• No results found

Phenyl 3 nitro­benzene­sulfonate

N/A
N/A
Protected

Academic year: 2020

Share "Phenyl 3 nitro­benzene­sulfonate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2003). E59, o1213±o1215 DOI: 10.1107/S1600536803015964 Nagarajan Vembuet al. C12H9NO5S

o1213

organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Phenyl 3-nitrobenzenesulfonate

Nagarajan Vembu,aMaruthai

Nallu,a* Elinor C. Spencerband

Judith A. K. Howardb

aDepartment of Chemistry, Bharathidasan

University, Tiruchirappalli 620 024, India, and

bDepartment of Chemistry, Durham University,

Durham DH1 3LE, England

Correspondence e-mail: [email protected]

Key indicators Single-crystal X-ray study T= 120 K

Mean(C±C) = 0.004 AÊ Rfactor = 0.043 wRfactor = 0.060

Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title molecule, C12H9NO5S, there are weak CÐH O interactions which generate rings of motifsS(5),S(6),R21(4), R12(5), R22(7) and R22(13). The supramolecular aggregation is completed by the presence of CÐH interactions.

Comment

Aromatic sulfonates are used in monitoring the merging of lipids (Yachiet al., 1989) and in many other ®elds. An X-ray study of the title compound, (I), was undertaken in view of the biological importance of its analogues and also to compare its structural parameters with those of its precursor, 3-nitro-benzenesulfonyl chloride (Vembu, Nallu, Spencer & Howard, 2003c).

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters in Table 1. The dihedral angle between the mean planes of the 3-nitrobenzene and phenyl rings is 38.76 (8). This non-coplanar orientation is similar to that found in some other aromatic sulfonates (Vembu, Nallu, Garrison & Youngs, 2003b,c,d,e; Vembu, Nallu, Spencer & Howard, 2003a,b), and is in contrast to the near coplanar orientation found in the 2,4-dinitrophenyl (Vembu, Nallu, Garrison & Youngs, 2003a) and 4-methoxyphenyl (Vembu, Nallu, Garrison, Hindi & Youngs, 2003) derivatives.

Received 14 July 2003 Accepted 21 July 2003 Online 31 July 2003

Figure 1

(2)

organic papers

o1214

Nagarajan Vembuet al. C12H9NO5S Acta Cryst.(2003). E59, o1213±o1215

The crystal structure of (I) is stabilized by weak CÐH O interactions (Table 2). The range of H O distances found in

(I) agrees with that found for weak CÐH O bonds

(Desiraju & Steiner, 1999). As shown in Fig. 2, each of the

C2ÐH2 O1, C4ÐH4 O4, C6ÐH6 O2 and C6Ð

H6 O3 interactions generates rings of graph-set motif S(5) (Etter, 1990; Bernstein et al., 1995). The C6ÐH6 O2 and C6ÐH6 O3 interactions together constitute a pair of bifurcated donor bonds. The C12ÐH12 O4 interaction generates an S(6) motif. The C12ÐH12 O4 and C4Ð H4 O4 interactions together constitute a pair of bifurcated

acceptor bonds. The C3ÐH3 O3iand C3ÐH3 O5i inter-actions constitute a pair of bifurcated donor bonds, generating a symmetrical three-centre hydrogen-bonded chelate motif (Fig. 3) of graph-setR21(4) (symmetry codes are as in Table 2). The C4ÐH4 O3iand C3ÐH3 O3iinteractions constitute a pair of bifurcated acceptor bonds, generating a ring of graph-setR12(5). The C3ÐH3 O5iand C4ÐH4 O3iinteractions together generate anR22(7) motif, which consists ofR21(4) and R12(5) motifs. The C9ÐH9 O3iiand C3ÐH3 O4ii interac-tions together form a sulfonyl bifurcated motif of graph-set R22(13). There are several other CÐH O interactions which contribute to the supramolecular aggregation of this structure. The supramolecular aggregation is completed by the presence of two CÐH interactions (Fig. 4 and Table 2; Spek, 1998).

