• No results found

(Morpholine κN)(salicylaldehyde 4 nitro­benzoyl­hydrazonato κ3O,N,O′)copper(II)

N/A
N/A
Protected

Academic year: 2020

Share "(Morpholine κN)(salicylaldehyde 4 nitro­benzoyl­hydrazonato κ3O,N,O′)copper(II)"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1310

Yuanet al. [Cu(C

14H9N3O4)(C4H9NO)] doi:10.1107/S1600536805017642 Acta Cryst.(2005). E61, m1310–m1312 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(Morpholine-

j

N

)(salicylaldehyde

4-nitrobenzoyl-hydrazonato-

j

3

O

,

N

,

O

000

)copper(II)

Li-Hui Yuan, Qiong-Jie Wu and Shi-Xiong Liu*

Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, People’s Republic of China

Correspondence e-mail: shixiongliu@yahoo.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.006 A˚ Disorder in main residue

Rfactor = 0.054

wRfactor = 0.120

Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the structure of the title complex, [Cu(C14H9N3O4

)-(C4H9NO)], the Cu atom is coordinated by two O atoms

and one N atom from the N-salicylaldehyde p -nitrobenzoyl-hydrazone ligand and one N atom from a morpholine molecule, forming a square-planar Cu(ONO)(N) coordina-tion. The g factors derived by an electron paramagnetic resonance study are typical for square-planar complexes.

Comment

Hydrazone compounds have been investigated for many years (Mitra et al., 1996; Belicchi-Ferrari et al., 1999). Recently, much attention has been focused on the study of aroyl-hydrazone derivatives with aryl, aroyl and heteroaroyl Schiff bases (Iskander et al., 2001; Cariati et al., 2002), because of their ability to form polynuclear complexes through the additional O-donor atom from the carbonyl group (Singh, 1992; Liu et al., 2003). As part of our systematic research on new aroylhydrazone complexes, we report here the synthesis and characterization of the title copper(II) complex, (I), with theN-salicylaldehyde-p-nitrobenzoylhydrazone ligand (Wu & Liu, 2004).

The CuIIatom in complex (I) (Fig. 1) has a square-planar coordination (Khandar & Nejati, 2000; Adamset al., 1998; Lu

et al., 2003; Chan et al., 1995). The tridentate ligand coordi-nates to the CuIIatomviathe enolate O, the imine N and the deprotonated amide O atoms, forming one five-membered chelate ring (Cu/N1/N2/C8/O2) and one six-membered chelate ring (Cu/N1/C7/C2/C1/O1) (Ruiz-Perez et al., 1997). There is no significant deviation of the metal centre from the N2O2coordination plane, which shows a small but significant

tetrahedral distortion [maximum displacements from the least-squares plane are0.066 (3) and 0.046 (3) A˚ for atoms N1 and O2, respectively], as indicated by the deviations of the bond angles around Cu from the values expected for a regular square-planar geometry (Table 1). Such distortion is often observed in CuII complexes of tridentate chelating agents (Westet al., 1993; Aliet al., 1996, 2001). The Cu—O and Cu—

(2)

N bond lengths (Table 1) are in agreement with those found in analogous aroylhydrazone copper complexes (Cheng et al., 1996; Ruiz-Perezet al., 1997; Cariatiet al., 2002).

The electron paramagnetic resonance spectrum of (I) is quasi-isotropic and asymmetric. The values of the g factors (g? = 2.180 and gk = 2.047) are typical for square-planar compounds (Davidet al., 2001; Sulekh & Rajiv, 2005).

Experimental

All reagents were of analytical grade, available commercially and used without further purification. p-Nitrobenzoic ethyl ester and

p-nitrobenzoylhydrazine were prepared following the published procedure of Huang et al. (1997). The ligand was prepared by condensing 1 equivalent of salicylaldehyde and 1 equivalent of the correspondingp-nitrobenzoylhydrazine in ethanol (87.5% yield). The title compound was obtained by dissolving salicylaldehyde-p -nitro-benzoylhydrazone (0.0165 g, 0.05 mmol) in a mixture of dimethyl-formamide (2 ml) and methanol (6 ml), and adding a methanol solution (4 ml) containing CuCl22H2O (0.0170 g, 0.1 mmol) dropwise

to the mixture. After 10 min, ten drops of morpholine were added. The mixture was then stirred at room temperature for 1 h and filtered. Blue block-shaped crystals of (I) formed upon slow evaporation of the filtrate over a period of two weeks.

