• No results found

Tris(2 ammonio­ethyl)­amine benzene 1,3,5 tri­carboxyl­ate 5 5 hydrate

N/A
N/A
Protected

Academic year: 2020

Share "Tris(2 ammonio­ethyl)­amine benzene 1,3,5 tri­carboxyl­ate 5 5 hydrate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1076

Daniel E. Lynch C6H21N43+C9H3O63ÿ5.5H2O DOI: 10.1107/S1600536803014387 Acta Cryst.(2003). E59, o1076±o1078 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Tris(2-ammonioethyl)amine

benzene-1,3,5-tricarboxylate 5.5-hydrate

Daniel E. Lynch

School of Science and the Environment, Coventry University, Coventry CV1 5FB, England

Correspondence e-mail: [email protected]

Key indicators Single-crystal X-ray study T= 298 K

Mean(C±C) = 0.004 AÊ H-atom completeness 98% Disorder in solvent or counterion Rfactor = 0.063

wRfactor = 0.208

Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The structure of the title compound, 2,20,200 -nitrilotri(ethyl-ammonium) benzene-1,3,5-tricarboxylate 5.5-hydrate, C6H21N43+C9H3O63ÿ5.5H2O, comprises the 1:1 organic salt

of tris(2-ammonioethyl)amine and benzene-1,3,5-tricarboxyl-ate in a complex hydrogen-bonded network which also includes four full water molecules and two with partial occupancies of 0.80 (2) and 0.70 (2).

Comment

A search of the April 2003 release of the Cambridge Struc-tural Database (Allen, 2002) reveals that both benzene-1,3,5-tricarboxylic acid and cyclohexane-1,3,5-benzene-1,3,5-tricarboxylic acid are involved in the structures of 61 salt, adduct, clathrate or hydrate complexes. Of these structures, 17 incorporate mol-ecules that do not contain either an amine group or hetero-cyclic N atom, whereas the remaining structures do contain other molecules with these features. Of the latter structures, only ®ve contain molecules with three or more N atoms, available for protonation from the acid H atoms, in the same molecule. Three of these are large selective tripod molecules (Ballesteret al., 1997, 2001), while the other two are deriva-tives of 1,4,8,11-tetraazacyclotetradecane (Burchell et al., 2001) and 1,3,5-triaminocyclohexane (Menger et al., 2002). Interestingly, the structures of neither tricarboxylic acid analogue with tris(2-aminoethyl)amine have been determined. Separate mixing of the two triacids with tris(2-aminoethyl)-amine resulted in crystals and subsequent determination of the structure of the organic salt of only the benzene analogue with the tripod amine.

The 1:1 organic salt, (I), of benzene-1,3,5-tricarboxylate with tris(2-ammonioethyl)amine consists of both ions in a complex hydrogen-bonded network which also includes four water molecules and two partial-occupancy water molecules (Fig. 1). Two of the base ammonium groups (N4Aand N7A) associate through all their H atoms to different carboxylate O atoms (except for N4AÐH43A O5W), while the third ammonium group (N10A) associates through two of its H atoms to three of the water molecules (O1W, O2Wand O6W), the third H atom (H11A) associating to O52B. Of the water molecules, O1WÐO4W mostly associate to carboxylate O atoms (O3WÐH31 and O4WÐH41 associate to O6W),

(2)

whereas O5W and O6Wassociate to other water molecules, although O6Wis 2.916 (3) AÊ from N10A(1ÿx, 1ÿy, 1ÿz). Partial occupancies for O5W [0.80 (2) occupancy] and O6W

[0.70 (2) occupancy], giving a total of 5.5 water molecules in the asymmetric unit, best ®ts the CHN analysis of the crystals (found: C 39.3, H 7.6, N 12.4%; C15H35N4O11.5requires C 39.6,

H 7.7, N 12.3%). Residual electron density of 0.68 e AÊÿ3was

located 1.01 AÊ from O2Wand is essentially equidistant from the two H atoms, creating HÐO2WÐpeak angles of 46±47. The ®rst four unassigned peaks in the difference map closely proximate O1WÐO4Wand their respective H atoms but are not in suitable positions to be considered as alternative H atoms.

Experimental

Equimolar amounts of benzene-1,3,5-tricarboxylic acid and tris(2-aminoethyl)amine were re¯uxed in ethanol for 20 min. Total evaporation of the solvent gave colourless prisms (m.p. 453 K).

