• No results found

6α Hydr­­oxy 12 oleanen 3 one: a triterpenoid from the stalks of Celastrus hypoleucus

N/A
N/A
Protected

Academic year: 2020

Share "6α Hydr­­oxy 12 oleanen 3 one: a triterpenoid from the stalks of Celastrus hypoleucus"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2022

Wanget al. C

30H48O2 doi:10.1107/S1600536805017216 Acta Cryst.(2005). E61, o2022–o2023

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

6a-Hydroxy-12-oleanen-3-one: a triterpenoid

from the stalks of

Celastrus hypoleucus

Kui-Wu Wang, Cui-Rong Sun, Xiao-Ji Cao and Yuan-Jiang Pan*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China

Correspondence e-mail: cheyjpan@css.zju.edu.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.037

wRfactor = 0.107 Data-to-parameter ratio = 9.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C30H48O2, is a triterpenoid which was

isolated from the stalks ofCelastrus hypoleucus(Oliv.)Warb. The molecule contains five six-membered rings adopting distorted boat, half-chair and chair conformations. The hydroxy groups serve as hydrogen-bond donors and the carbonyl groups as acceptors, forming molecular chains parallel to thebaxis.

Comment

Celastraceae plants have been the subject of continued and growing interest, due to the range of biological activities shown by many members of this family (Bruning & Wagner, 1978; Tu, 1990, 1991; Jianget al., 1996). Pharmaceutical studies and clinical practice have demonstrated that sesquiterpenes and triterpenes possess notable antibacterial, antitumour, insect antifeedant and cytoxic activities (Chen & Liang, 1999). Our investigation of the bioactive constituents of Celastrus hypoleucus(Oliv.) Warb., a perennial plant belonging to the Celastraceae family, led to the isolation of 6 -hydroxyl-12-oleanene-3-one, (I). The structure of (I) was elucidated by spectroscopic analysis, including two-dimensional NMR spectroscopy, and was confirmed by single-crystal X-ray diffraction analysis, the results of which are presented here.

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The molecule contains five six-membered rings (A atoms C1–C5/C10, BC5–C10, CC8/C9/ C11–C14, D C13–C18 and E C17–C22). Rings B, D and E

adopt chair conformations, while ring A adopts a slightly distorted boat conformation and ring C a slightly distorted half-chair conformation, as a result of the C3 carbonyl group and the C12 C13 double bond, respectively. All rings are

trans fused, except for the D/E junction, which is cis. The orientation of the hydroxy group is axial.

(2)

In the crystal structure of (I), the hydroxy groups serve as hydrogen-bond donors and the carbonyl groups as acceptors, forming molecular chains running parallel to thebaxis.

Experimental

Stalks ofCelastrus hypoleucus(Oliv.) Warb. were collected in Jiujiang city, Jiangxi Province, China, in September 2002. The shade-dried powder of the stalks (10 kg) was extracted at room temerature three times with methanol (3 20 l). The extracts were evaporatedin vacuo affording a gummy residue (514 g). This residue was parti-tioned in H2O and extracted at room temerature with petroleum ether (4 3000 ml). The petroleum ether extract (103 g) was adsorbed on to silica gel (100 g) and then subjected to column chromatography (silica gel, 1 kg, 200–300 mesh), eluted with petro-leum ether–AcOEt (gradients 10:0–0:10). The eluted fractions were evaluated by thin-layer chromatography and combined to give 16 main fractions. Fraction 8 (4 g) was rechromatographed on a silica-gel (80 g) column with petroleum ether–acetone (5:1) to afford the pure title compound, (I) (m. p. 492–494 K).13C NMR (125 MHz, CDCl

3,, p.p.m.): 219.6 (C3), 144.8 (C13), 121.9 (C12), 68.0 (C6), 59.0 (C5), 47.5 (C9), 47.4 (C4), 47.0 (C19), 45.9 (C18), 43.4 (C7), 42.3 (C8), 41.0 (C14), 39.2 (C1), 38.3 (C10), 37.3 (C22), 34.9 (C21), 33.5 (C29), 33.3 (C2), 32.8 (C17), 32.0 (C23), 31.3 (C20), 28.7 (C28), 27.2 (C16), 26.3 (C15), 26.0 (C27), 23.9 (C11), 23.9 (C30), 20.4 (C24), 17.5 (C25), 17.5 (C26). Crystals of (I) suitable for X-ray structure analysis were obtained by slow evaporation of a methanol solution at room temperature.

