• No results found

Di­aqua­di­bromo­bis­(1H imidazole)nickel(II)

N/A
N/A
Protected

Academic year: 2020

Share "Di­aqua­di­bromo­bis­(1H imidazole)nickel(II)"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1391–m1392 doi:10.1107/S1600536805019069 Zhanget al. [NiBr

2(C3H4N2)2(H2O)2]

m1391

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquadibromobis(1

H

-imidazole)nickel(II)

Hui Zhang,* Liang Fang and Runzhang Yuan

State Key Laboratory of Advanced Technology, for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China

Correspondence e-mail: huizhangskl@yahoo.com

Key indicators

Single-crystal X-ray study T= 223 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.020 wRfactor = 0.051

Data-to-parameter ratio = 19.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The structure of the title compound, [NiBr2(C3H4N2)2(H2O)2], consists of monomers with inversion symmetry. The three monodentate ligands (imidazole, bromine and aqua), together with their symmetry equivalents, define an almost perfect octahedral coordination. Hydrogen-bonding interactions via

the NH group of imidazole, Br and aqua H atoms lead to a three-dimensional network.

Comment

The structure of the title compound, (I), is composed of monomeric units possessing a crystallographically imposed center of symmetry (Fig. 1). The coordination environment of nickel is almost perfect octahedral (Table 1), corresponding to that observed in [NiCl2(Him)2(H2O)2] (Him is 1H-imidazole), (II) (Atria et al., 2003). However, (I) and (II) crystallize in different space groups, viz. monoclinic P21/c and ortho-rhombicPbca, respectively.

In (I), the three potentially active H atoms,viz. imidazole H2 and aqua H1Wand H2Watoms, are engaged in hydrogen bonds with the Br atom, which acts as the sole acceptor for all three interactions (Table 2). The O—H Br hydrogen bonds

[image:1.610.255.410.383.507.2] [image:1.610.206.461.584.723.2]

Received 20 May 2005 Accepted 15 June 2005 Online 24 June 2005

Figure 1

View of (I) shown with 50% probability displacement ellipsoids. Atoms labelled with the suffix a are at symmetry position (1

(2)

(Fig. 2, dashed red lines) link monomers along the band c

axes, thus defining two-dimensional arrays, which are further linked by the N—H Br hydrogen bonds (Fig. 2, dashed blue lines), to form a three-dimensional network.

Experimental

Crystals of (I) were obtained from NiBr26H2O (5 mmol) and 1H -imidazole (5 mmol) in aqueous solution (30 ml) at room temperature. After a few days, green prismatic crystals appeared.

Crystal data

[NiBr2(C3H4N2)2(H2O)2]

Mr= 390.69

Monoclinic,P21=c

a= 7.8000 (18) A˚

b= 9.366 (2) A˚

c= 8.474 (2) A˚

= 96.114 (4)

V= 615.6 (2) A˚3

Z= 2

Dx= 2.108 Mg m

3

MoKradiation Cell parameters from 1538

reflections

= 2.6–28.3

= 8.05 mm1

T= 223 (2) K Prism, green

0.360.200.16 mm

Data collection

Bruker SMART APEX CCD diffractometer

!scans

Absorption correction: multi-scan (SADABSinSAINT; Bruker, 1998)

Tmin= 0.16,Tmax= 0.28

8270 measured reflections

1538 independent reflections 1414 reflections withI> 2(I)

Rint= 0.039 max= 28.3

h=10!10

k=12!12

l=11!11

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.020

wR(F2) = 0.051

S= 1.05 1538 reflections 78 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0269P)2

+ 0.0562P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.34 e A˚

3 min=0.63 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Ni1—N1 2.0557 (16) Ni1—O1 2.0910 (15)

Ni1—Br1 2.6184 (6)

N1—Ni1—O1 88.53 (6) N1—Ni1—Br1 89.59 (5)

O1—Ni1—Br1 90.15 (5)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1W Br1i

0.79 (3) 2.56 (3) 3.3356 (16) 168 (3) O1—H2W Br1ii

0.81 (3) 2.55 (3) 3.3273 (17) 164 (2) N2—H2 Br1iii 0.87 2.64 3.4782 (19) 162

Symmetry codes: (i)xþ1;yþ1

2;zþ52; (ii)x;y12;zþ12; (iii)x;y;zþ2.