Crystal data

C6H21N43+C9H3O63ÿ5:5H2O

Mr= 455.47 Triclinic,P1

a= 9.5850 (10) AÊ

b= 10.7110 (10) AÊ

c= 12.980 (2) AÊ

= 72.790 (10)

= 73.670 (10)

= 62.93 (8)

V= 1116.5 (8) AÊ3

Z= 2

Dx= 1.355 Mg mÿ3 MoKradiation Cell parameters from 25

re¯ections

= 6±14

= 0.12 mmÿ1

T= 298 (2) K Prism, colourless 0.600.500.50 mm

Data collection

Enraf±Nonius CAD-4 diffractometer 2/!scans

Absorption correction: scan (Xtal3.2; Hallet al., 1992)

Tmin= 0.930,Tmax= 0.942

4196 measured re¯ections 3937 independent re¯ections 2940 re¯ections withI> 2(I)

Rint= 0.027 max= 25.0

h= 0!11

k=ÿ11!12

l=ÿ14!15 3 standard re¯ections

every 200 re¯ections intensity decay: 25%

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.063

wR(F2) = 0.208

S= 1.17 3937 re¯ections 289 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.1270P)2 + 0.3227P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.68 e AÊÿ3

min=ÿ0.50 e AÊÿ3

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N4AÐH41A O11B 0.89 2.11 2.944 (3) 156

N4AÐH41A O12B 0.89 2.43 3.168 (3) 141

N4AÐH42A O52Bi 0.89 1.97 2.847 (3) 166

N4AÐH43A O31Bii 0.89 2.05 2.885 (4) 155

N4AÐH43A O5W 0.89 2.59 3.113 (3) 118

N7AÐH71A O52Bi 0.89 2.06 2.921 (3) 162

N7AÐH72A O31Biii 0.89 1.91 2.796 (3) 176

N7AÐH73A O51Biv 0.89 1.90 2.760 (4) 162

N10AÐH11A O52Bi 0.89 1.89 2.771 (3) 169

N10AÐH12A O1W 0.89 2.17 2.917 (3) 141

N10AÐH12A O6Wi 0.89 2.39 2.916 (3) 118

N10AÐH13A O2W 0.89 1.92 2.758 (3) 157

O1WÐH11 O11Bi 0.88 (3) 1.89 (3) 2.755 (3) 170 (3)

O1WÐH12 O11B 0.90 (4) 2.02 (4) 2.921 (4) 173 (3) O2WÐH21 O32Biii 0.86 (3) 1.84 (3) 2.694 (2) 171 (3)

O2WÐH22 O31Bv 0.84 (4) 2.06 (4) 2.828 (4) 153 (3)

O3WÐH31 O6Wii 0.85 (3) 1.97 (3) 2.814 (2) 173 (3)

O3WÐH32 O32Biv 0.86 (3) 1.97 (3) 2.814 (3) 170 (3)

O4WÐH41 O6Wii 0.86 (3) 1.90 (3) 2.730 (2) 162 (3)

O4WÐH42 O12B 0.89 (3) 1.85 (3) 2.730 (3) 172 (3) O5WÐH51 O3Wvi 0.85 (3) 2.03 (3) 2.878 (3) 180 (3)

O5WÐH52 O1Wi 0.84 (3) 2.13 (3) 2.916 (2) 156 (3)

O6WÐH61 O4Wvi 0.85 (3) 2.11 (3) 2.955 (3) 180 (3)

Symmetry codes: (i) 1ÿx;1ÿy;1ÿz; (ii) 1ÿx;ÿy;1ÿz; (iii)x;1‡y;zÿ1; (iv)

x;y;zÿ1; (v)ÿx;1ÿy;1ÿz; (vi) 1‡x;y;z.

All H atoms on the amines were initially located in difference syntheses but were then included in the re®nement (along with all non-water H atoms), at calculated positions, as riding atoms with NÐ H set to 0.89 AÊ and CÐH set to 0.97 AÊ (CH2) and 0.93 AÊ (ArÐH)

and the isotropic displacement parameters were allowed to re®ne. All water H atoms, except H31, H41, H61 and H62, were then located in difference syntheses and positional parameters were re®ned, while the isotropic displacement parameters were set equal to 1.25Ueq(O).

Atoms H31, H41, H61 and H62 were included at calculated positions and positional parameters re®ned, while the isotropic displacement parameters were set equal to 1.25Ueq(O). No suitable position for

H62 could be located without causing intermolecular H62 H distances of < 2.0 AÊ.