Crystal data

[Cu(C14H9N3O4)(C4H9NO)]

Mr= 433.90

Monoclinic,C2=c a= 15.054 (7) A˚

b= 6.538 (3) A˚

c= 36.230 (15) A˚

= 95.800 (6) V= 3548 (3) A˚3

Z= 8

Dx= 1.625 Mg m

3 MoKradiation Cell parameters from 3892

reflections

= 2.3–27.2 = 1.27 mm1

T= 293 (2) K Block, blue

0.100.080.05 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.885,Tmax= 0.938 8552 measured reflections

3892 independent reflections 2581 reflections withI> 2(I)

Rint= 0.044

max= 27.2

h=18!19

k=8!8

l=46!34

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.054

wR(F2) = 0.120

S= 1.04 3892 reflections 272 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.0497P)2 + 1.9541P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.44 e A˚ 3

[image:2.610.42.290.70.221.2]

min=0.38 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

Cu1—O1 1.886 (2)

Cu1—O2 1.923 (3)

Cu1—N1 1.924 (3)

Cu1—N4 2.019 (3)

O1—C1 1.312 (4)

O2—C8 1.296 (4)

O5—C17 1.414 (5)

O5—C16 1.414 (5)

N1—C7 1.279 (5)

N1—N2 1.406 (4)

N2—C8 1.294 (5)

N3—C12 1.456 (5)

N4—C15 1.470 (5)

N4—C18 1.477 (4)

O1—Cu1—O2 173.66 (10) O1—Cu1—N1 93.38 (12) O2—Cu1—N1 81.24 (12) O1—Cu1—N4 92.24 (11) O2—Cu1—N4 93.30 (11) N1—Cu1—N4 173.77 (12) C1—O1—Cu1 127.1 (2) C8—O2—Cu1 110.3 (2) C17—O5—C16 110.1 (3) C7—N1—N2 117.8 (3) C7—N1—Cu1 127.4 (3) N2—N1—Cu1 114.6 (2) C8—N2—N1 108.4 (3) O3B—N3—O4B 124.3 (16) O3B—N3—C12 118.7 (12)

O4B—N3—C12 116.8 (11) C15—N4—C18 108.9 (3) C15—N4—Cu1 116.0 (2) C18—N4—Cu1 114.5 (2) O1—C1—C6 118.6 (3) O1—C1—C2 124.7 (3) N1—C7—C2 124.7 (3) N2—C8—O2 125.4 (4) N2—C8—C9 118.4 (3) O2—C8—C9 116.1 (3) C13—C12—N3 118.7 (4) C11—C12—N3 119.5 (3) N4—C15—C16 112.6 (3) O5—C16—C15 112.1 (4) O5—C17—C18 111.6 (3)

All H atoms were placed in idealized positions (aromatic C—H = 0.93 A˚ , methine C—H = 0.93 A˚, morpholine C—H = 0.97 A˚ and N— H = 0.91 A˚ ) and refined using a riding model, with Uiso (H) =

1.5Ueq(C); the isotropic displacement parameter of the H atom

attached to N4 was allowed to vary freely. Atoms O3 and O4 of the nitro group are disordered over two positions; the final occupancy factors for the disordered atoms are both 0.5.

Data collection:SMART(Bruker, 1996); cell refinement:SAINT

(Bruker, 1994); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 2000); software used to prepare material for publication:SHELXTL.

The authors are grateful for financial support from the National Natural Science Foundation of China (grant Nos. 20431010 and 20171012).

References

Adams, H., Bucknall, R. M., Fenton, D. E., Garcia, M. & Oakes, J. (1998).

Polyhedron,17, 4169–4177.

Ali, M. A., Dey, K. K., Nazimuddin, M., Butcher, R. J., Smith, F. E., Jasinski, J. P. & Jasinski, J. M. (1996).Polyhedron,15, 3331–3339.