Crystal data

C30H48O2 Mr= 440.68

Orthorhombic,P212121 a= 11.5254 (14) A˚

b= 14.5357 (18) A˚

c= 15.769 (2) A˚

V= 2641.7 (6) A˚3

Z= 4

Dx= 1.108 Mg m

3

MoKradiation Cell parameters from 3643

reflections

= 2.2–21.5 = 0.07 mm1

T= 293 (2) K Prism, colourless 0.460.400.33 mm

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.037 wR(F2) = 0.107

S= 1.07 2915 reflections 299 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0518P)2 + 0.1992P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.13 e A˚

3

min=0.10 e A˚

3

Extinction correction:SHELXL97

(Sheldrick, 1997)

[image:2.610.45.293.73.192.2]

Extinction coefficient: 0.0025 (6)

Table 1

Selected geometric parameters (A˚ ,).

O1—C3 1.215 (3) O2—C6 1.432 (3) C2—C3 1.491 (3)

C3—C4 1.524 (3) C12—C13 1.330 (3) C3—C2—C1 112.2 (2)

O1—C3—C2 122.3 (2) O1—C3—C4 122.3 (2) C2—C3—C4 115.3 (2) C3—C4—C24 109.9 (2)

C3—C4—C23 103.8 (2) O2—C6—C7 109.01 (17) O2—C6—C5 108.53 (18) C7—C6—C5 110.97 (17) C1—C2—C3—O1 121.6 (3)

C1—C2—C3—C4 60.7 (3) O1—C3—C4—C24 24.4 (3) C2—C3—C4—C24 157.9 (2) O1—C3—C4—C23 90.4 (3) C2—C3—C4—C23 87.3 (2) O1—C3—C4—C5 152.0 (2)

C2—C3—C4—C5 30.4 (3) C3—C4—C5—C6 159.00 (19) C10—C5—C6—O2 178.24 (17) C4—C5—C6—O2 52.2 (2) C10—C5—C6—C7 58.5 (2) C4—C5—C6—C7 171.98 (18) O2—C6—C7—C8 178.33 (17)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O2—H2O O1i

0.82 2.08 2.901 (2) 175

Symmetry code: (i)xþ1;y1 2;zþ

3 2.

H atoms were placed in calculated positions, with C—H = 0.93– 0.97 A˚ and O—H = 0.82 A˚, and refined as riding atoms, withUiso(H) set equal to 1.2Ueq(C) or 1.5Ueq(O). The absolute configuration could not be determined from the X-ray analysis, as no strong anomalous scatterers are present; 2242 Friedel pairs were therefore merged before refinement.

Data collection:SMART(Bruker, 1999); cell refinement:SAINT

(Bruker, 1999); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1998); software used to prepare material for publication:SHELXTL.

This work was supported by the Natural Science Founda-tion of China (grant No. 20375036).

References

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

[image:2.610.314.567.206.345.2]

Bruker (1999).SMARTandSAINT. Bruker AXS Inc., Madison, Wisconsin,

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o2022–o2023

supporting information

Acta Cryst. (2005). E61, o2022–o2023 [https://doi.org/10.1107/S1600536805017216]

6

α

-Hydroxy-12-oleanen-3-one: a triterpenoid from the stalks of

Celastrus

hypoleucus

Kui-Wu Wang, Cui-Rong Sun, Xiao-Ji Cao and Yuan-Jiang Pan

6α-Hydroxy-12-oleanen-3-one

Crystal data

C30H48O2

Mr = 440.68

Orthorhombic, P212121

Hall symbol: P 2ac 2ab

a = 11.5254 (14) Å

b = 14.5357 (18) Å

c = 15.769 (2) Å

V = 2641.7 (6) Å3

Z = 4

F(000) = 976

Dx = 1.108 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3643 reflections

θ = 2.2–21.5°

µ = 0.07 mm−1

T = 293 K Prism, colourless 0.46 × 0.40 × 0.33 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

14520 measured reflections 2915 independent reflections

2407 reflections with I > 2σ(I)

Rint = 0.031

θmax = 26.0°, θmin = 1.9°

h = −14→14

k = −8→17

l = −19→19

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.037

wR(F2) = 0.107

S = 1.07 2915 reflections 299 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0518P)2 + 0.1992P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.13 e Å−3

Δρmin = −0.10 e Å−3

Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.50968 (19) 0.79481 (12) 0.82828 (11) 0.0785 (5) O2 0.39668 (17) 0.47970 (10) 0.68236 (11) 0.0678 (5) H2O 0.4191 0.4264 0.6779 0.102* C1 0.4647 (3) 0.80461 (15) 0.61170 (16) 0.0682 (7) H1A 0.5264 0.8487 0.6019 0.082* H1B 0.4059 0.8145 0.5686 0.082* C2 0.4114 (2) 0.82328 (16) 0.69866 (15) 0.0669 (7) H2A 0.4239 0.8873 0.7136 0.080* H2B 0.3283 0.8129 0.6958 0.080* C3 0.4621 (2) 0.76347 (16) 0.76592 (15) 0.0584 (6) C4 0.4458 (2) 0.66042 (15) 0.75275 (14) 0.0544 (5) C5 0.44156 (18) 0.63853 (13) 0.65508 (13) 0.0482 (5)

H5 0.3608 0.6484 0.6378 0.058*

C6 0.4693 (2) 0.53857 (13) 0.63255 (14) 0.0518 (5)

H6 0.5509 0.5258 0.6455 0.062*

C7 0.4468 (2) 0.52001 (14) 0.53911 (13) 0.0534 (5) H7A 0.3648 0.5290 0.5281 0.064* H7B 0.4645 0.4560 0.5276 0.064* C8 0.51612 (18) 0.58009 (13) 0.47699 (14) 0.0473 (5) C9 0.50315 (19) 0.68179 (12) 0.50502 (13) 0.0483 (5)

H9 0.4233 0.6985 0.4902 0.058*

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o2022–o2023

(6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.1128 (15) 0.0545 (9) 0.0683 (10) −0.0094 (10) −0.0166 (11) −0.0097 (8) O2 0.0940 (12) 0.0396 (8) 0.0697 (10) −0.0122 (9) −0.0022 (9) 0.0085 (8) C1 0.0982 (19) 0.0355 (11) 0.0710 (15) 0.0029 (12) −0.0052 (14) 0.0007 (11) C2 0.0828 (17) 0.0419 (12) 0.0760 (16) 0.0101 (12) −0.0044 (14) −0.0038 (11) C3 0.0650 (14) 0.0471 (12) 0.0631 (13) −0.0011 (11) −0.0011 (12) −0.0030 (11) C4 0.0614 (13) 0.0418 (11) 0.0599 (12) −0.0030 (10) −0.0062 (11) 0.0001 (10) C5 0.0493 (11) 0.0359 (10) 0.0593 (12) 0.0001 (9) −0.0086 (9) 0.0015 (9) C6 0.0599 (13) 0.0337 (10) 0.0620 (13) −0.0010 (9) −0.0071 (11) 0.0067 (9) C7 0.0656 (13) 0.0296 (9) 0.0651 (13) −0.0025 (10) −0.0070 (11) 0.0012 (9) C8 0.0451 (10) 0.0339 (10) 0.0631 (12) −0.0001 (9) −0.0047 (10) 0.0010 (9) C9 0.0507 (11) 0.0334 (9) 0.0607 (12) −0.0026 (9) −0.0040 (10) 0.0040 (9) C10 0.0564 (12) 0.0316 (9) 0.0613 (12) −0.0049 (9) −0.0076 (10) 0.0011 (9) C11 0.0857 (17) 0.0421 (12) 0.0710 (14) −0.0181 (12) 0.0024 (13) 0.0009 (11) C12 0.0749 (15) 0.0423 (12) 0.0649 (13) −0.0109 (11) 0.0088 (12) 0.0038 (10) C13 0.0496 (11) 0.0400 (10) 0.0634 (12) 0.0020 (9) 0.0036 (10) 0.0000 (10) C14 0.0463 (11) 0.0369 (10) 0.0627 (13) −0.0004 (9) −0.0006 (10) 0.0000 (9) C15 0.0727 (15) 0.0386 (11) 0.0799 (16) −0.0022 (11) −0.0083 (13) −0.0063 (11) C16 0.0727 (16) 0.0462 (12) 0.0799 (16) −0.0022 (12) −0.0013 (14) −0.0134 (12) C17 0.0615 (14) 0.0572 (14) 0.0796 (16) 0.0000 (12) 0.0089 (12) −0.0195 (13) C18 0.0642 (14) 0.0518 (12) 0.0639 (14) −0.0076 (12) 0.0147 (11) −0.0085 (11) C19 0.0849 (17) 0.0651 (15) 0.0578 (13) 0.0067 (14) 0.0069 (13) 0.0018 (12) C20 0.093 (2) 0.0814 (19) 0.0578 (14) −0.0102 (16) 0.0082 (14) 0.0015 (14) C21 0.103 (2) 0.095 (2) 0.0653 (16) −0.0250 (19) 0.0050 (16) −0.0129 (15) C22 0.104 (2) 0.0766 (18) 0.0804 (18) −0.0126 (19) 0.0229 (18) −0.0274 (16) C23 0.0774 (16) 0.0710 (16) 0.0704 (15) −0.0080 (14) 0.0040 (13) 0.0004 (14) C24 0.0870 (18) 0.0547 (14) 0.0681 (15) 0.0038 (13) −0.0186 (14) 0.0018 (12) C25 0.0633 (14) 0.0671 (15) 0.0754 (15) −0.0175 (12) −0.0100 (12) −0.0024 (13) C26 0.0563 (13) 0.0582 (14) 0.0840 (17) 0.0108 (11) −0.0095 (12) −0.0035 (13) C27 0.0491 (12) 0.0725 (15) 0.0643 (14) 0.0023 (11) −0.0030 (11) 0.0035 (12) C28 0.0663 (16) 0.099 (2) 0.128 (3) 0.0157 (17) 0.0121 (17) −0.036 (2) C29 0.123 (3) 0.159 (4) 0.0707 (19) 0.017 (3) −0.0072 (18) 0.019 (2) C30 0.162 (3) 0.092 (2) 0.0694 (17) −0.041 (2) 0.028 (2) −0.0069 (16)