The imidazole H atoms were constrained to an ideal geometry, with C—H and N—H distances of 0.94 and 0.87 A˚ , respectively. Aqua H atoms were located in a difference Fourier map and their positions were refined freely. All H atoms were treated as isotropic, with

Uiso(H) = 1.2Ueq(C,N,O).

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1998); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure:SHELXTL; molecular graphics:ORTEP-3(Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication:SHELXTL.

HZ thanks DAAD for a scholarship and Mr Klaus Kruse for the data collection.

References

Atria, A. M., Corte´s, P., Garland, M. T. & Baggio, R. (2003).Acta Cryst.C59, m396–m398.

Brandenburg, K. (1999).DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.

Bruker (1998).SMART,SAINT, andSADABSinSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

[image:2.610.313.566.72.349.2]

Sheldrick, G. M. (1997).SHELXTL. University of Go¨ttingen, Germany.

Figure 2

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, m1391–m1392

supporting information

Acta Cryst. (2005). E61, m1391–m1392 [https://doi.org/10.1107/S1600536805019069]

Diaquadibromobis(1

H

-imidazole)nickel(II)

Hui Zhang, Liang Fang and Runzhang Yuan

Diaquadibromobis(1H-imidazole)nickel(II)

Crystal data

[NiBr2(C3H4N2)2(H2O)2] Mr = 390.69

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 7.8000 (18) Å

b = 9.366 (2) Å

c = 8.474 (2) Å

β = 96.114 (4)°

V = 615.6 (2) Å3

Z = 2

F(000) = 380

Dx = 2.108 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 1538 reflections

θ = 2.6–28.3°

µ = 8.05 mm−1

T = 223 K

Prism, green

0.36 × 0.20 × 0.16 mm

Data collection

Bruker AXS APEX CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS in SAINT; Bruker, 1998)

Tmin = 0.16, Tmax = 0.28

8270 measured reflections 1538 independent reflections 1414 reflections with I > 2σ(I)

Rint = 0.039

θmax = 28.3°, θmin = 2.6°

h = −10→10

k = −12→12

l = −11→11

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.020 wR(F2) = 0.051

S = 1.05

1538 reflections 78 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0269P)2 + 0.0562P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.34 e Å−3

Δρmin = −0.63 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Ni1 0.5000 0.0000 1.0000 0.01679 (9)

Br1 0.39147 (2) −0.264724 (19) 0.99031 (2) 0.02118 (8)

N1 0.25951 (19) 0.06572 (18) 0.9048 (2) 0.0221 (3)

N2 −0.0015 (2) 0.1547 (2) 0.8858 (3) 0.0389 (5)

H2 −0.0911 0.2019 0.9101 0.047*

C3 0.1503 (3) 0.1427 (2) 0.9765 (3) 0.0320 (5)

H3 0.1749 0.1838 1.0776 0.038*

C4 0.1721 (3) 0.0257 (3) 0.7620 (3) 0.0316 (5)

H4 0.2175 −0.0308 0.6847 0.038*

C5 0.0098 (3) 0.0805 (3) 0.7501 (3) 0.0392 (6)

H5 −0.0768 0.0693 0.6651 0.047*

O1 0.41887 (19) 0.02412 (18) 1.22586 (17) 0.0233 (3)

H1W 0.460 (3) 0.084 (3) 1.283 (3) 0.037 (8)*

H2W 0.420 (3) −0.050 (3) 1.275 (3) 0.039 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ni1 0.01500 (16) 0.01698 (17) 0.01828 (17) 0.00154 (12) 0.00120 (12) 0.00005 (12)