Data collection:MolEN(Fair, 1990); cell re®nement:MolEN; data reduction: Xtal3.2 (Hall et al., 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

PLATON97 (Spek, 1997); software used to prepare material for publication:SHELXL97.

The author thanks the EPSRC's Chemical Database Service at Daresbury.

References

Allen, F. H. (2002).Acta Cryst.B58, 380±388.

Acta Cryst.(2003). E59, o1076±o1078 Daniel E. Lynch C6H21N43+C9H3O63ÿ5.5H2O

o1077

organic papers

Figure 1

(3)

organic papers

o1078

Daniel E. Lynch C6H21N43+C9H3O63ÿ5.5H2O Acta Cryst.(2003). E59, o1076±o1078

Ballester, P., Costa, A., Deya, P. M., Deslongchamps, G., Mink, D., Decken, A., Prohens, R., Tomas, S. & Vega, M. (1997). Chem. Commun. pp. 357± 358.

Ballester, P., Capo, M., Costa, A., Deya, P. M., Gomila, R., Decken, A. & Deslongchamps, G. (2001).Org. Lett.3, 267±270.

Burchell, C. J., Ferguson, G., Lough, A. J. & Glidewell, C. (2001).Acta Cryst.

C57, 311±314.

Fair, C. K. (1990).MolEN.Enraf±Nonius, Delft, The Netherlands.

Hall, S. R., Flack, H. D. & Stewart, J. M. (1992). Editors.Xtal3.2Reference Manual. Universities of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.

Menger, F. M., Bian, J. & Azov, V. A. (2002).Angew. Chem. Int. Ed. Engl.41, 2581±2584.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

(4)

supporting information

sup-1

Acta Cryst. (2003). E59, o1076–o1078

supporting information

Acta Cryst. (2003). E59, o1076–o1078 [doi:10.1107/S1600536803014387]

Tris(2-ammonioethyl)amine benzene-1,3,5-tricarboxylate 5.5-hydrate

Daniel E. Lynch

S1. Comment

A search of the April 2003 release of the Cambridge Structural Database (Allen, 2002) reveals that both

benzene-1,3,5-tricarboxylic acid and cyclohexane-1,3,5-benzene-1,3,5-tricarboxylic acid are involved in the structures of 61 salt, adduct, clatherate or

hydrate complexes. Of these structures, 17 incorporate molecules that do not contain either an amine group or

heterocyclic N atom whereas the remaining structures do contain other molecules with these features. Of the latter

structures, only five comprise molecules with three or more N atoms, available for protonation from the acid H atoms, in

the same molecule. Three of these are large selective tripod molecules (Ballester et al., 1997, 2001), while the other two

are derivatives of 1,4,8,11-tetraazacyclotetradecane (Burchell et al., 2001) and 1,3,5-triaminocyclohexane (Menger et al.,

2002). Interestingly, the structures of either tricarboxylic acid analogue with tris(2-aminoethyl)amine have not been

determined. Separate mixing of the two triacids with tris(2-aminoethyl)amine resulted in crystals and subsequent

determination of the structure of the organic salt of just the benzene analogue with the tripod amine.

The 1:1 organic salt, (I), of benzene-1,3,5-tricarboxylate with tris(2-ammonioethyl)amine consists of both molecules in

a complex hydrogen-bonded network which also includes four water molecules and two partial occupancy water

molecules (Fig. 1). Two of the base ammonium groups (N4A and N7A) associate through all their H atoms to different

carboxylate O atoms (except for N4A—H43A···O5w), while the third ammonium group (N10A) associates through two

of its H atoms to three of the water molecules (O1w, O2w and O6w), while the third H atom (H11A) associates to O52B.

Of the water molecules, O1w–O4w mostly associate to carboxylate O atoms (O3w—H31 and O4w—H41 associate to

O6w) whereas O5w and O6w associate to other water molecules, although O6w is 2.916 (3) Å from N10A(1 − x, 1 − y, 1

z). Partial occupancies for O5w (0.80 occupancy) and O6w (0.70 occupancy), giving a total of 5.5 waters, best fits the

CHN analysis of the crystals (found: C 39.3, H 7.6, N 12.4%; C15H35N4O11.5 requires C 39.6, H 7.7, N 12.3%). Residual

electron density of 0.68 e Å−3 was located 1.01 Å from O2w and is essentially equidistant from the two H atoms creating

H—O2w peak angles of 46–47°. The first four unassigned peaks in the difference map closely proximate O1w–O4w and

their respective H atoms but are not in suitable positions to be considered as alternative H atoms.