Experimental

3±Nitrobenzenesulfonyl chloride (5 mmol) dissolved in acetone (4 ml) was added to phenol (5 mmol) in NaOH solution (2.5 ml, 8%) with constant shaking. The precipitated title compound, (I) (3.9 mmol, yield 78%), was ®ltered off and recrystallized from ethanol.

Crystal data C12H9NO5S

Mr= 279.26

Orthorhombic,Pna21

a= 17.458 (4) AÊ

b= 12.287 (3) AÊ

c= 5.4891 (14) AÊ

V= 1177.4 (5) AÊ3

Z= 4

Dx= 1.575 Mg mÿ3

MoKradiation Cell parameters from 713

re¯ections

= 2.9±25.7

= 0.29 mmÿ1

T= 120 (2) K Block, colourless 0.160.140.09 mm Figure 2

Diagram showing hydrogen bonds 1±5 (the numbers relate to the sequence of entries in Table 2).

Figure 4

The packing of molecules, viewed along thecaxis, showing the CÐH interactions.

Figure 3

(3)

Data collection

Bruker ProteumMdiffractometer

!scans

Absorption correction: none 7868 measured re¯ections 2392 independent re¯ections 1838 re¯ections withI> 2(I)

Rint= 0.059

max= 27.5

h=ÿ22!22

k=ÿ15!12

l=ÿ7!5

Re®nement Re®nement onF2

R[F2> 2(F2)] = 0.043

wR(F2) = 0.060

S= 0.91 2392 re¯ections 199 parameters

Only coordinates of H atoms re®ned

w= 1/[2(F

o2) + (0.0153P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.44 e AÊÿ3

min=ÿ0.47 e AÊÿ3

Absolute structure: (Flack, 1983), 897 Friedel pairs

Flack parameter =ÿ0.01 (8) Table 1

Selected geometric parameters (AÊ,).

C1ÐN1 1.480 (4) C5ÐS1 1.763 (3) C7ÐO5 1.427 (3) N1ÐO2 1.226 (3)

N1ÐO1 1.230 (3) O3ÐS1 1.4175 (18) O4ÐS1 1.418 (2) O5ÐS1 1.600 (2)

O2ÐN1ÐO1 124.3 (3) O2ÐN1ÐC1 118.1 (2) O1ÐN1ÐC1 117.6 (2) C7ÐO5ÐS1 117.36 (16) O3ÐS1ÐO4 120.78 (11)

O3ÐS1ÐO5 103.67 (10) O4ÐS1ÐO5 108.94 (11) O3ÐS1ÐC5 110.74 (13) O4ÐS1ÐC5 107.98 (13) O5ÐS1ÐC5 103.28 (11)

C7ÐO5ÐS1ÐC5 ÿ60.2 (2)

Table 2

Hydrogen-bonding geometry (AÊ,).

Cg2 is the centroid of the C7±C12 ring.

DÐH A DÐH H A D A DÐH A

C2ÐH2 O1 0.89 (2) 2.42 (3) 2.707 (4) 98.8 (18) C4ÐH4 O4 0.90 (2) 2.57 (2) 2.932 (3) 104.5 (17) C6ÐH6 O2 0.94 (2) 2.39 (2) 2.715 (4) 100.2 (15) C6ÐH6 O3 0.94 (2) 2.69 (2) 2.968 (3) 97.7 (16) C12ÐH12 O4 0.90 (3) 2.80 (2) 3.095 (3) 100.4 (18) C3ÐH3 O3i 1.00 (2) 2.80 (3) 3.426 (4) 121.2 (17)

C3ÐH3 O5i 1.00 (2) 2.67 (3) 3.647 (3) 165 (2)

C9ÐH9 O2i 0.93 (3) 2.87 (2) 3.399 (4) 117 (2)

C10ÐH10 O2i 0.94 (2) 2.58 (2) 3.260 (3) 129.6 (19)

C4ÐH4 O3i 0.90 (2) 2.75 (2) 3.364 (4) 127.0 (18)

C9ÐH9 O3ii 0.93 (3) 2.78 (3) 3.366 (4) 121.7 (19)

C3ÐH3 O4ii 1.00 (2) 2.65 (2) 3.170 (3) 112.2 (19)

C6ÐH6 O4iii 0.94 (2) 2.84 (2) 3.317 (3) 112.9 (15)

C10ÐH10 O1iv 0.94 (2) 2.48 (3) 3.219 (4) 135 (2)

C4ÐH4 Cg2 0.90 (2) 3.38 3.72 105 C12ÐH12 Cg2v 0.90 (3) 3.13 3.71 124

Symmetry codes: (i) 1

2ÿx;12‡y;zÿ12; (ii) 12ÿx;12‡y;12‡z; (iii) x;y;1‡z; (iv) 1

2‡x;12ÿy;zÿ1; (v) 1ÿx;ÿy;zÿ12.