Ali, M. A., Mirza, A. H. & Butcher, R. J. (2001).Polyhedron,20, 1037–1043. Belicchi-Ferrari, M., Capacchi, S., Pelosi., G., Reffo, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (1999).Inorg. Chim. Acta,286, 134– 141.

metal-organic papers

Acta Cryst.(2005). E61, m1310–m1312 Yuanet al. [Cu(C

[image:2.610.312.565.220.429.2]

14H9N3O4)(C4H9NO)]

m1311

Figure 1

(3)

Bruker (2000). SADABS (Version 2.03), SAINT (Version 6.01), SMART

(Version 5.625) andSHELXTL(Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Cariati, F., Caruso, U., Centore, R., Marcolli, W., De Maria, A., Panunzi, B., Roviello, A. & Tuzi, A. (2002).Inorg. Chem.41, 6597–6603.

Chan, S. C., Koh, L. L., Leung, P. -H., Ranford, J. D. & Sim, K. Y. (1995).Inorg. Chim. Acta,236, 101–108.

Cheng, P., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H., Wang, G.-l., Yao, X.-K. & Wang, H.-G. (1996).Inorg. Chim. Acta,248, 135.–137.

David, L., Cra˘ciun, C., Cozar, O., Chis¸, V., Agut, C., Rusu, D. & Rusu, M. (2001).J. Mol. Struct.563–564, 573–578.

Huang, R. Q., Wang, H. L. & Zhou, J. (1997).The Preparation of Organic Intermediation, pp. 78, 109. Beijing: Chemistry Technical Pubishing Company.

Iskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001).Polyhedron,20, 2787–2798.

Khandar, A. A. & Nejati, K. (2000).Polyhedron,19, 607–613.

Liu, L., Ji, Y.-L., Jia, D.-Z. & Yu, K.-B. (2003).Chin. J. Struct. Chem.22, 568– 572.

Lu, W.-G., Feng, X.-L., Liu, H.-W. & Wang, S.-L. (2003).Chin. J. Inorg. Chem. 19, 206–210.

Mitra, A., Banerjee, T., Roychowdhury, P., Saha, N. & Das, S. (1996).

Polyhedron,15, 3371–3375.

Ruiz-Perez, C., Gonzalez-Platas, J., Lotter, H., Lezama, L., Solans, X., Dominguez, S., Martin-Zarza, P., Rocio, M. L., Palacios, M. S. & Gili, P. (1997).Inorg. Chim. Acta,255, 139–148.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Singh, G. (1992). Synth. React. Inorg. Met.-Org. Chem. 22, 1605– 1618.

Sulekh, C. & Rajiv, K. (2005).Spectrochim. Acta A,61, 437–446.

West, D. X., Gebremedhin, H., Butcher, R. J., Jasinski, J. P. & Liberta, A. E. (1993).Polyhedron,12, 2489–2497.

Wu, Q.-J. & Liu, S.-X. (2004).Chin. J. Inorg. Chem.110, 1179–1181.

metal-organic papers

m1312

Yuanet al. [Cu(C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, m1310–m1312

supporting information

Acta Cryst. (2005). E61, m1310–m1312 [https://doi.org/10.1107/S1600536805017642]

(Morpholine-

κ

N

)(salicylaldehyde

4-nitrobenzoylhydrazonato-κ

3

O

,

N

,

O

)copper(II)

Li-Hui Yuan, Qiong-Jie Wu and Shi-Xiong Liu

(N-Salicylaldehyde-p-nitrobenzoylhydrazonato-κ3O,N,O) (morpholine-κN)copper(II)

Crystal data

[Cu(C14H9N3O4)(C4H9NO)]

Mr = 433.90 Monoclinic, C2/c

Hall symbol: -C 2yc

a = 15.054 (7) Å

b = 6.538 (3) Å

c = 36.230 (15) Å

β = 95.800 (6)°

V = 3548 (3) Å3

Z = 8

F(000) = 1784

Dx = 1.625 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3892 reflections

θ = 2.3–27.2°

µ = 1.27 mm−1

T = 293 K Needle, blue

0.10 × 0.08 × 0.05 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.885, Tmax = 0.938

8552 measured reflections 3892 independent reflections 2581 reflections with I > 2σ(I)

Rint = 0.044

θmax = 27.2°, θmin = 2.3°

h = −18→19

k = −8→8

l = −46→34

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.054

wR(F2) = 0.120

S = 1.04 3892 reflections 272 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0497P)2 + 1.9541P] where P = (Fo2 + 2Fc2)/3