S2. Experimental

Equimolar amounts of benzene-1,3,5-tricarboxylic acid and tris(2-aminoethyl)amine were refluxed in ethanol for 20 min.

Total evaporation of the solvent gave colourless prisms (m.p. 453 K).

S3. Refinement

All H atoms on the amines were initially located in difference syntheses but were then included in the refinement (along

with all non-water H atoms), at calculated positions, as riding models with N—H set to 0.89 Å and C—H set to 0.97 Å

(CH2) and 0.93 Å (Ar—H) and the isotropic displacement parameters were allowed to refine. All water H atoms, except

(5)

supporting information

sup-2

Acta Cryst. (2003). E59, o1076–o1078

isotropic displacement parameters were set equal to 1.25Ueq of the preceeding normal atom. Atoms H31, H41, H61 and

H62 were included at calculated positions and positional parameters refined while the isotropic displacement parameters

were set equal to 1.25Ueq of the preceeding normal atom. No suitable position for H62 could be located without causing

[image:5.610.130.485.151.398.2]

intermolecular H62···H distances of < 2.0 Å.

Figure 1

The molecular configuration and atom-numbering scheme for the title compound, showing 50% probability displacement

parameters.

2,2′,2′′-Nitrilotri(ethylammonium) benzene-1,3,5-tricarboxylate 5.5-hydrate

Crystal data

C6H21N43+·C9H3O63−·5.5H2O

Mr = 455.47 Triclinic, P1

a = 9.585 (1) Å

b = 10.711 (1) Å

c = 12.980 (2) Å

α = 72.79 (1)°

β = 73.67 (1)°

γ = 62.93 (8)°

V = 1116.5 (8) Å3

Z = 2

F(000) = 490

Dx = 1.355 Mg m−3 Melting point: 453 K K Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 6–14°

µ = 0.12 mm−1

T = 298 K Prism, colourless 0.60 × 0.50 × 0.50 mm

Data collection

Enraf-Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

2θ/ω scans

Absorption correction: ψ scan (Xtal3.2; Hall et al., 1992)

Tmin = 0.930, Tmax = 0.942 4196 measured reflections 3937 independent reflections 2940 reflections with I > 2σ(I)

Rint = 0.027

θmax = 25.0°, θmin = 1.7°

(6)

supporting information

sup-3

Acta Cryst. (2003). E59, o1076–o1078

k = −11→12

l = −14→15

3 standard reflections every 200 reflections intensity decay: 25%

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.063

wR(F2) = 0.208

S = 1.17 3937 reflections 289 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.127P)2 + 0.3227P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.68 e Å−3 Δρmin = −0.50 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

N1A 0.1266 (3) 0.5040 (2) 0.23580 (17) 0.0301 (5)

C2A 0.1778 (3) 0.3546 (3) 0.2953 (2) 0.0355 (6)

H21A 0.1034 0.3172 0.2938 0.046 (9)*

H22A 0.1751 0.3517 0.3712 0.031 (7)*

C3A 0.3427 (3) 0.2606 (3) 0.2474 (2) 0.0376 (7)

H31A 0.3646 0.1615 0.2820 0.052 (9)*

H32A 0.3490 0.2704 0.1697 0.036 (8)*

N4A 0.4638 (3) 0.2996 (3) 0.26388 (19) 0.0372 (6)

H41A 0.4637 0.2836 0.3352 0.054 (10)*

H42A 0.4408 0.3918 0.2353 0.053 (10)*

H43A 0.5594 0.2469 0.2310 0.035 (8)*

C5A 0.0737 (3) 0.5213 (3) 0.1345 (2) 0.0370 (7)

H51A −0.0358 0.5316 0.1516 0.052 (9)*

H52A 0.1384 0.4361 0.1034 0.031 (7)*

C6A 0.0860 (4) 0.6502 (3) 0.0511 (2) 0.0404 (7)

H61A 0.0513 0.6579 −0.0147 0.049 (9)*

H62A 0.0171 0.7362 0.0803 0.049 (9)*

N7A 0.2519 (3) 0.6374 (2) 0.02381 (18) 0.0337 (5)

H71A 0.2851 0.6265 0.0847 0.052 (10)*

H72A 0.2565 0.7162 −0.0223 0.043 (9)*

H73A 0.3140 0.5619 −0.0074 0.035 (8)*

C8A −0.0004 (3) 0.5986 (3) 0.3064 (2) 0.0378 (7)

