• No results found

3 (2 Fur­yl) 1 (4 nitro­phen­yl)prop 2 en 1 one

N/A
N/A
Protected

Academic year: 2020

Share "3 (2 Fur­yl) 1 (4 nitro­phen­yl)prop 2 en 1 one"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2397–o2398 doi:10.1107/S1600536806017946 Patilet al. C

13H9NO4

o2397

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

3-(2-Furyl)-1-(4-nitrophenyl)prop-2-en-1-one

P. S. Patil,aJeannie Bee-Jan Teh,b Hoong-Kun Fun,b*

Ibrahim Abdul Razakb and S. M. Dharmaprakasha

aDepartment of Studies in Physics, Mangalore

University, Mangalagangotri, Mangalore 574 199, India, andbX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T= 100 K

Mean(C–C) = 0.002 A˚ Rfactor = 0.070 wRfactor = 0.198

Data-to-parameter ratio = 35.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 4 May 2006 Accepted 15 May 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, C13H9NO4, the dihedral angle between

the benzene and furan rings is 6.23 (5). The crystal structure

is stabilized by weak intermolecular C—H O hydrogen bonds.

Comment

Chalcones show interesting biological and pharmacological activities (De Vincenzo et al., 1995; Kumar et al., 2003). In addition, chalcones with appropriate subtituents constitute a class of non-linear optical materials (Fichou et al., 1988; Kitaokaet al., 1990; Uchidaet al., 1998; Gotoet al., 1991, Patil et al., 2006a,b; Zhanget al., 1990; Zhao et al., 2000). In this paper, we present the crystal structure of the title compound, (I), which does not exhibit second-order non-linear optical properties as it crystallizes out in a centrosymmetric space group.

In (I) (Fig. 1), the bond lengths and angles have normal values (Allen et al., 1987), comparable with those found in related structures (Teh et al., 2006; Patilet al., 2006a,b; Nget al., 2006; Rosliet al., 2006). The least-squares plane through the enone group makes dihedral angles of 4.19 (5) and 2.14 (6), respectively, with the benzene and furan rings. The dihedral angle between the two rings is 6.23 (5). The nitro group at C3 is almost coplanar with the C1–C6 benzene ring, with O4—N1—C3—C4 and O3—N1—C3—C2 torsion angles of3.49 (19) and4.38 (18), respectively.

The crystal packing (Fig. 2) is stabilized by weak inter-molecular C—H O hydrogen bonds (Table 1).

Experimental

(2)

Crystal data

C13H9NO4

Mr= 243.21

Monoclinic,P21=c

a= 3.8809 (2) A˚

b= 10.6603 (4) A˚

c= 26.5500 (11) A˚

= 94.867 (3)

V= 1094.45 (8) A˚3

Z= 4

Dx= 1.476 Mg m3

MoKradiation

= 0.11 mm1

T= 100.0 (1) K Plate, yellow

0.540.380.10 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Bruker, 2005)

Tmin= 0.806,Tmax= 0.989

28259 measured reflections 5741 independent reflections 3956 reflections withI> 2(I)

Rint= 0.067

max= 37.5

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.070

wR(F2) = 0.198

S= 1.10 5741 reflections 163 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0956P)2

+ 0.1328P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.56 e A˚3

min=0.27 e A˚3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C1—H1A O2i

0.93 2.48 3.151 (2) 129 C12—H12A O3ii

0.93 2.55 3.463 (2) 169

Symmetry codes: (i)x;y1 2;zþ

1

2; (ii)x2;yþ 1 2;z

1 2.

H atoms were placed in calculated positions, with C—H distances of 0.93 A˚ , and treated as riding. TheUiso(H) values were constrained to be 1.2Ueq(C).

Data collection:APEX2(Bruker, 2005); cell refinement:APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication: SHELXTL,PARST(Nardelli, 1995) andPLATON(Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118 and the USM short-term grant No. 304/PFIZIK/635028. PSP and SMD are grateful to DRDO, Government of India, for financial assistance.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2005).APEX2(Version 1.27),SAINT(Version 7.12A) andSADABS

(Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.

De Vincenzo, R., Scambia, G., Benedetti, P. P., Ranelletti, F. O., Bonanno, G., Ercoli, A., Delle, M. F., Ferrari, F., Piantelli, M. & Mancuso, S. (1995).

Anticancer Drug Des.10, 481–490.

Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988).Jpn J. Appl. Phys.27, L429–L430.

Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991).J. Cryst. Growth,

108, 688–698.

Kitaoka, Y., Sasaki, T., Nakai, S., Yokotani, A., Goto, Y. & Nakayama, M. (1990).Appl. Phys. Lett.56, 2074–2076.

Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003).J. Med. Chem.46, 2813–2815.

Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Ng, S. L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006).Acta Cryst.E62, o1421–o1423.

Patil, P. S., Teh, J. B. J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006a).Acta Cryst.E62, o896–o898.

Patil, P. S., Teh, J. B. J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b).Acta Cryst.E62, o1710–o1712.

Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A., Dharmaprakash, S. M. & Karthikeyan, M. S. (2006).Acta Cryst.E62, o1460–o1462.

Sheldrick, G. M. (1998).SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Teh, J. B. J., Patil, P. S., Fun, H.-K., Razak, I. A., Shettigar, V. & Dharmaprakash, S. M. (2006).Acta Cryst.E62, o1526–o1528.

Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998).Mol. Cryst. Liq. Cryst.314, 135–140.

Zhang, G., Kinoshita, T., Sasaki, K., Goto, Y. & Nakayam, M. (1990).J. Cryst. Growth,100, 411–416.

[image:2.610.314.564.71.168.2]

Zhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000).J. Mater. Chem.10, 1513– 1517.

Figure 1

[image:2.610.316.562.221.432.2]

View of (I), showing the atomic numbering and 50% probability displacement ellipsoids.

Figure 2

The crystal packing, viewed down theaaxis. Hydrogen bonds are shown

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2397–o2398

supporting information

Acta Cryst. (2006). E62, o2397–o2398 [https://doi.org/10.1107/S1600536806017946]

3-(2-Furyl)-1-(4-nitrophenyl)prop-2-en-1-one

P. S. Patil, Jeannie Bee-Jan Teh, Hoong-Kun Fun, Ibrahim Abdul Razak and S. M. Dharmaprakash

3-(2-Furyl)-1-(4-nitrophenyl)prop-2-en-1-one

Crystal data

C13H9NO4 Mr = 243.21 Monoclinic, P21/c Hall symbol: -P 2ybc

a = 3.8809 (2) Å

b = 10.6603 (4) Å

c = 26.5500 (11) Å

β = 94.867 (3)°

V = 1094.45 (8) Å3

Z = 4

F(000) = 504

Dx = 1.476 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 4832 reflections

θ = 1.5–37.5°

µ = 0.11 mm−1

T = 100 K

Block, yellow

0.54 × 0.38 × 0.10 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8.33 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2005)

Tmin = 0.806, Tmax = 0.989

28259 measured reflections 5741 independent reflections 3956 reflections with I > 2σ(I)

Rint = 0.067

θmax = 37.5°, θmin = 1.5°

h = −6→6

k = −17→17

l = −45→45

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.070 wR(F2) = 0.198

S = 1.10

5741 reflections 163 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0956P)2 + 0.1328P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.56 e Å−3 Δρmin = −0.27 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 −0.1250 (3) 0.26693 (9) 0.10568 (4) 0.0231 (2)

O2 0.0305 (3) 0.59893 (8) 0.24281 (4) 0.0237 (2)

O3 1.0335 (3) 0.21435 (10) 0.42360 (4) 0.0336 (3)

O4 1.0389 (3) 0.40418 (10) 0.45266 (4) 0.0331 (3)

N1 0.9515 (3) 0.32556 (11) 0.42030 (4) 0.0222 (2)

C1 0.4735 (3) 0.31959 (11) 0.29253 (5) 0.0180 (2)

H1A 0.4232 0.2633 0.2662 0.022*

C2 0.6653 (3) 0.28027 (11) 0.33638 (5) 0.0187 (2)

H2A 0.7414 0.1978 0.3399 0.022*

C3 0.7400 (3) 0.36659 (11) 0.37458 (4) 0.0181 (2)

C4 0.6322 (3) 0.49069 (12) 0.37111 (5) 0.0208 (2)

H4A 0.6885 0.5470 0.3973 0.025*

C5 0.4379 (3) 0.52820 (11) 0.32744 (5) 0.0203 (2)

H5A 0.3609 0.6107 0.3243 0.024*

C6 0.3562 (3) 0.44321 (10) 0.28801 (4) 0.0160 (2)

C7 0.1394 (3) 0.49038 (11) 0.24248 (4) 0.0173 (2)

