Acta Cryst.(2003). E59, o1213±o1215 DOI: 10.1107/S1600536803015964 Nagarajan Vembuet al. C12H9NO5S
o1213
organic papers
Acta Crystallographica Section E Structure Reports Online
ISSN 1600-5368
Phenyl 3-nitrobenzenesulfonate
Nagarajan Vembu,aMaruthai
Nallu,a* Elinor C. Spencerband
Judith A. K. Howardb
aDepartment of Chemistry, Bharathidasan
University, Tiruchirappalli 620 024, India, and
bDepartment of Chemistry, Durham University,
Durham DH1 3LE, England
Correspondence e-mail: [email protected]
Key indicators Single-crystal X-ray study T= 120 K
Mean(C±C) = 0.004 AÊ Rfactor = 0.043 wRfactor = 0.060
Data-to-parameter ratio = 12.0
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved
In the title molecule, C12H9NO5S, there are weak CÐH O interactions which generate rings of motifsS(5),S(6),R21(4), R12(5), R22(7) and R22(13). The supramolecular aggregation is completed by the presence of CÐH interactions.
Comment
Aromatic sulfonates are used in monitoring the merging of lipids (Yachiet al., 1989) and in many other ®elds. An X-ray study of the title compound, (I), was undertaken in view of the biological importance of its analogues and also to compare its structural parameters with those of its precursor, 3-nitro-benzenesulfonyl chloride (Vembu, Nallu, Spencer & Howard, 2003c).
The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters in Table 1. The dihedral angle between the mean planes of the 3-nitrobenzene and phenyl rings is 38.76 (8). This non-coplanar orientation is similar to that found in some other aromatic sulfonates (Vembu, Nallu, Garrison & Youngs, 2003b,c,d,e; Vembu, Nallu, Spencer & Howard, 2003a,b), and is in contrast to the near coplanar orientation found in the 2,4-dinitrophenyl (Vembu, Nallu, Garrison & Youngs, 2003a) and 4-methoxyphenyl (Vembu, Nallu, Garrison, Hindi & Youngs, 2003) derivatives.
Received 14 July 2003 Accepted 21 July 2003 Online 31 July 2003
Figure 1
organic papers
o1214
Nagarajan Vembuet al. C12H9NO5S Acta Cryst.(2003). E59, o1213±o1215The crystal structure of (I) is stabilized by weak CÐH O interactions (Table 2). The range of H O distances found in
(I) agrees with that found for weak CÐH O bonds
(Desiraju & Steiner, 1999). As shown in Fig. 2, each of the
C2ÐH2 O1, C4ÐH4 O4, C6ÐH6 O2 and C6Ð
H6 O3 interactions generates rings of graph-set motif S(5) (Etter, 1990; Bernstein et al., 1995). The C6ÐH6 O2 and C6ÐH6 O3 interactions together constitute a pair of bifurcated donor bonds. The C12ÐH12 O4 interaction generates an S(6) motif. The C12ÐH12 O4 and C4Ð H4 O4 interactions together constitute a pair of bifurcated
acceptor bonds. The C3ÐH3 O3iand C3ÐH3 O5i inter-actions constitute a pair of bifurcated donor bonds, generating a symmetrical three-centre hydrogen-bonded chelate motif (Fig. 3) of graph-setR21(4) (symmetry codes are as in Table 2). The C4ÐH4 O3iand C3ÐH3 O3iinteractions constitute a pair of bifurcated acceptor bonds, generating a ring of graph-setR12(5). The C3ÐH3 O5iand C4ÐH4 O3iinteractions together generate anR22(7) motif, which consists ofR21(4) and R12(5) motifs. The C9ÐH9 O3iiand C3ÐH3 O4ii interac-tions together form a sulfonyl bifurcated motif of graph-set R22(13). There are several other CÐH O interactions which contribute to the supramolecular aggregation of this structure. The supramolecular aggregation is completed by the presence of two CÐH interactions (Fig. 4 and Table 2; Spek, 1998).