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, m1310–m1312

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Cu1 0.22389 (3) 0.07069 (7) 0.365297 (12) 0.03771 (16)

O1 0.22101 (16) −0.0999 (4) 0.32320 (7) 0.0426 (6)

O2 0.21382 (17) 0.2334 (4) 0.40890 (7) 0.0470 (7)

O3A 0.1385 (13) 0.738 (3) 0.5661 (6) 0.078 (5) 0.50

O4A 0.047 (2) 0.523 (4) 0.5802 (8) 0.068 (7) 0.50

O3B 0.067 (2) 0.499 (4) 0.5859 (8) 0.074 (8) 0.50

O4B 0.1075 (14) 0.786 (3) 0.5582 (6) 0.065 (4) 0.50

O5 0.46962 (17) 0.4718 (4) 0.33022 (8) 0.0531 (8)

N1 0.1515 (2) −0.1121 (5) 0.39117 (8) 0.0375 (7)

N2 0.1283 (2) −0.0373 (5) 0.42531 (8) 0.0445 (8)

N3 0.0962 (3) 0.5897 (6) 0.55969 (10) 0.0550 (9)

N4 0.30535 (18) 0.2736 (5) 0.34362 (8) 0.0354 (7)

H4N 0.2690 0.3525 0.3278 0.071 (15)*

C1 0.1774 (2) −0.2728 (6) 0.31768 (10) 0.0355 (8)

C2 0.1291 (2) −0.3717 (5) 0.34440 (10) 0.0356 (8)

C3 0.0872 (2) −0.5576 (6) 0.33542 (11) 0.0429 (9)

H3A 0.0562 −0.6217 0.3531 0.052*

C4 0.0897 (2) −0.6498 (6) 0.30170 (11) 0.0454 (10)

H4A 0.0614 −0.7745 0.2965 0.054*

C5 0.1355 (3) −0.5524 (6) 0.27543 (11) 0.0473 (10)

H5A 0.1368 −0.6109 0.2521 0.057*

C6 0.1788 (3) −0.3709 (6) 0.28340 (10) 0.0452 (10)

H6A 0.2101 −0.3109 0.2654 0.054*

C7 0.1180 (2) −0.2832 (6) 0.37965 (10) 0.0420 (9)

H7A 0.0840 −0.3550 0.3954 0.050*

C8 0.1644 (2) 0.1410 (6) 0.43099 (10) 0.0394 (9)

C9 0.1456 (2) 0.2563 (6) 0.46473 (10) 0.0376 (9)

C10 0.0987 (3) 0.1672 (6) 0.49192 (10) 0.0455 (10)

H10A 0.0784 0.0333 0.4889 0.055*

C11 0.0821 (3) 0.2743 (6) 0.52303 (10) 0.0461 (10)

H11A 0.0510 0.2145 0.5411 0.055*

C12 0.1126 (2) 0.4731 (6) 0.52681 (10) 0.0390 (9)

C13 0.1574 (3) 0.5654 (7) 0.50024 (11) 0.0480 (10)

H13A 0.1756 0.7010 0.5029 0.058*

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, m1310–m1312

H14A 0.2071 0.5162 0.4520 0.057*

C15 0.3525 (3) 0.4172 (7) 0.37000 (11) 0.0514 (11)

H15A 0.3908 0.3406 0.3882 0.062*

H15B 0.3091 0.4903 0.3831 0.062*

C16 0.4079 (3) 0.5684 (7) 0.35146 (12) 0.0569 (12)

H16A 0.3689 0.6560 0.3354 0.068*

H16B 0.4400 0.6540 0.3702 0.068*

C17 0.4242 (3) 0.3434 (7) 0.30314 (11) 0.0527 (11)

H17A 0.4673 0.2780 0.2888 0.063*

H17B 0.3847 0.4256 0.2863 0.063*

C18 0.3703 (3) 0.1813 (6) 0.32060 (11) 0.0461 (10)

