• No results found

Bis­(benzyl­ammonium) hydrogenarsenate monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "Bis­(benzyl­ammonium) hydrogenarsenate monohydrate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2003). E59, m1151±m1153 DOI: 10.1107/S1600536803026242 Lee and Harrison (C7H10N)2[HAsO4]H2O

m1151

metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(benzylammonium) hydrogenarsenate

monohydrate

Clare Lee and

William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators Single-crystal X-ray study T= 120 K

Mean(C±C) = 0.006 AÊ Disorder in main residue Rfactor = 0.045 wRfactor = 0.112

Data-to-parameter ratio = 24.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, (C6H5CH2NH3)2[HAsO4]H2O, contains

a network of benzylammonium cations, hydrogenarsenate anions [dav(AsÐO) = 1.689 (2) AÊ] and water molecules. The

crystal packing involves NÐH O [dav(H O) = 1.91 AÊ,

av(NÐH O) = 167anddav(N O) = 2.794 (3) AÊ] and OÐ

H O [dav(H O) = 1.83 AÊ, av(OÐH O) = 173 and

dav(O O) = 2.729 (3) AÊ] hydrogen bonds, resulting in a

layered structure.

Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structures of (protonated) amine phosphates (Demiret al., 2003), phosphites (Harrison, 2003), selenites (Ritchie & Harrison, 2003) and arsenates (Lee & Harrison, 2003).

The crystal structure of (I) contains two unique C6H5CH2NH3+ benzylammonium cations, one unique

[HAsO4]2ÿ hydrogenarsenate anion and one unique water

molecule. The phenyl ring of the N2 benzylammonium species is disordered over two orientations twisted approximately about the C8ÐC9a/b C12a/baxis [dihedral angle between

the ring planes = 29.6; relative populations =

0.597 (7):0.403 (7) for the C9±C14 atoms with suf®xesaandb, respectively]. Otherwise, the geometrical parameters for the organic species are not signi®cantly different from those of the same cation in the non-linear optical material

benzyl-Received 4 November 2003 Accepted 13 November 2003 Online 22 November 2003

Figure 1

(2)

metal-organic papers

m1152

Lee and Harrison (C7H10N)2[HAsO4]H2O Acta Cryst.(2003). E59, m1151±m1153 ammonium dihydrogenphosphate, (C6H5CH2NH3)[H2PO4]

(Aakeroyet al., 1989).

The [HAsO4]2ÿ hydrogenarsenate group in (I) shows its

standard (Lee & Harrison, 2003) tetrahedral geometry [dav(AsÐO) = 1.689 (2) AÊ andav(OÐAsÐO) = 109.4 (1)],

with the protonated AsÐO4 vertex showing its expected lengthening relative to the other AsÐO bonds.

As well as electrostatic attractions, the component species in (I) interact by means of a network of NÐH O and OÐ H O links (Table 2). The [HAsO4]2ÿ units and the water

molecule (atom O5) are linked into a polymeric chain in the [010] direction by hydrogen bonds (Fig. 2). Inversion symmetry generates linked pairs of [HAsO4]2ÿunits (by way

of two O4ÐH1 O3 bonds) which, in turn, are bridged by pairs of water molecules. The hydrogen-bonding scheme in propane-1,2-diammonium hydrogenarsenate monohydrate (Lee & Harrison, 2003) led to a quite different arrangement of [HAsO4]2ÿ and H2O units. In 4-carboxyanilinium

di-hydrogenarsenate monohydrate (Tordjman et al., 1988), hydrogen bonding between the [H2AsO4]ÿand H2O species

results in a sheet structure, but otherwise structural data are lacking for these systems.

The organic species interact with the hydrogenarsenate/ water chains by way of NÐH OÐAs hydrogen bonds (Table 2). All six of the NH3+H atoms are involved in these

links [dav(H O) = 1.91 AÊ, av(NÐH O) = 167 and

dav(N O) = 2.794 (3) AÊ]. This results in (001)

hydrogen-arsenate/water/ammonium layers sandwiched between the benzyl moieties (Fig. 3) which, in turn, interact by way of van der Waals forces. A PLATON (Spek, 2003) analysis of (I) indicated that the minimum separation between phenyl ring centroids is 4.06 AÊ; therefore, any±stacking interactions in (I) are extremely weak.