C8 0.0602 (3) 0.40802 (11) 0.19861 (4) 0.0190 (2)

H8A 0.1464 0.3266 0.1986 0.023*

C9 −0.1393 (3) 0.45199 (11) 0.15827 (5) 0.0194 (2)

H9A −0.2211 0.5335 0.1608 0.023*

C10 −0.2384 (3) 0.38741 (11) 0.11227 (5) 0.0198 (2)

C11 −0.4378 (4) 0.42569 (13) 0.07003 (5) 0.0238 (3)

H11A −0.5449 0.5033 0.0650 0.029*

C12 −0.4494 (4) 0.32378 (14) 0.03538 (5) 0.0262 (3)

H12A −0.5655 0.3214 0.0033 0.031*

C13 −0.2574 (4) 0.23088 (13) 0.05846 (5) 0.0260 (3)

H13B −0.2204 0.1529 0.0441 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0281 (5) 0.0198 (4) 0.0208 (4) −0.0007 (3) −0.0017 (3) 0.0016 (3)

O2 0.0279 (5) 0.0165 (4) 0.0264 (5) 0.0038 (3) −0.0003 (4) 0.0017 (3)

O3 0.0437 (7) 0.0259 (5) 0.0290 (5) 0.0096 (4) −0.0090 (5) 0.0019 (4)

O4 0.0449 (7) 0.0305 (5) 0.0221 (5) −0.0040 (5) −0.0083 (4) −0.0031 (4)

N1 0.0236 (5) 0.0241 (5) 0.0186 (5) 0.0003 (4) −0.0004 (4) 0.0009 (4)

C1 0.0194 (5) 0.0152 (5) 0.0190 (5) −0.0001 (4) −0.0007 (4) −0.0010 (4)

C2 0.0200 (5) 0.0145 (5) 0.0213 (5) 0.0004 (4) 0.0001 (4) 0.0001 (4)

C3 0.0175 (5) 0.0195 (5) 0.0170 (5) −0.0011 (4) 0.0005 (4) 0.0007 (4)

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2397–o2398

C5 0.0231 (5) 0.0157 (5) 0.0221 (5) 0.0011 (4) 0.0010 (4) −0.0016 (4)

C6 0.0157 (5) 0.0144 (4) 0.0181 (5) −0.0014 (3) 0.0014 (3) 0.0006 (4)

C7 0.0173 (5) 0.0160 (5) 0.0189 (5) −0.0010 (4) 0.0022 (4) 0.0018 (4)

C8 0.0201 (5) 0.0177 (5) 0.0188 (5) 0.0005 (4) −0.0004 (4) 0.0006 (4)

C9 0.0186 (5) 0.0174 (5) 0.0218 (5) −0.0016 (4) 0.0000 (4) 0.0027 (4)

C10 0.0205 (5) 0.0184 (5) 0.0200 (5) −0.0025 (4) −0.0007 (4) 0.0027 (4)

C11 0.0232 (6) 0.0246 (6) 0.0229 (6) −0.0030 (4) −0.0032 (4) 0.0050 (4)

C12 0.0272 (6) 0.0304 (6) 0.0203 (5) −0.0078 (5) −0.0018 (4) 0.0024 (5)

C13 0.0324 (7) 0.0248 (6) 0.0205 (6) −0.0063 (5) 0.0005 (5) −0.0010 (4)

Geometric parameters (Å, º)

O1—C13 1.3690 (15) C5—C6 1.4005 (16)

O1—C10 1.3736 (15) C5—H5A 0.9300

O2—C7 1.2321 (14) C6—C7 1.4998 (16)

O3—N1 1.2287 (15) C7—C8 1.4702 (16)

O4—N1 1.2274 (14) C8—C9 1.3510 (16)

N1—C3 1.4728 (15) C8—H8A 0.9300

C1—C2 1.3921 (16) C9—C10 1.4262 (17)

C1—C6 1.3960 (16) C9—H9A 0.9300

C1—H1A 0.9300 C10—C11 1.3696 (16)

C2—C3 1.3818 (16) C11—C12 1.422 (2)

C2—H2A 0.9300 C11—H11A 0.9300

C3—C4 1.3882 (17) C12—C13 1.354 (2)

C4—C5 1.3873 (17) C12—H12A 0.9300

C4—H4A 0.9300 C13—H13B 0.9300

C13—O1—C10 106.24 (10) O2—C7—C8 121.18 (10)