Experimental
3±Nitrobenzenesulfonyl chloride (5 mmol) dissolved in acetone (4 ml) was added to phenol (5 mmol) in NaOH solution (2.5 ml, 8%) with constant shaking. The precipitated title compound, (I) (3.9 mmol, yield 78%), was ®ltered off and recrystallized from ethanol.
Crystal data C12H9NO5S
Mr= 279.26
Orthorhombic,Pna21
a= 17.458 (4) AÊ
b= 12.287 (3) AÊ
c= 5.4891 (14) AÊ
V= 1177.4 (5) AÊ3
Z= 4
Dx= 1.575 Mg mÿ3
MoKradiation Cell parameters from 713
re¯ections
= 2.9±25.7
= 0.29 mmÿ1
T= 120 (2) K Block, colourless 0.160.140.09 mm Figure 2
Diagram showing hydrogen bonds 1±5 (the numbers relate to the sequence of entries in Table 2).
Figure 4
The packing of molecules, viewed along thecaxis, showing the CÐH interactions.
Figure 3
Data collection
Bruker ProteumMdiffractometer
!scans
Absorption correction: none 7868 measured re¯ections 2392 independent re¯ections 1838 re¯ections withI> 2(I)
Rint= 0.059
max= 27.5
h=ÿ22!22
k=ÿ15!12
l=ÿ7!5
Re®nement Re®nement onF2
R[F2> 2(F2)] = 0.043
wR(F2) = 0.060
S= 0.91 2392 re¯ections 199 parameters
Only coordinates of H atoms re®ned
w= 1/[2(F
o2) + (0.0153P)2]
whereP= (Fo2+ 2Fc2)/3
(/)max< 0.001
max= 0.44 e AÊÿ3
min=ÿ0.47 e AÊÿ3
Absolute structure: (Flack, 1983), 897 Friedel pairs
Flack parameter =ÿ0.01 (8) Table 1
Selected geometric parameters (AÊ,).
C1ÐN1 1.480 (4) C5ÐS1 1.763 (3) C7ÐO5 1.427 (3) N1ÐO2 1.226 (3)
N1ÐO1 1.230 (3) O3ÐS1 1.4175 (18) O4ÐS1 1.418 (2) O5ÐS1 1.600 (2)
O2ÐN1ÐO1 124.3 (3) O2ÐN1ÐC1 118.1 (2) O1ÐN1ÐC1 117.6 (2) C7ÐO5ÐS1 117.36 (16) O3ÐS1ÐO4 120.78 (11)
O3ÐS1ÐO5 103.67 (10) O4ÐS1ÐO5 108.94 (11) O3ÐS1ÐC5 110.74 (13) O4ÐS1ÐC5 107.98 (13) O5ÐS1ÐC5 103.28 (11)
C7ÐO5ÐS1ÐC5 ÿ60.2 (2)
Table 2
Hydrogen-bonding geometry (AÊ,).
Cg2 is the centroid of the C7±C12 ring.
DÐH A DÐH H A D A DÐH A
C2ÐH2 O1 0.89 (2) 2.42 (3) 2.707 (4) 98.8 (18) C4ÐH4 O4 0.90 (2) 2.57 (2) 2.932 (3) 104.5 (17) C6ÐH6 O2 0.94 (2) 2.39 (2) 2.715 (4) 100.2 (15) C6ÐH6 O3 0.94 (2) 2.69 (2) 2.968 (3) 97.7 (16) C12ÐH12 O4 0.90 (3) 2.80 (2) 3.095 (3) 100.4 (18) C3ÐH3 O3i 1.00 (2) 2.80 (3) 3.426 (4) 121.2 (17)
C3ÐH3 O5i 1.00 (2) 2.67 (3) 3.647 (3) 165 (2)
C9ÐH9 O2i 0.93 (3) 2.87 (2) 3.399 (4) 117 (2)
C10ÐH10 O2i 0.94 (2) 2.58 (2) 3.260 (3) 129.6 (19)
C4ÐH4 O3i 0.90 (2) 2.75 (2) 3.364 (4) 127.0 (18)
C9ÐH9 O3ii 0.93 (3) 2.78 (3) 3.366 (4) 121.7 (19)
C3ÐH3 O4ii 1.00 (2) 2.65 (2) 3.170 (3) 112.2 (19)
C6ÐH6 O4iii 0.94 (2) 2.84 (2) 3.317 (3) 112.9 (15)
C10ÐH10 O1iv 0.94 (2) 2.48 (3) 3.219 (4) 135 (2)
C4ÐH4 Cg2 0.90 (2) 3.38 3.72 105 C12ÐH12 Cg2v 0.90 (3) 3.13 3.71 124
Symmetry codes: (i) 1
2ÿx;12y;zÿ12; (ii) 12ÿx;12y;12z; (iii) x;y;1z; (iv) 1
2x;12ÿy;zÿ1; (v) 1ÿx;ÿy;zÿ12.