Experimental

4 ml of a 1Mbenzylamine aqueous solution was added to 8 ml of a 0.5M H3AsO4 aqueous solution, resulting in a brown solution. A

mass of plate-shaped slightly translucent crystals of (I) grew as the water evaporated over the course of a few days.

Crystal data

(C7H10N)2[HAsO4]H2O

Mr= 374.26 Triclinic,P1

a= 6.4400 (2) AÊ

b= 8.9128 (3) AÊ

c= 14.9957 (5) AÊ

= 99.7048 (11)

= 93.1574 (12)

= 97.7776 (18)

V= 837.93 (5) AÊ3

Z= 2

Dx= 1.483 Mg mÿ3 MoKradiation

Cell parameters from 24 435 re¯ections

= 2.9±27.5

= 2.05 mmÿ1

T= 120 (2) K Plate, colourless 0.350.120.03 mm

Data collection

Enraf±Nonius KappaCCD diffractometer

!and'scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995)

Tmin= 0.534,Tmax= 0.941 18 359 measured re¯ections

3846 independent re¯ections 3538 re¯ections withI> 2(I)

Rint= 0.122

max= 27.5

h=ÿ8!8

k=ÿ11!11

l=ÿ19!19

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.045

wR(F2) = 0.112

S= 1.02 3846 re¯ections 158 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0281P)2 + 2.1999P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 1.39 e AÊÿ3 min=ÿ0.69 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.021 (2)

Table 1

Selected geometric parameters (AÊ).

As1ÐO1 1.666 (2)

As1ÐO2 1.675 (2) As1ÐO3As1ÐO4 1.681 (2)1.732 (2)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O4ÐH1 O3i 0.89 1.74 2.632 (3) 173 N1ÐH4 O2ii 0.91 1.94 2.830 (3) 166 N1ÐH5 O2iii 0.91 1.99 2.843 (3) 155 N1ÐH6 O1 0.91 1.80 2.704 (3) 174 N2ÐH7 O1iv 0.91 1.86 2.731 (3) 161 N2ÐH8 O5 0.91 1.92 2.823 (3) 174 N2ÐH9 O3 0.91 1.94 2.835 (3) 169 O5ÐH2 O3iii 0.96 1.78 2.731 (3) 171 O5ÐH3 O2ii 0.85 1.98 2.825 (2) 176

Symmetry codes: (i) 2ÿx;1ÿy;1ÿz; (ii) 1ÿx;ÿy;1ÿz; (iii) xÿ1;y;z; (iv) 1ÿx;1ÿy;1ÿz.

Figure 2

Detail of a hydrogen-bonded hydrogenarsenate/water chain in (I). Colour key: [HAsO4]2ÿtetrahedra green, O atoms rose and H atoms

grey. The H O portions of the hydrogen bonds are highlighted in yellow. Symmetry labels as in Table 2; additionally, (v) 1 +x, y, z; (vi) 1 +x, 1 +y, z.

Figure 3

(3)

The C atoms forming the two orientations of the disordered phenyl group (atoms C9a±C14aand C9b±C14b) were constrained to lie at the vertices of regular hexagons, with d(CÐC) = 1.39 AÊ, and were re®ned isotropically. The OÐH H atoms were found in difference maps and re®ned as riding, starting from these positions. The H atoms bonded to C and N atoms were placed in calculated positions [d(CÐH) = 0.95±0.99 AÊ andd(NÐH) = 0.91 AÊ] and re®ned as riding, allowing free rotation of the rigid RÐNH3 groups

about the RÐN bonds. The constraint Uiso(H) = 1.2Ueq(parent

atom) was applied in all cases. The highest difference peak is 0.54 AÊ from C12band the deepest difference hole is 0.79 AÊ from As1.

Data collection:COLLECT(Nonius, 1999); cell re®nement:HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK, and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) andATOMS(Shape Software, 1999); software used to prepare material for publication:SHELXL97.