O4—N1—O3 123.66 (11) O2—C7—C6 118.58 (10)

O4—N1—C3 118.41 (11) C8—C7—C6 120.24 (10)

O3—N1—C3 117.92 (11) C9—C8—C7 119.21 (11)

C2—C1—C6 120.22 (11) C9—C8—H8A 120.4

C2—C1—H1A 119.9 C7—C8—H8A 120.4

C6—C1—H1A 119.9 C8—C9—C10 127.31 (11)

C3—C2—C1 118.51 (11) C8—C9—H9A 116.3

C3—C2—H2A 120.7 C10—C9—H9A 116.3

C1—C2—H2A 120.7 C11—C10—O1 109.83 (11)

C2—C3—C4 122.86 (11) C11—C10—C9 130.54 (12)

C2—C3—N1 118.34 (11) O1—C10—C9 119.63 (10)

C4—C3—N1 118.77 (10) C10—C11—C12 106.66 (12)

C5—C4—C3 118.00 (11) C10—C11—H11A 126.7

C5—C4—H4A 121.0 C12—C11—H11A 126.7

C3—C4—H4A 121.0 C13—C12—C11 106.27 (12)

C4—C5—C6 120.72 (11) C13—C12—H12A 126.9

C4—C5—H5A 119.6 C11—C12—H12A 126.9

C6—C5—H5A 119.6 C12—C13—O1 111.00 (12)

C1—C6—C5 119.67 (10) C12—C13—H13B 124.5

(6)

C5—C6—C7 117.48 (10)

C6—C1—C2—C3 −0.96 (19) C5—C6—C7—O2 −3.30 (17)

C1—C2—C3—C4 0.0 (2) C1—C6—C7—C8 −4.10 (18)

C1—C2—C3—N1 −178.27 (11) C5—C6—C7—C8 176.68 (11)

O4—N1—C3—C2 174.86 (12) O2—C7—C8—C9 −0.86 (19)

O3—N1—C3—C2 −4.38 (18) C6—C7—C8—C9 179.16 (11)

O4—N1—C3—C4 −3.49 (19) C7—C8—C9—C10 178.83 (12)

O3—N1—C3—C4 177.26 (13) C13—O1—C10—C11 0.08 (15)

C2—C3—C4—C5 0.7 (2) C13—O1—C10—C9 −179.42 (12)

N1—C3—C4—C5 178.99 (12) C8—C9—C10—C11 −179.87 (14)

C3—C4—C5—C6 −0.5 (2) C8—C9—C10—O1 −0.5 (2)

C2—C1—C6—C5 1.15 (19) O1—C10—C11—C12 0.03 (16)

C2—C1—C6—C7 −178.05 (12) C9—C10—C11—C12 179.45 (13)

C4—C5—C6—C1 −0.40 (19) C10—C11—C12—C13 −0.12 (16)

C4—C5—C6—C7 178.84 (12) C11—C12—C13—O1 0.17 (17)

C1—C6—C7—O2 175.92 (12) C10—O1—C13—C12 −0.16 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C1—H1A···O2i 0.93 2.48 3.151 (2) 129

C9—H9A···O2 0.93 2.41 2.770 (2) 103

C12—H12A···O3ii 0.93 2.55 3.463 (2) 169

Figure

Figure 2

References

Related documents

These results give a comprehensive explanation for why Pfaff ( 2013 ) and Binder and Coad ( 2010 ) find adaptation to income when using non-equivalized income, but fail to do so

where the encoder and decoder layers are initial- ized in an unsupervised pretraining phase using primary and secondary language monolingual cor- pora, followed by a joint supervised

The finger measurements recorded were Index Finger Length of Right hand (RIFL), Index Finger Length of Left hand (LIFL), Ring Finger Length of Right hand (RRFL) and Ring

We use semantic tex- tual similarity models that are trained with differ- ent datasets for this task; (b) We propose natural language abduction to generate queries for retriev-

Uncontrollable stress causes changes in feeding behaviour and is known to alter feeding responses in a bidirectional pattern, with both increased and decreased intake

Based on the results of analysis, it was obtained a regression equation that can be explained that the direction of the regression coefficient of independent variables

According to the results of the study, they have stated that developing countries such as Turkey should develop their R&amp;D activities to achieve a more efficient economic

We have presented an ILP based joint inference system for event coreference resolution that uti- lizes scores predicted by a pairwise event corefer- ence resolution classifier,