H81A −0.0762 0.5564 0.3443 0.048 (9)*

H82A −0.0560 0.6894 0.2612 0.031 (7)*

C9A 0.0601 (4) 0.6253 (3) 0.3899 (2) 0.0430 (7)

H91A −0.0297 0.6763 0.4407 0.056 (10)*

H92A 0.1234 0.5343 0.4312 0.040 (8)*

N10A 0.1576 (3) 0.7091 (3) 0.3383 (2) 0.0435 (6)

H11A 0.2445 0.6593 0.2959 0.050 (9)*

H12A 0.1857 0.7275 0.3901 0.046 (9)*

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, o1076–o1078

C1B 0.4084 (3) 0.2055 (3) 0.6652 (2) 0.0289 (6)

C11B 0.4038 (3) 0.2376 (3) 0.5447 (2) 0.0361 (6)

O11B 0.4415 (3) 0.3378 (3) 0.48424 (17) 0.0571 (7)

O12B 0.3571 (4) 0.1696 (3) 0.51031 (18) 0.0614 (7)

C2B 0.3635 (3) 0.0985 (3) 0.7357 (2) 0.0285 (6)

H2B 0.3399 0.0417 0.7071 0.028 (7)*

C3B 0.3534 (3) 0.0754 (3) 0.8479 (2) 0.0272 (6)

C31B 0.2961 (3) −0.0363 (3) 0.9230 (2) 0.0298 (6)

O31B 0.2836 (2) −0.12126 (19) 0.87925 (15) 0.0352 (5)

O32B 0.2610 (3) −0.0369 (2) 1.02305 (16) 0.0447 (5)

C4B 0.3878 (3) 0.1603 (3) 0.8908 (2) 0.0290 (6)

H4B 0.3769 0.1478 0.9662 0.040 (8)*

C5B 0.4384 (3) 0.2640 (3) 0.8215 (2) 0.0272 (6)

C51B 0.4750 (3) 0.3564 (3) 0.8688 (2) 0.0301 (6)

O51B 0.4109 (3) 0.3742 (2) 0.96312 (16) 0.0456 (6)

O52B 0.5704 (2) 0.4114 (2) 0.80818 (16) 0.0376 (5)

C6B 0.44795 (15) 0.28551 (13) 0.70956 (10) 0.0296 (6)

H6B 0.4816 0.3551 0.6632 0.046 (9)*

O1W 0.28635 (15) 0.62163 (13) 0.53915 (10) 0.0643 (7)

H11 0.3675 0.6448 0.5266 0.080*

H12 0.3263 0.5333 0.5247 0.080*

O2W 0.01827 (15) 0.91810 (13) 0.16977 (10) 0.0664 (7)

H21 0.0887 0.9370 0.1178 0.083*

H22 −0.0638 0.9943 0.1650 0.083*

O3W 0.13861 (15) 0.14870 (13) 0.17162 (10) 0.1002 (12)

H31 0.1470 0.0911 0.2331 0.125*

H32 0.1826 0.0847 0.1323 0.125*

O4W 0.19582 (15) −0.00158 (13) 0.56437 (10) 0.1127 (13)