We thank the EPSRC UK National Crystallography Service (University of Southampton) for data collection.

References

Aakeroy, C. B., Hitchcock, P. B., Moyle, B. D., Seddon, K. R. (1989).J. Chem. Soc. Chem. Commun.pp. 1856±1859.

Blessing, R. H. (1995).Acta Cryst.A51, 33±38.

Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003).Acta Cryst.E59, o907± o909.

Enraf±Nonius (1999).COLLECT. Nonius BV, Delft, The Netherlands. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Harrison, W. T. A. (2003).Acta Cryst.E59, o1267±o1269. Lee, C. & Harrison, W. T. A. (2003).Acta Cryst.E59, m739±m741. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307±326. New York: Academic Press.

Ritchie, L. K. & Harrison, W. T. A. (2003).Acta Cryst.E59, o1296±o1298. Shape Software (1999).ATOMS. Shape Software, 525 Hidden Valley Road,

Kingsport, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7±13.

Tordjman, I., Masse, R. & Guitel, J. C. (1988).Acta Cryst.C44, 2057±2059.

(4)

supporting information

sup-1 Acta Cryst. (2003). E59, m1151–m1153

supporting information

Acta Cryst. (2003). E59, m1151–m1153 [https://doi.org/10.1107/S1600536803026242]

Bis(benzylammonium) hydrogenarsenate monohydrate

Clare Lee and William T. A. Harrison

(I)

Crystal data

(C7H10N)2[HAsO4]·H2O Mr = 374.26

Triclinic, P1 Hall symbol: -P 1 a = 6.4400 (2) Å b = 8.9128 (3) Å c = 14.9957 (5) Å α = 99.7048 (11)° β = 93.1574 (12)° γ = 97.7776 (18)° V = 837.93 (5) Å3

Z = 2 F(000) = 388 Dx = 1.483 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 24435 reflections θ = 2.9–27.5°

µ = 2.05 mm−1 T = 120 K Plate, colourless 0.35 × 0.12 × 0.03 mm

Data collection

Enraf-Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω and φ scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995) Tmin = 0.534, Tmax = 0.941

18359 measured reflections 3846 independent reflections 3538 reflections with I > 2σ(I) Rint = 0.122

θmax = 27.5°, θmin = 2.9° h = −8→8

k = −11→11 l = −19→19

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.045 wR(F2) = 0.112 S = 1.02 3846 reflections 158 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0281P)2 + 2.1999P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 1.39 e Å−3

Δρmin = −0.69 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2 Acta Cryst. (2003). E59, m1151–m1153

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

As1 0.79069 (5) 0.27362 (3) 0.455577 (19) 0.01615 (13) O1 0.5423 (3) 0.3057 (2) 0.44548 (14) 0.0206 (4) O2 0.8133 (3) 0.0866 (2) 0.43007 (14) 0.0199 (4) O3 0.9006 (3) 0.3503 (2) 0.56046 (14) 0.0198 (4) O4 0.9323 (4) 0.3618 (3) 0.37887 (14) 0.0242 (5)

H1 0.9963 0.4563 0.4027 0.029*

N1 0.2439 (4) 0.0543 (3) 0.41567 (17) 0.0191 (5)

H4 0.2482 0.0079 0.4652 0.023*

H5 0.1122 0.0767 0.4048 0.023*

H6 0.3375 0.1428 0.4261 0.023*

C1 0.3001 (5) −0.0517 (4) 0.3348 (2) 0.0219 (6)

H10 0.2091 −0.1524 0.3282 0.026*

H11 0.4477 −0.0687 0.3447 0.026*

C2 0.2742 (5) 0.0126 (3) 0.2489 (2) 0.0225 (6)

C3 0.4443 (7) 0.0443 (5) 0.1989 (3) 0.0355 (8)

H12 0.5806 0.0292 0.2198 0.043*

C4 0.4147 (8) 0.0988 (5) 0.1177 (3) 0.0438 (10)

H13 0.5314 0.1191 0.0832 0.053*

C5 0.2200 (8) 0.1232 (5) 0.0871 (2) 0.0421 (10)