All the H atoms were located from difference Fourier maps and their positional parameters were re®ned withUiso= 1.2Ueq(parent

atom). The CÐH bond lengths are in the range 0.89 (3)±1.00 (2) AÊ. Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

NV thanks the University Grants Commission±SERO, Government of India, for the award of Faculty Improvement Programme Grant [TFTNBD097 dt., 07.07.99]. JAKH thanks the EPRSC for a Senior Research Fellowship. ECS thanks the EPRSC for support.

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555±1573.

Bruker (1998).SMART-NTandSAINT-NT. Versions 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Desiraju, G. R. & Steiner, T. (1999).The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.

Etter, M. C. (1990).Acc. Chem. Res.23, 120±126. Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Sheldrick, G. M. (1998).SHELXTL.University of GoÈttingen, Germany. Spek, A. L. (1998).PLATON.Utrecht University, The Netherlands. Vembu, N., Nallu, M., Garrison, J., Hindi, K. & Youngs, W. J. (2003).Acta

Cryst.E59, o830±o832.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003a).Acta Cryst.E59, o378±o380.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003b).Acta Cryst.E59, o503±o505.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003c).Acta Cryst.E59, o776±o779.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003d).Acta Cryst.E59, o936±o938.

Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003e).Acta Cryst.E59, o1019±o1021.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003a).Acta Cryst.

E59, o1009±o1011.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003b).Acta Cryst.

E59, o1033±o1035.

Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003c).Acta Cryst.

E59, o1036±o1038.

Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989).Biochim. Biophys. Acta,978, 1±7.

(4)

supporting information

sup-1 Acta Cryst. (2003). E59, o1213–o1215

supporting information

Acta Cryst. (2003). E59, o1213–o1215 [https://doi.org/10.1107/S1600536803015964]

Phenyl 3-nitrobenzenesulfonate

Nagarajan Vembu, Maruthai Nallu, Elinor C. Spencer and Judith A. K. Howard

Phenyl 3-nitrobenzenesulfonate

Crystal data

C12H9NO5S

Mr = 279.26

Orthorhombic, Pna21 Hall symbol: P 2c -2n a = 17.458 (4) Å b = 12.287 (3) Å c = 5.4891 (14) Å V = 1177.4 (5) Å3

Z = 4 F(000) = 576

Dx = 1.575 Mg m−3

Melting point = 363–365 K Mo radiation, λ = 0.71073 Å Cell parameters from 713 reflections θ = 2.9–25.7°

µ = 0.29 mm−1

T = 120 K Block, colourless 0.16 × 0.14 × 0.09 mm

Data collection

Bruker Proteum M diffractometer

Radiation source: Bede microsource Graphite monochromator

Detector resolution: 8 pixels mm-1 /w scans

7868 measured reflections

2392 independent reflections 1838 reflections with I > 2σ(I) Rint = 0.059

θmax = 27.5°, θmin = 2.9°

h = −22→22 k = −15→12 l = −7→5

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.043

wR(F2) = 0.060

S = 0.91 2392 reflections 199 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map Only H-atom coordinates refined

w = 1/[σ2(F

o2) + (0.0153P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.44 e Å−3 Δρmin = −0.47 e Å−3

Absolute structure: (Flack, 1983), 897 Friedel pairs

Absolute structure parameter: −0.01 (8)

Special details

(5)

supporting information

sup-2 Acta Cryst. (2003). E59, o1213–o1215

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.11247 (15) 0.0630 (2) 0.7016 (6) 0.0182 (6)

