13A 109.5
N4A—C3A—H31A 109.4 H11A—N10A—H13A 109.5
C2A—C3A—H31A 109.4 H12A—N10A—H13A 109.5
N4A—C3A—H32A 109.4 C6B—C1B—C2B 118.4 (2)
C2A—C3A—H32A 109.4 C6B—C1B—C11B 121.5 (2)
H31A—C3A—H32A 108.0 C2B—C1B—C11B 120.0 (2)
C3A—N4A—H41A 109.5 O12B—C11B—O11B 123.1 (3)
C3A—N4A—H42A 109.5 O12B—C11B—C1B 119.0 (2)
H41A—N4A—H42A 109.5 O11B—C11B—C1B 117.9 (2)
C3A—N4A—H43A 109.5 C3B—C2B—C1B 121.0 (2)
H41A—N4A—H43A 109.5 C3B—C2B—H2B 119.5
H42A—N4A—H43A 109.5 C1B—C2B—H2B 119.5
N1A—C5A—C6A 111.7 (2) C4B—C3B—C2B 119.6 (2)
N1A—C5A—H51A 109.3 C4B—C3B—C31B 120.5 (2)
C6A—C5A—H51A 109.3 C2B—C3B—C31B 119.9 (2)
N1A—C5A—H52A 109.3 O32B—C31B—O31B 124.3 (2)
C6A—C5A—H52A 109.3 O32B—C31B—C3B 118.2 (2)
H51A—C5A—H52A 107.9 O31B—C31B—C3B 117.5 (2)
N7A—C6A—C5A 110.4 (2) C3B—C4B—C5B 120.2 (2)
N7A—C6A—H61A 109.6 C3B—C4B—H4B 119.9
C5A—C6A—H61A 109.6 C5B—C4B—H4B 119.9
N7A—C6A—H62A 109.6 C6B—C5B—C4B 119.3 (2)
C5A—C6A—H62A 109.6 C6B—C5B—C51B 120.6 (2)
H61A—C6A—H62A 108.1 C4B—C5B—C51B 120.0 (2)
C6A—N7A—H71A 109.5 O51B—C51B—O52B 124.1 (2)
C6A—N7A—H72A 109.5 O51B—C51B—C5B 118.4 (2)
H71A—N7A—H72A 109.5 O52B—C51B—C5B 117.4 (2)
C6A—N7A—H73A 109.5 C1B—C6B—C5B 121.34 (17)
H71A—N7A—H73A 109.5 C1B—C6B—H6B 119.3
H72A—N7A—H73A 109.5 C5B—C6B—H6B 119.3
supporting information
sup-7
Acta Cryst. (2003). E59, o1076–o1078
N1A—C8A—H81A 109.0 H21—O2W—H22 104.0
C9A—C8A—H81A 109.0 H31—O3W—H32 96.3
N1A—C8A—H82A 109.0 H41—O4W—H42 95.4
C9A—C8A—H82A 109.0 H51—O5W—H52 105.1
H81A—C8A—H82A 107.8
C8A—N1A—C2A—C3A −158.1 (2) C4B—C3B—C31B—O32B 9.3 (4)
C5A—N1A—C2A—C3A 79.1 (3) C2B—C3B—C31B—O32B −167.2 (2)
N1A—C2A—C3A—N4A 67.8 (3) C4B—C3B—C31B—O31B −172.3 (2)
C2A—N1A—C5A—C6A −156.3 (2) C2B—C3B—C31B—O31B 11.2 (4)
C8A—N1A—C5A—C6A 81.2 (3) C2B—C3B—C4B—C5B −2.6 (4)
N1A—C5A—C6A—N7A 58.7 (3) C31B—C3B—C4B—C5B −179.2 (2)
C2A—N1A—C8A—C9A 77.0 (3) C3B—C4B—C5B—C6B 2.6 (4)
C5A—N1A—C8A—C9A −159.9 (2) C3B—C4B—C5B—C51B 179.8 (2)
N1A—C8A—C9A—N10A 67.3 (3) C6B—C5B—C51B—O51B 152.7 (2)
C6B—C1B—C11B—O12B −175.0 (3) C4B—C5B—C51B—O51B −24.4 (4)
C2B—C1B—C11B—O12B 1.2 (4) C6B—C5B—C51B—O52B −27.1 (3)
C6B—C1B—C11B—O11B 2.0 (4) C4B—C5B—C51B—O52B 155.7 (3)
C2B—C1B—C11B—O11B 178.2 (3) C2B—C1B—C6B—C5B −2.1 (3)
C6B—C1B—C2B—C3B 2.1 (4) C11B—C1B—C6B—C5B 174.2 (2)
C11B—C1B—C2B—C3B −174.3 (2) C4B—C5B—C6B—C1B −0.2 (3)
C1B—C2B—C3B—C4B 0.3 (4) C51B—C5B—C6B—C1B −177.3 (2)
C1B—C2B—C3B—C31B 176.8 (2)
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
N4A—H41A···O11B 0.89 2.11 2.944 (3) 156
N4A—H41A···O12B 0.89 2.43 3.168 (3) 141
N4A—H42A···O52Bi 0.89 1.97 2.847 (3) 166
N4A—H43A···O31Bii 0.89 2.05 2.885 (4) 155
N4A—H43A···O5W 0.89 2.59 3.113 (3) 118
N7A—H71A···O52Bi 0.89 2.06 2.921 (3) 162
N7A—H72A···O31Biii 0.89 1.91 2.796 (3) 176
N7A—H73A···O51Biv 0.89 1.90 2.760 (4) 162
N10A—H11A···O52Bi 0.89 1.89 2.771 (3) 169
N10A—H12A···O1W 0.89 2.17 2.917 (3) 141
N10A—H12A···O6Wi 0.89 2.39 2.916 (3) 118
N10A—H13A···O2W 0.89 1.92 2.758 (3) 157
O1W—H11···O11Bi 0.88 (3) 1.89 (3) 2.755 (3) 170 (3)
O1W—H12···O11B 0.90 (4) 2.02 (4) 2.921 (4) 173 (3)
O2W—H21···O32Biii 0.86 (3) 1.84 (3) 2.694 (2) 171 (3)
O2W—H22···O31Bv 0.84 (4) 2.06 (4) 2.828 (4) 153 (3)
O3W—H31···O6Wii 0.85 (3) 1.97 (3) 2.814 (2) 173 (3)
O3W—H32···O32Biv 0.86 (3) 1.97 (3) 2.814 (3) 170 (3)
O4W—H41···O6Wii 0.86 (3) 1.90 (3) 2.730 (2) 162 (3)
O4W—H42···O12B 0.89 (3) 1.85 (3) 2.730 (3) 172 (3)
supporting information
sup-8
Acta Cryst. (2003). E59, o1076–o1078
O5W—H52···O1Wi 0.84 (3) 2.13 (3) 2.916 (2) 156 (3)
O6W—H61···O4Wvi 0.85 (3) 2.11 (3) 2.955 (3) 180 (3)