Geometric parameters (Å, º)

O1—C3 1.215 (3) C16—H16A 0.9700

O2—C6 1.432 (3) C16—H16B 0.9700

O2—H2O 0.8200 C17—C28 1.533 (4)

C1—C2 1.527 (3) C17—C22 1.539 (4)

C1—C10 1.558 (3) C17—C18 1.540 (3)

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o2022–o2023

C3—C4 1.524 (3) C20—C29 1.513 (5)

C4—C24 1.528 (3) C20—C21 1.528 (4)

C4—C23 1.550 (4) C20—C30 1.549 (4)

C4—C5 1.573 (3) C21—C22 1.515 (5)

C5—C6 1.530 (3) C21—H21A 0.9700

C5—C10 1.547 (3) C21—H21B 0.9700

C5—H5 0.9800 C22—H22A 0.9700

C6—C7 1.520 (3) C22—H22B 0.9700

C6—H6 0.9800 C23—H23A 0.9600

C7—C8 1.536 (3) C23—H23B 0.9600

C7—H7A 0.9700 C23—H23C 0.9600

C7—H7B 0.9700 C24—H24A 0.9600

C8—C26 1.547 (3) C24—H24B 0.9600

C8—C9 1.550 (3) C24—H24C 0.9600

C8—C14 1.596 (3) C25—H25A 0.9600

C9—C11 1.540 (3) C25—H25B 0.9600

C9—C10 1.560 (3) C25—H25C 0.9600

C9—H9 0.9800 C26—H26A 0.9600

C10—C25 1.537 (3) C26—H26B 0.9600

C11—C12 1.485 (3) C26—H26C 0.9600

C11—H11A 0.9700 C27—H27A 0.9600

C11—H11B 0.9700 C27—H27B 0.9600

C12—C13 1.330 (3) C27—H27C 0.9600

C12—H12 0.9300 C28—H28A 0.9600

C13—C18 1.526 (3) C28—H28B 0.9600

C13—C14 1.535 (3) C28—H28C 0.9600

C14—C15 1.543 (3) C29—H29A 0.9600

C14—C27 1.552 (3) C29—H29B 0.9600

C15—C16 1.522 (3) C29—H29C 0.9600

C15—H15A 0.9700 C30—H30A 0.9600

C15—H15B 0.9700 C30—H30B 0.9600

C16—C17 1.538 (4) C30—H30C 0.9600

C6—O2—H2O 109.5 C17—C16—H16B 108.9 C2—C1—C10 114.19 (19) H16A—C16—H16B 107.7 C2—C1—H1A 108.7 C28—C17—C16 109.3 (3) C10—C1—H1A 108.7 C28—C17—C22 107.8 (2) C2—C1—H1B 108.7 C16—C17—C22 111.3 (2) C10—C1—H1B 108.7 C28—C17—C18 109.5 (2) H1A—C1—H1B 107.6 C16—C17—C18 108.4 (2) C3—C2—C1 112.2 (2) C22—C17—C18 110.6 (2) C3—C2—H2A 109.2 C13—C18—C19 112.03 (19) C1—C2—H2A 109.2 C13—C18—C17 112.7 (2) C3—C2—H2B 109.2 C19—C18—C17 113.4 (2)