All the H atoms were located from difference Fourier maps and their positional parameters were re®ned withUiso= 1.2Ueq(parent
atom). The CÐH bond lengths are in the range 0.89 (3)±1.00 (2) AÊ. Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.
NV thanks the University Grants Commission±SERO, Government of India, for the award of Faculty Improvement Programme Grant [TFTNBD097 dt., 07.07.99]. JAKH thanks the EPRSC for a Senior Research Fellowship. ECS thanks the EPRSC for support.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555±1573.
Bruker (1998).SMART-NTandSAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. & Steiner, T. (1999).The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.
Etter, M. C. (1990).Acc. Chem. Res.23, 120±126. Flack, H. D. (1983).Acta Cryst.A39, 876±881.
Sheldrick, G. M. (1998).SHELXTL.University of GoÈttingen, Germany. Spek, A. L. (1998).PLATON.Utrecht University, The Netherlands. Vembu, N., Nallu, M., Garrison, J., Hindi, K. & Youngs, W. J. (2003).Acta
Cryst.E59, o830±o832.
Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a).Acta Cryst.E59, o378±o380.
Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b).Acta Cryst.E59, o503±o505.
Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003c).Acta Cryst.E59, o776±o779.
Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003d).Acta Cryst.E59, o936±o938.
Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003e).Acta Cryst.E59, o1019±o1021.
Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003a).Acta Cryst.
E59, o1009±o1011.
Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003b).Acta Cryst.
E59, o1033±o1035.
Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003c).Acta Cryst.
E59, o1036±o1038.
Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989).Biochim. Biophys. Acta,978, 1±7.
supporting information
sup-1 Acta Cryst. (2003). E59, o1213–o1215
supporting information
Acta Cryst. (2003). E59, o1213–o1215 [https://doi.org/10.1107/S1600536803015964]
Phenyl 3-nitrobenzenesulfonate
Nagarajan Vembu, Maruthai Nallu, Elinor C. Spencer and Judith A. K. Howard
Phenyl 3-nitrobenzenesulfonate
Crystal data
C12H9NO5S
Mr = 279.26
Orthorhombic, Pna21 Hall symbol: P 2c -2n a = 17.458 (4) Å b = 12.287 (3) Å c = 5.4891 (14) Å V = 1177.4 (5) Å3
Z = 4 F(000) = 576
Dx = 1.575 Mg m−3