H41 0.1759 0.0081 0.5012 0.141*

H42 0.2513 0.0518 0.5409 0.141*

O5W 0.80533 (15) 0.26304 (13) 0.26316 (10) 0.1050 (16) 0.80

H51 0.9038 0.2293 0.2361 0.131* 0.80

H52 0.7970 0.3086 0.3088 0.131* 0.80

O6W 0.86206 (15) 0.02992 (13) 0.61994 (10) 0.0872 (14) 0.70

H61 0.9580 0.0208 0.6040 0.109* 0.70

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

supporting information

sup-5

Acta Cryst. (2003). E59, o1076–o1078

N10A 0.0435 (15) 0.0493 (15) 0.0384 (13) −0.0195 (13) −0.0017 (12) −0.0137 (12) C1B 0.0273 (13) 0.0291 (13) 0.0268 (13) −0.0105 (11) −0.0047 (10) −0.0022 (10) C11B 0.0398 (16) 0.0372 (15) 0.0308 (14) −0.0166 (13) −0.0080 (12) −0.0025 (12) O11B 0.0826 (18) 0.0752 (16) 0.0314 (11) −0.0556 (15) −0.0162 (11) 0.0099 (11) O12B 0.109 (2) 0.0617 (15) 0.0367 (12) −0.0521 (15) −0.0273 (13) 0.0002 (10) C2B 0.0288 (13) 0.0254 (12) 0.0316 (13) −0.0116 (10) −0.0046 (10) −0.0053 (10) C3B 0.0258 (13) 0.0237 (12) 0.0299 (13) −0.0098 (10) −0.0026 (10) −0.0049 (10) C31B 0.0276 (13) 0.0274 (13) 0.0321 (14) −0.0117 (11) −0.0039 (10) −0.0029 (10) O31B 0.0432 (11) 0.0299 (10) 0.0373 (10) −0.0213 (9) −0.0040 (8) −0.0055 (8) O32B 0.0618 (14) 0.0510 (12) 0.0293 (10) −0.0372 (11) 0.0034 (9) −0.0062 (9) C4B 0.0293 (13) 0.0303 (13) 0.0265 (13) −0.0130 (11) −0.0028 (10) −0.0050 (10) C5B 0.0248 (13) 0.0267 (12) 0.0304 (13) −0.0117 (10) −0.0024 (10) −0.0061 (10) C51B 0.0320 (14) 0.0296 (13) 0.0294 (13) −0.0151 (11) −0.0004 (11) −0.0072 (10) O51B 0.0587 (14) 0.0501 (12) 0.0373 (11) −0.0335 (11) 0.0102 (10) −0.0202 (9) O52B 0.0413 (12) 0.0429 (11) 0.0381 (10) −0.0288 (10) 0.0018 (8) −0.0099 (8) C6B 0.0308 (14) 0.0283 (13) 0.0301 (13) −0.0152 (11) −0.0024 (10) −0.0036 (10) O1W 0.0659 (17) 0.0718 (17) 0.0622 (16) −0.0350 (14) −0.0161 (13) −0.0064 (13) O2W 0.0500 (15) 0.0679 (16) 0.0657 (16) −0.0254 (13) −0.0085 (12) 0.0097 (13)

O3W 0.130 (3) 0.101 (3) 0.096 (2) −0.068 (2) 0.003 (2) −0.043 (2)

O4W 0.129 (3) 0.143 (3) 0.113 (3) −0.092 (3) −0.026 (2) −0.024 (3)

O5W 0.072 (3) 0.166 (5) 0.111 (3) −0.051 (3) 0.006 (2) −0.091 (3)

O6W 0.122 (4) 0.080 (3) 0.079 (3) −0.042 (3) −0.038 (3) −0.020 (2)

Geometric parameters (Å, º)

N1A—C2A 1.471 (4) C1B—C6B 1.386 (3)

N1A—C8A 1.465 (4) C1B—C2B 1.394 (4)

N1A—C5A 1.472 (4) C1B—C11B 1.509 (4)

C2A—C3A 1.506 (4) C11B—O12B 1.237 (4)

C2A—H21A 0.97 C11B—O11B 1.262 (3)

C2A—H22A 0.97 C2B—C3B 1.386 (4)

C3A—N4A 1.483 (4) C2B—H2B 0.93

C3A—H31A 0.97 C3B—C4B 1.386 (4)

C3A—H32A 0.97 C3B—C31B 1.513 (3)

N4A—H41A 0.89 C31B—O32B 1.245 (3)

N4A—H42A 0.89 C31B—O31B 1.269 (3)

N4A—H43A 0.89 C4B—C5B 1.390 (4)

C5A—C6A 1.511 (4) C4B—H4B 0.93

C5A—H51A 0.97 C5B—C6B 1.385 (3)

C5A—H52A 0.97 C5B—C51B 1.508 (3)

C6A—N7A 1.478 (4) C51B—O51B 1.234 (3)

C6A—H61A 0.97 C51B—O52B 1.269 (3)

C6A—H62A 0.97 C6B—H6B 0.9300

N7A—H71A 0.89 O1W—H11 0.8796

N7A—H72A 0.89 O1W—H12 0.9009

N7A—H73A 0.89 O2W—H21 0.8596

C8A—C9A 1.509 (4) O2W—H22 0.8379

(9)

supporting information

sup-6

Acta Cryst. (2003). E59, o1076–o1078

C8A—H82A 0.97 O3W—H32 0.8559

C9A—N10A 1.478 (4) O4W—H41 0.8595

C9A—H91A 0.97 O4W—H42 0.8862

C9A—H92A 0.97 O5W—H51 0.8500

N10A—H11A 0.89 O5W—H52 0.8397

N10A—H12A 0.89 O6W—H61 0.8496

N10A—H13A 0.89

C2A—N1A—C8A 110.0 (2) N10A—C9A—C8A 112.1 (2)