H18A 0.3387 0.0988 0.3012 0.055*

H18B 0.4103 0.0922 0.3359 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.0403 (3) 0.0365 (3) 0.0380 (3) −0.0084 (2) 0.01202 (18) −0.0020 (2) O1 0.0536 (16) 0.0358 (16) 0.0413 (15) −0.0165 (12) 0.0183 (12) −0.0059 (12) O2 0.0580 (17) 0.0460 (17) 0.0404 (15) −0.0186 (13) 0.0215 (13) −0.0060 (13) O3A 0.098 (13) 0.070 (13) 0.070 (11) −0.035 (8) 0.032 (8) −0.038 (8) O4A 0.082 (9) 0.066 (10) 0.063 (11) −0.017 (9) 0.047 (10) 0.002 (7)

O3B 0.13 (2) 0.056 (7) 0.039 (6) 0.010 (7) 0.036 (9) −0.009 (6)

O4B 0.103 (13) 0.036 (6) 0.060 (7) −0.007 (6) 0.021 (7) −0.006 (4)

O5 0.0428 (15) 0.0512 (19) 0.0678 (19) −0.0171 (13) 0.0181 (13) −0.0080 (15) N1 0.0445 (18) 0.0353 (19) 0.0341 (17) −0.0055 (14) 0.0111 (13) −0.0012 (14) N2 0.054 (2) 0.043 (2) 0.0395 (18) −0.0119 (16) 0.0202 (15) −0.0057 (16)

N3 0.061 (2) 0.060 (3) 0.046 (2) −0.013 (2) 0.0140 (18) −0.014 (2)

N4 0.0330 (16) 0.0357 (18) 0.0388 (17) −0.0032 (14) 0.0106 (14) 0.0023 (14) C1 0.0325 (19) 0.033 (2) 0.042 (2) −0.0027 (16) 0.0077 (15) −0.0021 (17) C2 0.0318 (19) 0.037 (2) 0.039 (2) −0.0009 (15) 0.0076 (15) 0.0003 (16) C3 0.036 (2) 0.042 (2) 0.052 (2) −0.0085 (18) 0.0128 (17) 0.003 (2) C4 0.043 (2) 0.037 (2) 0.056 (3) −0.0079 (17) 0.0035 (19) −0.0061 (19)

C5 0.053 (2) 0.050 (3) 0.040 (2) −0.006 (2) 0.0078 (18) −0.006 (2)

C6 0.051 (2) 0.047 (3) 0.039 (2) −0.0079 (19) 0.0086 (18) −0.0015 (18) C7 0.040 (2) 0.043 (2) 0.045 (2) −0.0061 (18) 0.0155 (17) 0.0052 (19) C8 0.039 (2) 0.043 (2) 0.037 (2) −0.0021 (17) 0.0078 (16) 0.0011 (17) C9 0.037 (2) 0.042 (2) 0.034 (2) −0.0031 (17) 0.0048 (15) 0.0015 (17) C10 0.057 (3) 0.036 (2) 0.045 (2) −0.0115 (19) 0.0161 (19) −0.0032 (18)

C11 0.054 (2) 0.047 (3) 0.040 (2) −0.008 (2) 0.0143 (18) 0.0018 (19)

C12 0.041 (2) 0.041 (2) 0.035 (2) −0.0018 (17) 0.0058 (16) −0.0049 (17)

C13 0.050 (2) 0.043 (2) 0.052 (2) −0.016 (2) 0.0132 (19) −0.007 (2)

C14 0.051 (2) 0.051 (3) 0.043 (2) −0.011 (2) 0.0158 (18) 0.001 (2)

C15 0.057 (2) 0.054 (3) 0.046 (2) −0.024 (2) 0.0192 (19) −0.019 (2)

C16 0.054 (3) 0.048 (3) 0.073 (3) −0.019 (2) 0.025 (2) −0.014 (2)

C17 0.050 (2) 0.062 (3) 0.050 (3) −0.015 (2) 0.023 (2) −0.003 (2)

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, m1310–m1312

Geometric parameters (Å, º)

Cu1—O1 1.886 (2) C4—H4A 0.9300

Cu1—O2 1.923 (3) C5—C6 1.370 (5)

Cu1—N1 1.924 (3) C5—H5A 0.9300

Cu1—N4 2.019 (3) C6—H6A 0.9300

O1—C1 1.312 (4) C7—H7A 0.9300

O2—C8 1.296 (4) C8—C9 1.487 (5)