C1—C2—H2B 109.2 C13—C18—H18 106.0

(8)

C2—C3—C4 115.3 (2) C20—C19—H19A 108.5 C3—C4—C24 109.9 (2) C18—C19—H19A 108.5 C3—C4—C23 103.8 (2) C20—C19—H19B 108.5 C24—C4—C23 107.5 (2) C18—C19—H19B 108.5 C3—C4—C5 109.64 (18) H19A—C19—H19B 107.5 C24—C4—C5 115.2 (2) C29—C20—C21 109.8 (3) C23—C4—C5 110.11 (19) C29—C20—C19 108.9 (3) C6—C5—C10 110.95 (18) C21—C20—C19 106.7 (2) C6—C5—C4 114.39 (17) C29—C20—C30 109.3 (3) C10—C5—C4 113.19 (17) C21—C20—C30 111.5 (3) C6—C5—H5 105.8 C19—C20—C30 110.7 (3) C10—C5—H5 105.8 C22—C21—C20 113.4 (3)

C4—C5—H5 105.8 C22—C21—H21A 108.9

O2—C6—C7 109.01 (17) C20—C21—H21A 108.9 O2—C6—C5 108.53 (18) C22—C21—H21B 108.9 C7—C6—C5 110.97 (17) C20—C21—H21B 108.9 O2—C6—H6 109.4 H21A—C21—H21B 107.7 C7—C6—H6 109.4 C21—C22—C17 115.4 (2)

C5—C6—H6 109.4 C21—C22—H22A 108.4

C6—C7—C8 115.36 (18) C17—C22—H22A 108.4 C6—C7—H7A 108.4 C21—C22—H22B 108.4 C8—C7—H7A 108.4 C17—C22—H22B 108.4 C6—C7—H7B 108.4 H22A—C22—H22B 107.5

C8—C7—H7B 108.4 C4—C23—H23A 109.5

H7A—C7—H7B 107.5 C4—C23—H23B 109.5 C7—C8—C26 108.51 (18) H23A—C23—H23B 109.5 C7—C8—C9 108.07 (17) C4—C23—H23C 109.5 C26—C8—C9 111.58 (18) H23A—C23—H23C 109.5 C7—C8—C14 110.87 (16) H23B—C23—H23C 109.5 C26—C8—C14 110.20 (19) C4—C24—H24A 109.5 C9—C8—C14 107.60 (16) C4—C24—H24B 109.5 C11—C9—C8 109.37 (18) H24A—C24—H24B 109.5 C11—C9—C10 112.48 (17) C4—C24—H24C 109.5 C8—C9—C10 118.76 (16) H24A—C24—H24C 109.5 C11—C9—H9 105.0 H24B—C24—H24C 109.5

C8—C9—H9 105.0 C10—C25—H25A 109.5

(9)