Melting point = 363–365 K Mo Kα radiation, λ = 0.71073 Å Cell parameters from 713 reflections θ = 2.9–25.7°
µ = 0.29 mm−1
T = 120 K Block, colourless 0.16 × 0.14 × 0.09 mm
Data collection
Bruker Proteum M diffractometer
Radiation source: Bede microsource Graphite monochromator
Detector resolution: 8 pixels mm-1 /w scans
7868 measured reflections
2392 independent reflections 1838 reflections with I > 2σ(I) Rint = 0.059
θmax = 27.5°, θmin = 2.9°
h = −22→22 k = −15→12 l = −7→5
Refinement
Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.043
wR(F2) = 0.060
S = 0.91 2392 reflections 199 parameters 1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map Only H-atom coordinates refined
w = 1/[σ2(F
o2) + (0.0153P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001
Δρmax = 0.44 e Å−3 Δρmin = −0.47 e Å−3
Absolute structure: (Flack, 1983), 897 Friedel pairs
Absolute structure parameter: −0.01 (8)
Special details
supporting information
sup-2 Acta Cryst. (2003). E59, o1213–o1215
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
C1 0.11247 (15) 0.0630 (2) 0.7016 (6) 0.0182 (6)
C2 0.11324 (17) 0.1622 (2) 0.5871 (5) 0.0199 (7)
H2 0.0838 (16) 0.217 (2) 0.639 (5) 0.024*
C3 0.15896 (17) 0.1769 (2) 0.3843 (5) 0.0217 (8)
H3 0.1607 (14) 0.2488 (19) 0.299 (5) 0.026*
C4 0.20411 (15) 0.0918 (2) 0.3034 (6) 0.0184 (6)
H4 0.2345 (14) 0.099 (2) 0.171 (5) 0.022*
C5 0.20319 (15) −0.0061 (2) 0.4260 (5) 0.0160 (6)
C6 0.15734 (16) −0.0239 (2) 0.6291 (5) 0.0159 (6)
H6 0.1562 (13) −0.089 (2) 0.724 (5) 0.019*
C7 0.37909 (15) 0.0097 (2) 0.4286 (6) 0.0176 (6)
C8 0.36942 (16) 0.0896 (2) 0.6005 (6) 0.0212 (7)
H8 0.3416 (15) 0.074 (2) 0.734 (5) 0.025*
C9 0.40583 (17) 0.1882 (2) 0.5661 (6) 0.0231 (7)
H9 0.4006 (15) 0.2436 (19) 0.681 (6) 0.028*
C10 0.44987 (16) 0.2057 (2) 0.3633 (6) 0.0220 (7)
H10 0.4720 (14) 0.276 (2) 0.336 (6) 0.026*
C11 0.45943 (16) 0.1234 (2) 0.1933 (6) 0.0234 (7)
H11 0.4901 (15) 0.136 (2) 0.061 (5) 0.028*
C12 0.42409 (16) 0.0234 (2) 0.2258 (6) 0.0206 (7)
H12 0.4291 (14) −0.031 (2) 0.112 (5) 0.025*
N1 0.06214 (13) 0.0485 (2) 0.9160 (4) 0.0238 (6)
O1 0.02181 (11) 0.12588 (16) 0.9769 (4) 0.0314 (6)
O2 0.06358 (11) −0.03936 (16) 1.0221 (4) 0.0287 (5)
O3 0.23727 (11) −0.21412 (14) 0.4141 (3) 0.0249 (5)
O4 0.27614 (11) −0.09700 (14) 0.0710 (3) 0.0251 (5)