O3A—N3 1.17 (2) C9—C14 1.382 (5)

O4A—N3 1.19 (2) C9—C10 1.396 (5)

O3B—N3 1.24 (3) C10—C11 1.371 (5)

O4B—N3 1.30 (2) C10—H10A 0.9300

O5—C17 1.414 (5) C11—C12 1.380 (5)

O5—C16 1.414 (5) C11—H11A 0.9300

N1—C7 1.279 (5) C12—C13 1.370 (5)

N1—N2 1.406 (4) C13—C14 1.365 (5)

N2—C8 1.294 (5) C13—H13A 0.9300

N3—C12 1.456 (5) C14—H14A 0.9300

N4—C15 1.470 (5) C15—C16 1.496 (5)

N4—C18 1.477 (4) C15—H15A 0.9700

N4—H4N 0.9100 C15—H15B 0.9700

C1—C6 1.400 (5) C16—H16A 0.9700

C1—C2 1.424 (5) C16—H16B 0.9700

C2—C3 1.393 (5) C17—C18 1.512 (5)

C2—C7 1.427 (5) C17—H17A 0.9700

C3—C4 1.366 (5) C17—H17B 0.9700

C3—H3A 0.9300 C18—H18A 0.9700

C4—C5 1.385 (5) C18—H18B 0.9700

O1—Cu1—O2 173.66 (10) C2—C7—H7A 117.7

O1—Cu1—N1 93.38 (12) N2—C8—O2 125.4 (4)

O2—Cu1—N1 81.24 (12) N2—C8—C9 118.4 (3)

O1—Cu1—N4 92.24 (11) O2—C8—C9 116.1 (3)

O2—Cu1—N4 93.30 (11) C14—C9—C10 118.5 (4)

N1—Cu1—N4 173.77 (12) C14—C9—C8 120.1 (3)

C1—O1—Cu1 127.1 (2) C10—C9—C8 121.4 (4)

C8—O2—Cu1 110.3 (2) C11—C10—C9 120.9 (4)

O4B—O3A—N3 88 (5) C11—C10—H10A 119.5

O3A—O4B—N3 64 (4) C9—C10—H10A 119.5

C17—O5—C16 110.1 (3) C10—C11—C12 118.4 (4)

C7—N1—N2 117.8 (3) C10—C11—H11A 120.8

C7—N1—Cu1 127.4 (3) C12—C11—H11A 120.8

N2—N1—Cu1 114.6 (2) C13—C12—C11 121.8 (4)

C8—N2—N1 108.4 (3) C13—C12—N3 118.7 (4)

O3A—N3—O4A 122.9 (17) C11—C12—N3 119.5 (3)

O3B—N3—O4B 124.3 (16) C14—C13—C12 119.1 (4)

O3A—N3—C12 117.6 (11) C14—C13—H13A 120.5

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, m1310–m1312

O3B—N3—C12 118.7 (12) C13—C14—C9 121.1 (4)

O4B—N3—C12 116.8 (11) C13—C14—H14A 119.4

C15—N4—C18 108.9 (3) C9—C14—H14A 119.4

C15—N4—Cu1 116.0 (2) N4—C15—C16 112.6 (3)

C18—N4—Cu1 114.5 (2) N4—C15—H15A 109.1

C15—N4—H4N 105.5 C16—C15—H15A 109.1

C18—N4—H4N 105.5 N4—C15—H15B 109.1

Cu1—N4—H4N 105.5 C16—C15—H15B 109.1

O1—C1—C6 118.6 (3) H15A—C15—H15B 107.8

O1—C1—C2 124.7 (3) O5—C16—C15 112.1 (4)

C6—C1—C2 116.7 (3) O5—C16—H16A 109.2

C3—C2—C1 119.2 (3) C15—C16—H16A 109.2

C3—C2—C7 118.2 (3) O5—C16—H16B 109.2

C1—C2—C7 122.6 (3) C15—C16—H16B 109.2

C4—C3—C2 122.8 (3) H16A—C16—H16B 107.9

C4—C3—H3A 118.6 O5—C17—C18 111.6 (3)