C2 0.11324 (17) 0.1622 (2) 0.5871 (5) 0.0199 (7)

H2 0.0838 (16) 0.217 (2) 0.639 (5) 0.024*

C3 0.15896 (17) 0.1769 (2) 0.3843 (5) 0.0217 (8)

H3 0.1607 (14) 0.2488 (19) 0.299 (5) 0.026*

C4 0.20411 (15) 0.0918 (2) 0.3034 (6) 0.0184 (6)

H4 0.2345 (14) 0.099 (2) 0.171 (5) 0.022*

C5 0.20319 (15) −0.0061 (2) 0.4260 (5) 0.0160 (6)

C6 0.15734 (16) −0.0239 (2) 0.6291 (5) 0.0159 (6)

H6 0.1562 (13) −0.089 (2) 0.724 (5) 0.019*

C7 0.37909 (15) 0.0097 (2) 0.4286 (6) 0.0176 (6)

C8 0.36942 (16) 0.0896 (2) 0.6005 (6) 0.0212 (7)

H8 0.3416 (15) 0.074 (2) 0.734 (5) 0.025*

C9 0.40583 (17) 0.1882 (2) 0.5661 (6) 0.0231 (7)

H9 0.4006 (15) 0.2436 (19) 0.681 (6) 0.028*

C10 0.44987 (16) 0.2057 (2) 0.3633 (6) 0.0220 (7)

H10 0.4720 (14) 0.276 (2) 0.336 (6) 0.026*

C11 0.45943 (16) 0.1234 (2) 0.1933 (6) 0.0234 (7)

H11 0.4901 (15) 0.136 (2) 0.061 (5) 0.028*

C12 0.42409 (16) 0.0234 (2) 0.2258 (6) 0.0206 (7)

H12 0.4291 (14) −0.031 (2) 0.112 (5) 0.025*

N1 0.06214 (13) 0.0485 (2) 0.9160 (4) 0.0238 (6)

O1 0.02181 (11) 0.12588 (16) 0.9769 (4) 0.0314 (6)

O2 0.06358 (11) −0.03936 (16) 1.0221 (4) 0.0287 (5)

O3 0.23727 (11) −0.21412 (14) 0.4141 (3) 0.0249 (5)

O4 0.27614 (11) −0.09700 (14) 0.0710 (3) 0.0251 (5)

O5 0.34119 (11) −0.09175 (14) 0.4680 (3) 0.0198 (5)

S1 0.26294 (4) −0.11242 (5) 0.32360 (13) 0.01894 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0139 (15) 0.0243 (16) 0.0163 (15) −0.0034 (11) −0.0031 (14) −0.0026 (14)

C2 0.0197 (17) 0.0186 (16) 0.0214 (18) 0.0025 (13) −0.0037 (15) −0.0052 (14)

C3 0.0210 (16) 0.0164 (15) 0.028 (2) −0.0033 (12) −0.0079 (14) 0.0023 (13)

C4 0.0167 (14) 0.0229 (15) 0.0155 (14) −0.0031 (11) −0.0021 (14) −0.0011 (15)

C5 0.0131 (14) 0.0168 (14) 0.0180 (16) 0.0011 (11) −0.0039 (13) −0.0034 (12)

C6 0.0167 (15) 0.0162 (14) 0.0148 (16) −0.0020 (12) −0.0051 (12) −0.0020 (12)

C7 0.0149 (14) 0.0172 (14) 0.0208 (17) 0.0029 (12) −0.0011 (14) 0.0039 (13)

(6)

supporting information

sup-3 Acta Cryst. (2003). E59, o1213–o1215

C9 0.0193 (17) 0.0271 (18) 0.023 (2) 0.0014 (13) −0.0037 (15) −0.0044 (14)

C10 0.0173 (15) 0.0222 (15) 0.026 (2) −0.0026 (12) −0.0031 (14) 0.0054 (14)

C11 0.0210 (17) 0.0300 (18) 0.0193 (16) 0.0029 (13) 0.0053 (15) 0.0020 (16)

C12 0.0193 (16) 0.0213 (16) 0.0211 (18) 0.0060 (12) 0.0002 (15) −0.0014 (13)