O5 0.34119 (11) −0.09175 (14) 0.4680 (3) 0.0198 (5)
S1 0.26294 (4) −0.11242 (5) 0.32360 (13) 0.01894 (15)
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
C1 0.0139 (15) 0.0243 (16) 0.0163 (15) −0.0034 (11) −0.0031 (14) −0.0026 (14)
C2 0.0197 (17) 0.0186 (16) 0.0214 (18) 0.0025 (13) −0.0037 (15) −0.0052 (14)
C3 0.0210 (16) 0.0164 (15) 0.028 (2) −0.0033 (12) −0.0079 (14) 0.0023 (13)
C4 0.0167 (14) 0.0229 (15) 0.0155 (14) −0.0031 (11) −0.0021 (14) −0.0011 (15)
C5 0.0131 (14) 0.0168 (14) 0.0180 (16) 0.0011 (11) −0.0039 (13) −0.0034 (12)
C6 0.0167 (15) 0.0162 (14) 0.0148 (16) −0.0020 (12) −0.0051 (12) −0.0020 (12)
C7 0.0149 (14) 0.0172 (14) 0.0208 (17) 0.0029 (12) −0.0011 (14) 0.0039 (13)
supporting information
sup-3 Acta Cryst. (2003). E59, o1213–o1215
C9 0.0193 (17) 0.0271 (18) 0.023 (2) 0.0014 (13) −0.0037 (15) −0.0044 (14)
C10 0.0173 (15) 0.0222 (15) 0.026 (2) −0.0026 (12) −0.0031 (14) 0.0054 (14)
C11 0.0210 (17) 0.0300 (18) 0.0193 (16) 0.0029 (13) 0.0053 (15) 0.0020 (16)
C12 0.0193 (16) 0.0213 (16) 0.0211 (18) 0.0060 (12) 0.0002 (15) −0.0014 (13)
N1 0.0198 (14) 0.0341 (15) 0.0174 (14) −0.0037 (12) −0.0021 (12) −0.0067 (12)
O1 0.0266 (13) 0.0356 (13) 0.0321 (14) 0.0070 (10) 0.0039 (11) −0.0120 (11)
O2 0.0294 (13) 0.0319 (12) 0.0249 (12) −0.0061 (10) 0.0051 (11) 0.0028 (10)
O3 0.0254 (11) 0.0193 (10) 0.0301 (13) −0.0028 (9) −0.0015 (11) −0.0031 (8)
O4 0.0297 (12) 0.0261 (11) 0.0195 (11) 0.0043 (9) −0.0003 (10) −0.0042 (10)
O5 0.0174 (10) 0.0206 (10) 0.0214 (11) 0.0012 (8) −0.0017 (9) 0.0049 (8)
S1 0.0206 (3) 0.0175 (3) 0.0187 (3) 0.0016 (3) 0.0006 (4) −0.0016 (4)
Geometric parameters (Å, º)
C1—C2 1.371 (4) C8—C9 1.382 (4)
C1—C6 1.382 (4) C8—H8 0.90 (3)
C1—N1 1.480 (4) C9—C10 1.370 (4)
C2—C3 1.382 (4) C9—H9 0.93 (3)
C2—H2 0.89 (3) C10—C11 1.386 (4)
C3—C4 1.382 (4) C10—H10 0.95 (2)
C3—H3 1.00 (2) C11—C12 1.387 (4)
C4—C5 1.379 (4) C11—H11 0.91 (3)
C4—H4 0.90 (3) C12—H12 0.92 (3)
C5—C6 1.390 (4) N1—O2 1.226 (3)
C5—S1 1.763 (3) N1—O1 1.230 (3)
C6—H6 0.96 (3) O3—S1 1.4175 (18)
C7—C8 1.372 (4) O4—S1 1.418 (2)
C7—C12 1.373 (4) O5—S1 1.600 (2)
C7—O5 1.427 (3)
C2—C1—C6 123.3 (3) C9—C8—H8 123.0 (17)
C2—C1—N1 118.5 (3) C10—C9—C8 120.5 (3)
C6—C1—N1 118.2 (2) C10—C9—H9 119.4 (17)
C1—C2—C3 119.4 (3) C8—C9—H9 120.1 (17)
C1—C2—H2 121.1 (18) C9—C10—C11 120.0 (3)