Br1 0.02362 (12) 0.01741 (11) 0.02244 (12) −0.00084 (7) 0.00210 (8) −0.00044 (7)

N1 0.0178 (7) 0.0212 (8) 0.0273 (8) 0.0030 (6) 0.0022 (6) 0.0022 (7)

N2 0.0207 (9) 0.0381 (11) 0.0585 (14) 0.0122 (8) 0.0071 (8) 0.0101 (10)

C3 0.0267 (10) 0.0297 (12) 0.0401 (12) 0.0078 (9) 0.0048 (9) −0.0006 (9)

C4 0.0232 (10) 0.0435 (13) 0.0273 (11) 0.0037 (9) −0.0013 (8) −0.0005 (9)

C5 0.0226 (10) 0.0538 (15) 0.0396 (13) 0.0044 (10) −0.0047 (9) 0.0111 (12)

O1 0.0265 (7) 0.0227 (7) 0.0205 (7) −0.0028 (6) 0.0023 (6) −0.0013 (6)

Geometric parameters (Å, º)

Ni1—N1 2.0557 (16) N2—C5 1.354 (3)

Ni1—N1i 2.0557 (16) N2—H2 0.8700

Ni1—O1 2.0910 (15) C3—H3 0.9400

Ni1—O1i 2.0910 (15) C4—C5 1.360 (3)

Ni1—Br1 2.6184 (6) C4—H4 0.9400

Ni1—Br1i 2.6184 (6) C5—H5 0.9400

N1—C3 1.313 (3) O1—H1W 0.79 (3)

N1—C4 1.376 (3) O1—H2W 0.81 (3)

N2—C3 1.346 (3)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, m1391–m1392

N1—Ni1—O1 88.53 (6) C3—N2—C5 108.01 (18)

N1i—Ni1—O1 91.47 (6) C3—N2—H2 126.0

N1—Ni1—O1i 91.47 (6) C5—N2—H2 126.0

N1i—Ni1—O1i 88.53 (6) N1—C3—N2 110.9 (2)

O1—Ni1—O1i 180.0 N1—C3—H3 124.6

N1—Ni1—Br1 89.59 (5) N2—C3—H3 124.6

N1i—Ni1—Br1 90.41 (5) C5—C4—N1 109.4 (2)

O1—Ni1—Br1 90.15 (5) C5—C4—H4 125.3

O1i—Ni1—Br1 89.85 (5) N1—C4—H4 125.3

N1—Ni1—Br1i 90.41 (5) N2—C5—C4 106.0 (2)

N1i—Ni1—Br1i 89.59 (5) N2—C5—H5 127.0

O1—Ni1—Br1i 89.85 (5) C4—C5—H5 127.0

O1i—Ni1—Br1i 90.15 (5) Ni1—O1—H1W 119.8 (18)

Br1—Ni1—Br1i 180.0 Ni1—O1—H2W 113.3 (19)

C3—N1—C4 105.75 (18) H1W—O1—H2W 108 (3)

C3—N1—Ni1 126.32 (15)

Symmetry code: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1W···Br1ii 0.79 (3) 2.56 (3) 3.3356 (16) 168 (3)

O1—H2W···Br1iii 0.81 (3) 2.55 (3) 3.3273 (17) 164 (2)

N2—H2···Br1iv 0.87 2.64 3.4782 (19) 162

Figure

Figure 1View of (I) shown with 50% probability displacement ellipsoids. Atomslabelled with the suffix a are at symmetry position (12 � x, �y, 2 � z).
Figure 2

References

Related documents

(Bruker, 2003); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL ; molecular graphics:

(Bruker, 2000); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL

(Bruker, 2004); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL

SAINT (Bruker, 2003); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL

(Bruker, 1998); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL ;

(Bruker, 1998); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 a ); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 a );

(Bruker, 1998); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL

(Bruker, 1997); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to re®ne structure: SHELXTL ; molecular graphics: SHELXTL