H14 0.2015 0.1603 0.0319 0.050*

C6 0.0526 (8) 0.0937 (6) 0.1370 (3) 0.0593 (15)

H15 −0.0827 0.1114 0.1164 0.071*

C7 0.0783 (7) 0.0382 (6) 0.2174 (3) 0.0470 (11)

H16 −0.0397 0.0175 0.2511 0.056*

N2 0.5536 (4) 0.4647 (3) 0.64221 (17) 0.0208 (5)

H7 0.5098 0.5232 0.6027 0.025*

H8 0.4500 0.3855 0.6446 0.025*

H9 0.6708 0.4266 0.6232 0.025*

C8 0.6026 (2) 0.56092 (16) 0.73401 (9) 0.0285 (7)

H17 0.4768 0.6071 0.7527 0.034*

H18 0.7167 0.6460 0.7312 0.034*

C9A 0.6777 (2) 0.47374 (16) 0.80588 (9) 0.023 (3)* 0.50

C10A 0.8731 (2) 0.42391 (16) 0.80400 (9) 0.0350 (15)* 0.596 (7)

H10A 0.9619 0.4441 0.7575 0.042* 0.596 (7)

(6)

supporting information

sup-3 Acta Cryst. (2003). E59, m1151–m1153

H11A 1.0722 0.3104 0.8688 0.051* 0.596 (7)

C12A 0.8088 (2) 0.31491 (16) 0.93803 (9) 0.049 (2)* 0.596 (7)

H12A 0.8536 0.2606 0.9832 0.059* 0.596 (7)

C13A 0.6134 (2) 0.36474 (16) 0.93991 (9) 0.0471 (19)* 0.596 (7)

H13A 0.5247 0.3445 0.9864 0.057* 0.596 (7)

C14A 0.5479 (2) 0.44416 (16) 0.87384 (9) 0.0403 (17)* 0.596 (7)

H14A 0.4144 0.4782 0.8751 0.048* 0.596 (7)

C9B 0.6550 (2) 0.46838 (16) 0.80328 (9) 0.028 (3)* 0.50

C10B 0.8649 (2) 0.47486 (16) 0.83297 (9) 0.034 (2)* 0.404 (7)

H10B 0.9716 0.5340 0.8070 0.041* 0.404 (7)

C11B 0.9186 (2) 0.39476 (16) 0.90066 (9) 0.033 (2)* 0.404 (7)

H11B 1.0621 0.3992 0.9210 0.040* 0.404 (7)

C12B 0.7625 (2) 0.30818 (16) 0.93865 (9) 0.027 (2)* 0.404 (7)

H12B 0.7993 0.2534 0.9849 0.033* 0.404 (7)

C13B 0.5527 (2) 0.30170 (16) 0.90895 (9) 0.030 (2)* 0.404 (7)

H13B 0.4460 0.2425 0.9349 0.036* 0.404 (7)

C14B 0.4989 (2) 0.38179 (16) 0.84127 (9) 0.0250 (19)* 0.404 (7)

H14B 0.3555 0.3774 0.8210 0.030* 0.404 (7)

O5 0.2125 (2) 0.22976 (16) 0.64252 (9) 0.0247 (5)

H2 0.0966 0.2619 0.6114 0.030*

H3 0.2019 0.1337 0.6227 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

As1 0.02293 (19) 0.00932 (18) 0.01604 (18) 0.00171 (11) 0.00122 (11) 0.00244 (11) O1 0.0236 (11) 0.0138 (10) 0.0238 (11) 0.0024 (8) −0.0011 (9) 0.0032 (8) O2 0.0276 (11) 0.0085 (9) 0.0233 (11) 0.0041 (8) 0.0021 (9) 0.0007 (8) O3 0.0272 (11) 0.0123 (10) 0.0182 (10) −0.0002 (8) −0.0023 (8) 0.0012 (8) O4 0.0338 (13) 0.0158 (10) 0.0201 (11) −0.0056 (9) 0.0068 (9) 0.0006 (8) N1 0.0233 (13) 0.0141 (12) 0.0201 (12) 0.0010 (10) 0.0003 (10) 0.0057 (10) C1 0.0302 (16) 0.0152 (14) 0.0207 (15) 0.0041 (12) 0.0037 (12) 0.0034 (11) C2 0.0322 (17) 0.0156 (14) 0.0175 (14) −0.0014 (12) 0.0008 (12) 0.0012 (11) C3 0.047 (2) 0.035 (2) 0.0308 (18) 0.0178 (17) 0.0169 (16) 0.0113 (15) C4 0.069 (3) 0.038 (2) 0.032 (2) 0.016 (2) 0.026 (2) 0.0133 (17) C5 0.071 (3) 0.030 (2) 0.0209 (17) −0.0076 (19) −0.0081 (18) 0.0076 (14) C6 0.048 (3) 0.077 (4) 0.054 (3) −0.019 (2) −0.024 (2) 0.044 (3) C7 0.032 (2) 0.066 (3) 0.045 (2) −0.0119 (19) −0.0092 (17) 0.037 (2) N2 0.0300 (14) 0.0135 (12) 0.0196 (12) 0.0052 (10) 0.0020 (10) 0.0031 (10) C8 0.051 (2) 0.0137 (15) 0.0203 (15) 0.0066 (14) 0.0046 (14) −0.0011 (12) O5 0.0300 (12) 0.0138 (10) 0.0292 (12) 0.0031 (9) −0.0025 (9) 0.0022 (9)

Geometric parameters (Å, º)

As1—O1 1.666 (2) C8—C9A 1.5252

As1—O2 1.675 (2) C8—H17 0.9900

As1—O3 1.681 (2) C8—H18 0.9900

(7)

supporting information

sup-4 Acta Cryst. (2003). E59, m1151–m1153

O4—H1 0.8919 C9A—C14A 1.3900

N1—C1 1.499 (4) C10A—C11A 1.3900

N1—H4 0.9100 C10A—H10A 0.9500

N1—H5 0.9100 C11A—C12A 1.3900

N1—H6 0.9100 C11A—H11A 0.9500

C1—C2 1.506 (4) C12A—C13A 1.3900

C1—H10 0.9900 C12A—H12A 0.9500

C1—H11 0.9900 C13A—C14A 1.3900

C2—C7 1.384 (5) C13A—H13A 0.9500

C2—C3 1.385 (5) C14A—H14A 0.9500

C3—C4 1.398 (6) C9B—C10B 1.3900

C3—H12 0.9500 C9B—C14B 1.3900

C4—C5 1.369 (6) C10B—C11B 1.3900

C4—H13 0.9500 C10B—H10B 0.9500

C5—C6 1.367 (7) C11B—C12B 1.3900

C5—H14 0.9500 C11B—H11B 0.9500

C6—C7 1.389 (6) C12B—C13B 1.3900

C6—H15 0.9500 C12B—H12B 0.9500

C7—H16 0.9500 C13B—C14B 1.3900

N2—C8 1.487 (3) C13B—H13B 0.9500

N2—H7 0.9100 C14B—H14B 0.9500

N2—H8 0.9100 O5—H2 0.9595

N2—H9 0.9100 O5—H3 0.8499

C8—C9B 1.4829

O1—As1—O2 112.66 (11) N2—C8—C9A 113.84 (11)

O1—As1—O3 110.23 (11) C9B—C8—H17 106.8

O2—As1—O3 110.89 (10) N2—C8—H17 109.0

O1—As1—O4 109.09 (11) C9A—C8—H17 110.1

O2—As1—O4 105.84 (10) C9B—C8—H18 112.1

O3—As1—O4 107.92 (11) N2—C8—H18 109.1

As1—O4—H1 113.0 C9A—C8—H18 106.8

C1—N1—H4 109.5 H17—C8—H18 107.8

C1—N1—H5 109.5 C10A—C9A—C14A 120.0

H4—N1—H5 109.5 C10A—C9A—C8 120.9

C1—N1—H6 109.5 C14A—C9A—C8 119.1

H4—N1—H6 109.5 C11A—C10A—C9A 120.0

H5—N1—H6 109.5 C11A—C10A—H10A 120.0

N1—C1—C2 111.8 (2) C9A—C10A—H10A 120.0

N1—C1—H10 109.3 C10A—C11A—C12A 120.0

C2—C1—H10 109.3 C10A—C11A—H11A 120.0

N1—C1—H11 109.3 C12A—C11A—H11A 120.0

C2—C1—H11 109.3 C13A—C12A—C11A 120.0

H10—C1—H11 107.9 C13A—C12A—H12A 120.0

C7—C2—C3 118.8 (3) C11A—C12A—H12A 120.0

C7—C2—C1 120.4 (3) C14A—C13A—C12A 120.0

C3—C2—C1 120.9 (3) C14A—C13A—H13A 120.0

(8)

supporting information

sup-5 Acta Cryst. (2003). E59, m1151–m1153

C2—C3—H12 120.1 C13A—C14A—C9A 120.0

C4—C3—H12 120.1 C13A—C14A—H14A 120.0

C5—C4—C3 120.9 (4) C9A—C14A—H14A 120.0

C5—C4—H13 119.5 C10B—C9B—C14B 120.0

C3—C4—H13 119.5 C10B—C9B—C8 118.6

C6—C5—C4 119.3 (4) C14B—C9B—C8 121.4

C6—C5—H14 120.3 C9B—C10B—C11B 120.0

C4—C5—H14 120.3 C9B—C10B—H10B 120.0

C5—C6—C7 120.6 (4) C11B—C10B—H10B 120.0

C5—C6—H15 119.7 C12B—C11B—C10B 120.0

C7—C6—H15 119.7 C12B—C11B—H11B 120.0

C2—C7—C6 120.6 (4) C10B—C11B—H11B 120.0

C2—C7—H16 119.7 C13B—C12B—C11B 120.0

C6—C7—H16 119.7 C13B—C12B—H12B 120.0

C8—N2—H7 109.5 C11B—C12B—H12B 120.0

C8—N2—H8 109.5 C12B—C13B—C14B 120.0

H7—N2—H8 109.5 C12B—C13B—H13B 120.0

C8—N2—H9 109.5 C14B—C13B—H13B 120.0

H7—N2—H9 109.5 C13B—C14B—C9B 120.0

H8—N2—H9 109.5 C13B—C14B—H14B 120.0

C9B—C8—N2 111.92 (11) C9B—C14B—H14B 120.0

C9B—C8—C9A 5.4 H2—O5—H3 104.7

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O4—H1···O3i 0.89 1.74 2.632 (3) 173

N1—H4···O2ii 0.91 1.94 2.830 (3) 166

N1—H5···O2iii 0.91 1.99 2.843 (3) 155

N1—H6···O1 0.91 1.80 2.704 (3) 174

N2—H7···O1iv 0.91 1.86 2.731 (3) 161

N2—H8···O5 0.91 1.92 2.823 (3) 174

N2—H9···O3 0.91 1.94 2.835 (3) 169

O5—H2···O3iii 0.96 1.78 2.731 (3) 171

O5—H3···O2ii 0.85 1.98 2.825 (2) 176

References

Related documents

When we focus on different types of absences, we find that being ranked 1 percent higher in your class increases the estimated effect of a relaxed class attendance policy on your

This increased probability of the revelation of unfavorable evidence reduces the defendant’s expected payoff, and therefore the defendant strictly prefers a biased expert to an

Nevertheless, it is worthwhile establishing the robustness of the results, given the focus of this study on preferences for equality: stakeholders who allocate in a

Electrodiagnostic (EDx) studies are a valid and reliable means of confirming the diagnosis. The amplitudes along with the conduction velocities of the sensory

Figure 7 jointly considers how the probability of observing a price increase (decrease) i ) varies during the season; ii ) is affected by a positive exogenous demand

Lactobacillus jensenii, Lactobacillus johnsonii, Lactobacillus crispatus and Lactobacillus acidophilus were recovered from Algerian pregnant women with intermediate

The model was able to resolve the fact that they and need had to be aligned to 2 different cepts, rather than eg a larger cept corresponding to a 2-4 alignment, and to produce

A more accurate estimate of the value of expected outcomes is provided by Monte Carlo analysis, which is based on the full distribution of possible values of highly