C3—C2—H2 119.5 (18) C9—C10—H10 119.9 (18)
C2—C3—C4 119.3 (3) C11—C10—H10 120.1 (18)
C2—C3—H3 120.7 (15) C12—C11—C10 120.4 (3)
C4—C3—H3 120.0 (15) C12—C11—H11 120.6 (17)
C5—C4—C3 119.8 (3) C10—C11—H11 119.0 (17)
C5—C4—H4 118.7 (17) C7—C12—C11 117.9 (3)
C3—C4—H4 121.6 (17) C7—C12—H12 121.2 (17)
C4—C5—C6 122.4 (3) C11—C12—H12 120.8 (17)
C4—C5—S1 118.9 (2) O2—N1—O1 124.3 (3)
C6—C5—S1 118.7 (2) O2—N1—C1 118.1 (2)
C1—C6—C5 115.9 (3) O1—N1—C1 117.6 (2)
C1—C6—H6 118.7 (15) C7—O5—S1 117.36 (16)
supporting information
sup-4 Acta Cryst. (2003). E59, o1213–o1215
C8—C7—C12 122.7 (3) O3—S1—O5 103.67 (10)
C8—C7—O5 117.6 (3) O4—S1—O5 108.94 (11)
C12—C7—O5 119.7 (3) O3—S1—C5 110.74 (13)
C7—C8—C9 118.5 (3) O4—S1—C5 107.98 (13)
C7—C8—H8 118.4 (17) O5—S1—C5 103.28 (11)
C6—C1—C2—C3 2.1 (4) C10—C11—C12—C7 0.8 (4)
N1—C1—C2—C3 −179.0 (2) C2—C1—N1—O2 −177.7 (3)
C1—C2—C3—C4 −1.2 (4) C6—C1—N1—O2 1.3 (4)
C2—C3—C4—C5 −0.2 (4) C2—C1—N1—O1 1.9 (4)
C3—C4—C5—C6 0.8 (4) C6—C1—N1—O1 −179.1 (2)
C3—C4—C5—S1 −178.5 (2) C8—C7—O5—S1 100.0 (3)
C2—C1—C6—C5 −1.4 (4) C12—C7—O5—S1 −80.9 (3)
N1—C1—C6—C5 179.6 (2) C7—O5—S1—O3 −175.80 (19)
C4—C5—C6—C1 0.0 (4) C7—O5—S1—O4 54.4 (2)
S1—C5—C6—C1 179.3 (2) C7—O5—S1—C5 −60.2 (2)
C12—C7—C8—C9 0.8 (4) C4—C5—S1—O3 −160.8 (2)
O5—C7—C8—C9 179.8 (2) C6—C5—S1—O3 19.8 (2)
C7—C8—C9—C10 0.6 (5) C4—C5—S1—O4 −26.5 (2)
C8—C9—C10—C11 −1.3 (5) C6—C5—S1—O4 154.1 (2)
C9—C10—C11—C12 0.5 (4) C4—C5—S1—O5 88.8 (2)
C8—C7—C12—C11 −1.5 (4) C6—C5—S1—O5 −90.6 (2)
O5—C7—C12—C11 179.5 (2)
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
C2—H2···O1 0.89 (2) 2.42 (3) 2.707 (4) 98.8 (18)
C4—H4···O4 0.90 (2) 2.57 (2) 2.932 (3) 104.5 (17)
C6—H6···O2 0.94 (2) 2.39 (2) 2.715 (4) 100.2 (15)
C6—H6···O3 0.94 (2) 2.69 (2) 2.968 (3) 97.7 (16)
C12—H12···O4 0.90 (3) 2.80 (2) 3.095 (3) 100.4 (18)
C3—H3···O3i 1.00 (2) 2.80 (3) 3.426 (4) 121.2 (17)
C3—H3···O5i 1.00 (2) 2.67 (3) 3.647 (3) 165 (2)
C9—H9···O2i 0.93 (3) 2.87 (2) 3.399 (4) 117 (2)
C10—H10···O2i 0.94 (2) 2.58 (2) 3.260 (3) 129.6 (19)
C4—H4···O3i 0.90 (2) 2.75 (2) 3.364 (4) 127.0 (18)
C9—H9···O3ii 0.93 (3) 2.78 (3) 3.366 (4) 121.7 (19)
C3—H3···O4ii 1.00 (2) 2.65 (2) 3.170 (3) 112.2 (19)
C6—H6···O4iii 0.94 (2) 2.84 (2) 3.317 (3) 112.9 (15)
C10—H10···O1iv 0.94 (2) 2.48 (3) 3.219 (4) 135 (2)
C4—H4···Cg2 0.90 (2) 3.38 3.72 105
C12—H12···Cg2v 0.90 (3) 3.13 3.71 124