C2A—N1A—C5A 111.0 (2) N10A—C9A—H91A 109.2

C8A—N1A—C5A 110.7 (2) C8A—C9A—H91A 109.2

N1A—C2A—C3A 112.6 (2) N10A—C9A—H92A 109.2

N1A—C2A—H21A 109.1 C8A—C9A—H92A 109.2

C3A—C2A—H21A 109.1 H91A—C9A—H92A 107.9

N1A—C2A—H22A 109.1 C9A—N10A—H11A 109.5

C3A—C2A—H22A 109.1 C9A—N10A—H12A 109.5

H21A—C2A—H22A 107.8 H11A—N10A—H12A 109.5

N4A—C3A—C2A 111.0 (2) C9A—N10A—H13A 109.5

N4A—C3A—H31A 109.4 H11A—N10A—H13A 109.5

C2A—C3A—H31A 109.4 H12A—N10A—H13A 109.5

N4A—C3A—H32A 109.4 C6B—C1B—C2B 118.4 (2)

C2A—C3A—H32A 109.4 C6B—C1B—C11B 121.5 (2)

H31A—C3A—H32A 108.0 C2B—C1B—C11B 120.0 (2)

C3A—N4A—H41A 109.5 O12B—C11B—O11B 123.1 (3)

C3A—N4A—H42A 109.5 O12B—C11B—C1B 119.0 (2)

H41A—N4A—H42A 109.5 O11B—C11B—C1B 117.9 (2)

C3A—N4A—H43A 109.5 C3B—C2B—C1B 121.0 (2)

H41A—N4A—H43A 109.5 C3B—C2B—H2B 119.5

H42A—N4A—H43A 109.5 C1B—C2B—H2B 119.5

N1A—C5A—C6A 111.7 (2) C4B—C3B—C2B 119.6 (2)

N1A—C5A—H51A 109.3 C4B—C3B—C31B 120.5 (2)

C6A—C5A—H51A 109.3 C2B—C3B—C31B 119.9 (2)

N1A—C5A—H52A 109.3 O32B—C31B—O31B 124.3 (2)

C6A—C5A—H52A 109.3 O32B—C31B—C3B 118.2 (2)

H51A—C5A—H52A 107.9 O31B—C31B—C3B 117.5 (2)

N7A—C6A—C5A 110.4 (2) C3B—C4B—C5B 120.2 (2)

N7A—C6A—H61A 109.6 C3B—C4B—H4B 119.9

C5A—C6A—H61A 109.6 C5B—C4B—H4B 119.9

N7A—C6A—H62A 109.6 C6B—C5B—C4B 119.3 (2)

C5A—C6A—H62A 109.6 C6B—C5B—C51B 120.6 (2)

H61A—C6A—H62A 108.1 C4B—C5B—C51B 120.0 (2)

C6A—N7A—H71A 109.5 O51B—C51B—O52B 124.1 (2)

C6A—N7A—H72A 109.5 O51B—C51B—C5B 118.4 (2)

H71A—N7A—H72A 109.5 O52B—C51B—C5B 117.4 (2)

C6A—N7A—H73A 109.5 C1B—C6B—C5B 121.34 (17)

H71A—N7A—H73A 109.5 C1B—C6B—H6B 119.3

H72A—N7A—H73A 109.5 C5B—C6B—H6B 119.3

(10)

supporting information

sup-7

Acta Cryst. (2003). E59, o1076–o1078

N1A—C8A—H81A 109.0 H21—O2W—H22 104.0

C9A—C8A—H81A 109.0 H31—O3W—H32 96.3

N1A—C8A—H82A 109.0 H41—O4W—H42 95.4

C9A—C8A—H82A 109.0 H51—O5W—H52 105.1

H81A—C8A—H82A 107.8

C8A—N1A—C2A—C3A −158.1 (2) C4B—C3B—C31B—O32B 9.3 (4)

C5A—N1A—C2A—C3A 79.1 (3) C2B—C3B—C31B—O32B −167.2 (2)

N1A—C2A—C3A—N4A 67.8 (3) C4B—C3B—C31B—O31B −172.3 (2)

C2A—N1A—C5A—C6A −156.3 (2) C2B—C3B—C31B—O31B 11.2 (4)

C8A—N1A—C5A—C6A 81.2 (3) C2B—C3B—C4B—C5B −2.6 (4)

N1A—C5A—C6A—N7A 58.7 (3) C31B—C3B—C4B—C5B −179.2 (2)