N1 0.0198 (14) 0.0341 (15) 0.0174 (14) −0.0037 (12) −0.0021 (12) −0.0067 (12)

O1 0.0266 (13) 0.0356 (13) 0.0321 (14) 0.0070 (10) 0.0039 (11) −0.0120 (11)

O2 0.0294 (13) 0.0319 (12) 0.0249 (12) −0.0061 (10) 0.0051 (11) 0.0028 (10)

O3 0.0254 (11) 0.0193 (10) 0.0301 (13) −0.0028 (9) −0.0015 (11) −0.0031 (8)

O4 0.0297 (12) 0.0261 (11) 0.0195 (11) 0.0043 (9) −0.0003 (10) −0.0042 (10)

O5 0.0174 (10) 0.0206 (10) 0.0214 (11) 0.0012 (8) −0.0017 (9) 0.0049 (8)

S1 0.0206 (3) 0.0175 (3) 0.0187 (3) 0.0016 (3) 0.0006 (4) −0.0016 (4)

Geometric parameters (Å, º)

C1—C2 1.371 (4) C8—C9 1.382 (4)

C1—C6 1.382 (4) C8—H8 0.90 (3)

C1—N1 1.480 (4) C9—C10 1.370 (4)

C2—C3 1.382 (4) C9—H9 0.93 (3)

C2—H2 0.89 (3) C10—C11 1.386 (4)

C3—C4 1.382 (4) C10—H10 0.95 (2)

C3—H3 1.00 (2) C11—C12 1.387 (4)

C4—C5 1.379 (4) C11—H11 0.91 (3)

C4—H4 0.90 (3) C12—H12 0.92 (3)

C5—C6 1.390 (4) N1—O2 1.226 (3)

C5—S1 1.763 (3) N1—O1 1.230 (3)

C6—H6 0.96 (3) O3—S1 1.4175 (18)

C7—C8 1.372 (4) O4—S1 1.418 (2)

C7—C12 1.373 (4) O5—S1 1.600 (2)

C7—O5 1.427 (3)

C2—C1—C6 123.3 (3) C9—C8—H8 123.0 (17)

C2—C1—N1 118.5 (3) C10—C9—C8 120.5 (3)

C6—C1—N1 118.2 (2) C10—C9—H9 119.4 (17)

C1—C2—C3 119.4 (3) C8—C9—H9 120.1 (17)

C1—C2—H2 121.1 (18) C9—C10—C11 120.0 (3)

C3—C2—H2 119.5 (18) C9—C10—H10 119.9 (18)

C2—C3—C4 119.3 (3) C11—C10—H10 120.1 (18)

C2—C3—H3 120.7 (15) C12—C11—C10 120.4 (3)

C4—C3—H3 120.0 (15) C12—C11—H11 120.6 (17)

C5—C4—C3 119.8 (3) C10—C11—H11 119.0 (17)

C5—C4—H4 118.7 (17) C7—C12—C11 117.9 (3)

C3—C4—H4 121.6 (17) C7—C12—H12 121.2 (17)

C4—C5—C6 122.4 (3) C11—C12—H12 120.8 (17)

C4—C5—S1 118.9 (2) O2—N1—O1 124.3 (3)

C6—C5—S1 118.7 (2) O2—N1—C1 118.1 (2)

C1—C6—C5 115.9 (3) O1—N1—C1 117.6 (2)

C1—C6—H6 118.7 (15) C7—O5—S1 117.36 (16)

(7)

supporting information

sup-4 Acta Cryst. (2003). E59, o1213–o1215

C8—C7—C12 122.7 (3) O3—S1—O5 103.67 (10)

C8—C7—O5 117.6 (3) O4—S1—O5 108.94 (11)

C12—C7—O5 119.7 (3) O3—S1—C5 110.74 (13)

C7—C8—C9 118.5 (3) O4—S1—C5 107.98 (13)

C7—C8—H8 118.4 (17) O5—S1—C5 103.28 (11)

C6—C1—C2—C3 2.1 (4) C10—C11—C12—C7 0.8 (4)

N1—C1—C2—C3 −179.0 (2) C2—C1—N1—O2 −177.7 (3)