supporting information

sup-7 Acta Cryst. (2005). E61, o2022–o2023

H11A—C11—H11B 107.8 C14—C27—H27B 109.5 C13—C12—C11 126.5 (2) H27A—C27—H27B 109.5 C13—C12—H12 116.8 C14—C27—H27C 109.5 C11—C12—H12 116.8 H27A—C27—H27C 109.5 C12—C13—C18 118.4 (2) H27B—C27—H27C 109.5 C12—C13—C14 121.0 (2) C17—C28—H28A 109.5 C18—C13—C14 120.60 (18) C17—C28—H28B 109.5 C13—C14—C15 110.55 (18) H28A—C28—H28B 109.5 C13—C14—C27 108.07 (18) C17—C28—H28C 109.5 C15—C14—C27 105.69 (19) H28A—C28—H28C 109.5 C13—C14—C8 109.42 (16) H28B—C28—H28C 109.5 C15—C14—C8 111.50 (17) C20—C29—H29A 109.5 C27—C14—C8 111.52 (18) C20—C29—H29B 109.5 C16—C15—C14 114.07 (19) H29A—C29—H29B 109.5 C16—C15—H15A 108.7 C20—C29—H29C 109.5 C14—C15—H15A 108.7 H29A—C29—H29C 109.5 C16—C15—H15B 108.7 H29B—C29—H29C 109.5 C14—C15—H15B 108.7 C20—C30—H30A 109.5 H15A—C15—H15B 107.6 C20—C30—H30B 109.5 C15—C16—C17 113.3 (2) H30A—C30—H30B 109.5 C15—C16—H16A 108.9 C20—C30—H30C 109.5 C17—C16—H16A 108.9 H30A—C30—H30C 109.5 C15—C16—H16B 108.9 H30B—C30—H30C 109.5

(10)

C7—C8—C9—C11 175.25 (18) C15—C16—C17—C18 −59.5 (3) C26—C8—C9—C11 56.0 (2) C12—C13—C18—C19 −90.1 (3) C14—C8—C9—C11 −65.0 (2) C14—C13—C18—C19 86.5 (3) C7—C8—C9—C10 44.3 (3) C12—C13—C18—C17 140.7 (2) C26—C8—C9—C10 −74.9 (3) C14—C13—C18—C17 −42.7 (3) C14—C8—C9—C10 164.09 (17) C28—C17—C18—C13 −68.5 (3) C6—C5—C10—C25 −74.7 (2) C16—C17—C18—C13 50.7 (3) C4—C5—C10—C25 55.4 (2) C22—C17—C18—C13 172.9 (2) C6—C5—C10—C1 167.65 (19) C28—C17—C18—C19 163.0 (2) C4—C5—C10—C1 −62.2 (2) C16—C17—C18—C19 −77.9 (2) C6—C5—C10—C9 51.7 (2) C22—C17—C18—C19 44.3 (3) C4—C5—C10—C9 −178.11 (17) C13—C18—C19—C20 178.4 (2) C2—C1—C10—C25 −87.7 (3) C17—C18—C19—C20 −52.7 (3) C2—C1—C10—C5 31.9 (3) C18—C19—C20—C29 174.5 (3) C2—C1—C10—C9 150.5 (2) C18—C19—C20—C21 56.1 (3) C11—C9—C10—C25 −52.0 (2) C18—C19—C20—C30 −65.4 (3) C8—C9—C10—C25 77.5 (3) C29—C20—C21—C22 −173.7 (2) C11—C9—C10—C5 −176.72 (18) C19—C20—C21—C22 −55.9 (3) C8—C9—C10—C5 −47.2 (3) C30—C20—C21—C22 65.0 (3) C11—C9—C10—C1 65.7 (2) C20—C21—C22—C17 54.4 (3) C8—C9—C10—C1 −164.7 (2) C28—C17—C22—C21 −165.9 (3) C8—C9—C11—C12 42.9 (3) C16—C17—C22—C21 74.3 (3) C10—C9—C11—C12 177.1 (2) C18—C17—C22—C21 −46.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H2O···O1i 0.82 2.08 2.901 (2) 175

Figure

Table 1

References

Related documents

Registrar, Department of Urology, Lokmanya Tilak Municipal General Hospital and Lokmanya Tilak Municipal Medical College, Sion, Mumbai, Maharashtra, India. Associate

Knowledge-based WSD methods mainly ex- ploit two kinds of knowledge to disambiguate pol- ysemous words: 1) The gloss, which defines a word sense meaning, is mainly used in Lesk

This situation is more grave while receiving dental or medical treatment as the health professionals might be unaware about the special modes of communication causing

We study the role of labor market mismatch in the adjustment to a trade lib- eralization that results in the o¤shoring of high-tech production.. Our model features

The main contributions of our work, are as fol- lows: 1) We present a novel use for a neural lan- guage modeling approach that leverages shared context between documents within

To assess the effect of exchange rate misalignment on Senegal's economic performance, we estimate the real GDP growth equation explained by misalignment (measured by the BEER

However, in a follow-up experiment using a high-quality sample of high-income consumers, we find debt can no longer be explained by poor cognitive reflection and lack of self

In particular, the baseline 2SLS estimates indicates that one additional year of schooling is causally linked to a 6 percentage point increase in the likelihood of