C2A—N1A—C8A—C9A 77.0 (3) C3B—C4B—C5B—C6B 2.6 (4)

C5A—N1A—C8A—C9A −159.9 (2) C3B—C4B—C5B—C51B 179.8 (2)

N1A—C8A—C9A—N10A 67.3 (3) C6B—C5B—C51B—O51B 152.7 (2)

C6B—C1B—C11B—O12B −175.0 (3) C4B—C5B—C51B—O51B −24.4 (4)

C2B—C1B—C11B—O12B 1.2 (4) C6B—C5B—C51B—O52B −27.1 (3)

C6B—C1B—C11B—O11B 2.0 (4) C4B—C5B—C51B—O52B 155.7 (3)

C2B—C1B—C11B—O11B 178.2 (3) C2B—C1B—C6B—C5B −2.1 (3)

C6B—C1B—C2B—C3B 2.1 (4) C11B—C1B—C6B—C5B 174.2 (2)

C11B—C1B—C2B—C3B −174.3 (2) C4B—C5B—C6B—C1B −0.2 (3)

C1B—C2B—C3B—C4B 0.3 (4) C51B—C5B—C6B—C1B −177.3 (2)

C1B—C2B—C3B—C31B 176.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N4A—H41A···O11B 0.89 2.11 2.944 (3) 156

N4A—H41A···O12B 0.89 2.43 3.168 (3) 141

N4A—H42A···O52Bi 0.89 1.97 2.847 (3) 166

N4A—H43A···O31Bii 0.89 2.05 2.885 (4) 155

N4A—H43A···O5W 0.89 2.59 3.113 (3) 118

N7A—H71A···O52Bi 0.89 2.06 2.921 (3) 162

N7A—H72A···O31Biii 0.89 1.91 2.796 (3) 176

N7A—H73A···O51Biv 0.89 1.90 2.760 (4) 162

N10A—H11A···O52Bi 0.89 1.89 2.771 (3) 169

N10A—H12A···O1W 0.89 2.17 2.917 (3) 141

N10A—H12A···O6Wi 0.89 2.39 2.916 (3) 118

N10A—H13A···O2W 0.89 1.92 2.758 (3) 157

O1W—H11···O11Bi 0.88 (3) 1.89 (3) 2.755 (3) 170 (3)

O1W—H12···O11B 0.90 (4) 2.02 (4) 2.921 (4) 173 (3)

O2W—H21···O32Biii 0.86 (3) 1.84 (3) 2.694 (2) 171 (3)

O2W—H22···O31Bv 0.84 (4) 2.06 (4) 2.828 (4) 153 (3)

O3W—H31···O6Wii 0.85 (3) 1.97 (3) 2.814 (2) 173 (3)

O3W—H32···O32Biv 0.86 (3) 1.97 (3) 2.814 (3) 170 (3)

O4W—H41···O6Wii 0.86 (3) 1.90 (3) 2.730 (2) 162 (3)

O4W—H42···O12B 0.89 (3) 1.85 (3) 2.730 (3) 172 (3)

(11)

supporting information

sup-8

Acta Cryst. (2003). E59, o1076–o1078

O5W—H52···O1Wi 0.84 (3) 2.13 (3) 2.916 (2) 156 (3)

O6W—H61···O4Wvi 0.85 (3) 2.11 (3) 2.955 (3) 180 (3)

Figure

Figure 1

References

Related documents

Political Parties approved by CNE to stand in at least some constituencies PLD – Partido de Liberdade e Desenvolvimento – Party of Freedom and Development ECOLOGISTA – MT –

College Mathematics (3 Credits) Biology (6 Credits) Arts and Humanities 3 Arts and Humanities 3 TOTAL 35 20 8.00 **Total up RED # ** Excess credits 0.00 8.00 Analyzing and

• Taxpayers subject to the provisions of Title II of the Income Tax Law (ITL) which have declared taxable income of $644,599,005 or more in the immediately preceding tax

• Storage node - node that runs Account, Container, and Object services • ring - a set of mappings of OpenStack Object Storage data to physical devices To increase reliability, you

Motivation Problem statement Simulation scenario Results of performance prediction ConclusionsB. A study on machine learning and regression based models for performance

The algorithm will only match applicants employers preferred for NESP positions to NESP positions and applicants employers preferred for NETP positions to NETP positions. This way

In the previous sections, we dis- cuss the expectation that a neural network exploiting the fractional convolution should perform slightly worse than a pure binary (1-bit weights