C1—C2—C3—C4 −1.2 (4) C6—C1—N1—O2 1.3 (4)

C2—C3—C4—C5 −0.2 (4) C2—C1—N1—O1 1.9 (4)

C3—C4—C5—C6 0.8 (4) C6—C1—N1—O1 −179.1 (2)

C3—C4—C5—S1 −178.5 (2) C8—C7—O5—S1 100.0 (3)

C2—C1—C6—C5 −1.4 (4) C12—C7—O5—S1 −80.9 (3)

N1—C1—C6—C5 179.6 (2) C7—O5—S1—O3 −175.80 (19)

C4—C5—C6—C1 0.0 (4) C7—O5—S1—O4 54.4 (2)

S1—C5—C6—C1 179.3 (2) C7—O5—S1—C5 −60.2 (2)

C12—C7—C8—C9 0.8 (4) C4—C5—S1—O3 −160.8 (2)

O5—C7—C8—C9 179.8 (2) C6—C5—S1—O3 19.8 (2)

C7—C8—C9—C10 0.6 (5) C4—C5—S1—O4 −26.5 (2)

C8—C9—C10—C11 −1.3 (5) C6—C5—S1—O4 154.1 (2)

C9—C10—C11—C12 0.5 (4) C4—C5—S1—O5 88.8 (2)

C8—C7—C12—C11 −1.5 (4) C6—C5—S1—O5 −90.6 (2)

O5—C7—C12—C11 179.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C2—H2···O1 0.89 (2) 2.42 (3) 2.707 (4) 98.8 (18)

C4—H4···O4 0.90 (2) 2.57 (2) 2.932 (3) 104.5 (17)

C6—H6···O2 0.94 (2) 2.39 (2) 2.715 (4) 100.2 (15)

C6—H6···O3 0.94 (2) 2.69 (2) 2.968 (3) 97.7 (16)

C12—H12···O4 0.90 (3) 2.80 (2) 3.095 (3) 100.4 (18)

C3—H3···O3i 1.00 (2) 2.80 (3) 3.426 (4) 121.2 (17)

C3—H3···O5i 1.00 (2) 2.67 (3) 3.647 (3) 165 (2)

C9—H9···O2i 0.93 (3) 2.87 (2) 3.399 (4) 117 (2)

C10—H10···O2i 0.94 (2) 2.58 (2) 3.260 (3) 129.6 (19)

C4—H4···O3i 0.90 (2) 2.75 (2) 3.364 (4) 127.0 (18)

C9—H9···O3ii 0.93 (3) 2.78 (3) 3.366 (4) 121.7 (19)

C3—H3···O4ii 1.00 (2) 2.65 (2) 3.170 (3) 112.2 (19)

C6—H6···O4iii 0.94 (2) 2.84 (2) 3.317 (3) 112.9 (15)

C10—H10···O1iv 0.94 (2) 2.48 (3) 3.219 (4) 135 (2)

C4—H4···Cg2 0.90 (2) 3.38 3.72 105

C12—H12···Cg2v 0.90 (3) 3.13 3.71 124

References

Related documents

Most of the research exploring the causality relationship between official development assistance and economic growth are done using cross-sectional method and wider in

We stemmed the reference translations, pre- dicted the inflection for each stem, and measured the accuracy of prediction, using a set of sentences that were not part of the

These dynamic responses also help to understand why, under recursive preferences, volatility shocks induce consumption fluctuations that are perfectly negatively

Next we review the well-known Rényi’s axioms for symmetric measures and show how to modify the conditions for nonsymmetric measures. Rényi’s condition b) specifies symmetry but is

3. Bankers pays the interest rate for ZMDs that households deposit at time t − 1. The loan market between bankers and households open... The final good market and housing market

The present study was conducted to quantify and compare reflectivity (gloss or shine) of tooth surfaces treated with different cleanup protocols in which tungsten carbide

in langerhans cells of the epithelium, fibroblasts and endothelial cells of the connective tissue (arrows denote positive staining in Langerhans cells, fibroblasts and endothelial

In order to increase the robustness of our study we employ two empirical frameworks for our analysis; the first being the linear cointegration framework of Engle and