C2—C3—H3A 118.6 O5—C17—H17A 109.3

C3—C4—C5 118.2 (4) C18—C17—H17A 109.3

C3—C4—H4A 120.9 O5—C17—H17B 109.3

C5—C4—H4A 120.9 C18—C17—H17B 109.3

C6—C5—C4 120.8 (4) H17A—C17—H17B 108.0

C6—C5—H5A 119.6 N4—C18—C17 111.3 (3)

C4—C5—H5A 119.6 N4—C18—H18A 109.4

C5—C6—C1 122.3 (4) C17—C18—H18A 109.4

C5—C6—H6A 118.8 N4—C18—H18B 109.4

C1—C6—H6A 118.8 C17—C18—H18B 109.4

N1—C7—C2 124.7 (3) H18A—C18—H18B 108.0

N1—C7—H7A 117.7

N1—Cu1—O1—C1 2.9 (3) C1—C2—C7—N1 −1.9 (6)

N4—Cu1—O1—C1 −179.8 (3) N1—N2—C8—O2 −0.2 (5)

N1—Cu1—O2—C8 −1.5 (3) N1—N2—C8—C9 177.0 (3)

N4—Cu1—O2—C8 −178.5 (3) Cu1—O2—C8—N2 1.5 (5)

O1—Cu1—N1—C7 −0.4 (3) Cu1—O2—C8—C9 −175.9 (2)

O2—Cu1—N1—C7 176.2 (3) N2—C8—C9—C14 −173.0 (4)

O1—Cu1—N1—N2 −175.1 (2) O2—C8—C9—C14 4.6 (5)

O2—Cu1—N1—N2 1.5 (2) N2—C8—C9—C10 7.2 (6)

C7—N1—N2—C8 −176.4 (3) O2—C8—C9—C10 −175.3 (3)

Cu1—N1—N2—C8 −1.1 (4) C14—C9—C10—C11 −0.2 (6)

O4B—O3A—N3—O4A −91 (5) C8—C9—C10—C11 179.7 (4)

O4B—O3A—N3—O3B −111 (5) C9—C10—C11—C12 0.2 (6)

O4B—O3A—N3—C12 96 (4) C10—C11—C12—C13 1.0 (6)

O3A—O4B—N3—O4A 106 (5) C10—C11—C12—N3 −179.7 (4)

O3A—O4B—N3—O3B 86 (5) O3A—N3—C12—C13 −16.9 (10)

O3A—O4B—N3—C12 −99 (4) O4A—N3—C12—C13 169 (2)

O1—Cu1—N4—C15 −162.5 (3) O3B—N3—C12—C13 −170 (2)

O2—Cu1—N4—C15 20.6 (3) O4B—N3—C12—C13 14.6 (10)

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, m1310–m1312

O2—Cu1—N4—C18 148.9 (3) O4A—N3—C12—C11 −10 (2)

Cu1—O1—C1—C6 175.7 (3) O3B—N3—C12—C11 10 (2)

Cu1—O1—C1—C2 −5.2 (5) O4B—N3—C12—C11 −164.7 (9)

O1—C1—C2—C3 −178.5 (3) C11—C12—C13—C14 −2.2 (6)

C6—C1—C2—C3 0.5 (5) N3—C12—C13—C14 178.5 (4)

O1—C1—C2—C7 4.6 (6) C12—C13—C14—C9 2.2 (6)

C6—C1—C2—C7 −176.4 (3) C10—C9—C14—C13 −1.0 (6)

C1—C2—C3—C4 −0.6 (6) C8—C9—C14—C13 179.1 (4)

C7—C2—C3—C4 176.5 (4) C18—N4—C15—C16 51.9 (5)

C2—C3—C4—C5 −0.4 (6) Cu1—N4—C15—C16 −177.2 (3)

C3—C4—C5—C6 1.5 (6) C17—O5—C16—C15 57.9 (5)

C4—C5—C6—C1 −1.6 (6) N4—C15—C16—O5 −55.7 (5)

O1—C1—C6—C5 179.6 (4) C16—O5—C17—C18 −58.9 (5)

C2—C1—C6—C5 0.5 (6) C15—N4—C18—C17 −52.4 (4)

N2—N1—C7—C2 174.7 (3) Cu1—N4—C18—C17 175.9 (3)

Cu1—N1—C7—C2 0.2 (6) O5—C17—C18—N4 57.4 (5)

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical