• No results found

1,4:8,11:15,18:22,25 Tetra­ethano 29H,31H tetra­benzo[b,g,l,q]porphine toluene tris­­olvate

N/A
N/A
Protected

Academic year: 2020

Share "1,4:8,11:15,18:22,25 Tetra­ethano 29H,31H tetra­benzo[b,g,l,q]porphine toluene tris­­olvate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o659–o661 doi:10.1107/S1600536805004228 Aramakiet al. C

44H38N43C7H8

o659

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1,4:8,11:15,18:22,25-Tetraethano-29

H

,31

H

-tetra-benzo[

b

,

g

,

l

,

q

]porphine toluene trisolvate

Shinji Aramaki,aYoshimasa Sakai,aHiroyuki Yanagisawab and Jin Mizuguchib*

aMitsubishi Chemical Group Science and

Technology Research Centre, Kamoshida-cho 1000, Aoba-ku, Yokohama 227-8502, Japan, andbDepartment of Applied Physics, Graduate

School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

Key indicators

Single-crystal X-ray study T= 93 K

Mean(C–C) = 0.009 A˚ Disorder in solvent or counterion Rfactor = 0.073

wRfactor = 0.197 Data-to-parameter ratio = 9.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, C44H38N43C7H8, the porphine (CP) is a

soluble precursor of metal-free porphyrin which exhibits an excellent field-effect transistor characteristic. The CP mol-ecule is not entirely flat in its crystal structure (i.e.notD2h),

but is slightly deformed, as characterized by crystallographic

Ci symmetry. The geometric isomer of CP could not be

identified due to orientational disorder.

Comment

Organic field-effect transistors (FET) are advantageous due to lower fabrication costs and larger-area devices compared with inorganic FETs. We have recently reported that metal-free porphyrin, so-called benzoporphyrin (BP), exhibits an

excel-lent FET characteristic (Aramaki et al., 2004). Our FET

[image:1.610.208.468.445.637.2]

system is characterized by the use of a soluble BP precursor, CP, and its thermal transformation into BP directly on the substrate at about 473 K. In order to improve the FET performance further, it is crucial to study the correlation between structure and solid-state properties. The structure of BP has previously been reported (Aramaki & Mizuguchi, 2003). The present paper deals with the structure of the title compound, (I), which is the toluene trisolvate of CP.

Fig. 1 shows the structure of the CP molecule of (I). The centrosymmetric molecule is not entirely planar. The angle

between the plane of the four N atoms [N1/N1i/N2/N2i;

symmetry code: (i) 1x, 2y, 1z] and the C3/C4/C7/C8

plane is 2.9 (3), while the angle between the central plane and

that composed of atoms C14/C15/C16/C19 is 7.1 (3).

According to the scheme, there should be one single bond and one double bond in the bicyclic ring system at the periphery of

(2)

the molecule. However, the C5—C6, C9—C10, C17—C18 and C20—C21 bond lengths are in the range 1.426 (9)–1.436 (8) A˚ . These are intermediate between single and double bonds. This presumably occurs because the molecule and its inverse are arranged randomly in the crystal structure, giving a crystal-lographically averaged bond length.

It is also to be noted that we have successfully isolated two geometric isomers by column chromatography and confirmed that their NMR spectra are different. However, the crystals of the two isomers showed the same cell constants and similar disorder of the bicyclic ring system by X-ray analyses.

Fig. 2 shows the packing arrangement of CP with the toluene molecules. The solvent molecules are sandwiched between two CP molecules.

Experimental

CP was synthesized according to the method previously reported by Itoet al. (1998). The product was purified by column chromatography and recrystallization. Single crystals of (I) were then grown from a toluene solution. Since the crystal was found to include solvent molecules, X-ray intensity data were collected at 93 K.

Crystal data

C44H38N43C7H8

Mr= 899.18

Triclinic,P1

a= 9.986 (3) A˚

b= 11.682 (3) A˚

c= 12.222 (4) A˚ = 117.17 (2) = 103.69 (2) = 92.56 (2) V= 1213.0 (7) A˚3

Z= 1

Dx= 1.231 Mg m

3

CuKradiation Cell parameters from 8380

reflections = 4.2–56.9 = 0.54 mm1

T= 93.2 K Block, dark red 0.400.400.20 mm

Data collection

Rigaku R-AXIS RAPID imaging plate diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.471,Tmax= 0.897

8409 measured reflections

3020 independent reflections 1754 reflections withF2> 2(F2)

Rint= 0.067

max= 56.9

h=10!10

k=12!12

l=13!12

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.073

wR(F2) = 0.197

S= 1.26 3020 reflections 316 parameters

H-atom parameters constrained

w= 1/[2(F o2) +

{0.05[max(Fo2,0) + 2Fc2]/3}2]

(/)max< 0.001 max= 0.45 e A˚

3 min=0.46 e A˚

[image:2.610.316.565.71.291.2]

3

Table 1

Selected geometric parameters (A˚ ,).

N1—C2 1.376 (7)

N1—C11 1.382 (7)

N2—C13 1.392 (7)

N2—C22 1.381 (7)

C1—C2 1.391 (8)

C1—C13 1.382 (8)

C2—C3 1.441 (8)

C3—C8 1.361 (8)

C5—C6 1.433 (9)

C8—C11 1.433 (7)

C9—C10 1.435 (10)

C11—C12 1.382 (8) C12—C22i

1.397 (8) C13—C14 1.446 (8) C14—C15 1.343 (8) C15—C22 1.452 (8) C17—C18 1.426 (9) C20—C21 1.436 (8)

C2—N1—C11 110.0 (4) C13—N2—C22 106.5 (4) C2—C1—C13 127.5 (5) N1—C2—C1 124.7 (5) N1—C2—C3 107.0 (5) C1—C2—C3 128.2 (5) C2—C3—C8 107.6 (5) C3—C8—C11 108.9 (5) N1—C11—C8 106.5 (5) N1—C11—C12 125.9 (5)

C8—C11—C12 127.6 (5) C11—C12—C22i

128.3 (5) N2—C13—C1 124.4 (5) N2—C13—C14 109.3 (5) C1—C13—C14 126.3 (5) C13—C14—C15 107.2 (5) C14—C15—C22 108.1 (5) N2—C22—C12i

125.8 (5) N2—C22—C15 108.8 (5) C12i

—C22—C15 125.3 (5)

Symmetry code: (i) 1x;2y;1z.

organic papers

o660

Aramakiet al. C

44H38N43C7H8 Acta Cryst.(2005). E61, o659–o661

Figure 2

[image:2.610.50.294.74.320.2]

The crystal structure of (I). H atoms and one of two possible positions of the methyl C33 atom of toluene have been omitted for clarity.

Figure 1

[image:2.610.314.566.541.725.2]
(3)

All the H atoms were positioned geometrically and included in a riding-model approximation, with C—H and N—H distances of 0.95 A˚ and withUiso(H) = 1.2Ueq(C,N). A positive peak was found

near atom N1 in the difference density map. However, it deviated slightly from the plane composed of the four N atoms. Therefore, the H atom bonded to N1 was calculated by assumingsp2hybridation. Six H atoms attached to the bicyclic ring system at the periphery of the CP molecule were positioned in the following way. As described in theComment, one of the two C—C bonds is a single bond, whereas the other one is double. At one corner, since the C5—C6 bond is just slightly shorter than the C9—C10 one, two –CH were tentatively attached to the former, and two –CH2 to the latter. Similarly, at

another corner, two –CH were attached to the C17—C18 bond, and two –CH2to the C20—C21 bond. There are one and a half

inde-pendent toluene molecules in the asymmetric unit. The benzene ring of one of the three toluene molecules in the unit cell has a crystal-lographic centre of symmetry, and the methyl group (C33) is disor-dered over two sites of 50% occupancy each.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refine-ment: PROCESS-AUTO; data reduction: TEXSAN (Molecular

Structure Corporation, 2001); program(s) used to solve structure: SHELXS86(Sheldrick, 1985); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication:TEXSAN.

The authors express their sincere thanks to Mr I. Suzuki for experimental assistance.

References

Aramaki, S. & Mizuguchi, J. (2003).Acta Cryst. E,59, o1556–o1558. Aramaki, S., Sakai, Y. & Ono, N. (2004). Appl. Phys. Lett. 84, 2085–

2087.

Burnett, M. N. & Johnson, C. K. (1996).ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.

Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan.

Ito, S., Ochi, N., Murashima, T., Uno, H. & Ono, N. (1998).Chem. Commun.

pp. 1661–1662.

Molecular Structure Corporation (2001).TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Rigaku (1998).PROCESS-AUTO.Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1985).SHELXS86. University of Go¨ttingen, Germany.

organic papers

Acta Cryst.(2005). E61, o659–o661 Aramakiet al. C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o659–o661

supporting information

Acta Cryst. (2005). E61, o659–o661 [https://doi.org/10.1107/S1600536805004228]

1,4:8,11:15,18:22,25-Tetraethano-29

H

,31

H

-tetrabenzo[

b

,

g

,

l

,

q

]porphine toluene

trisolvate

Shinji Aramaki, Yoshimasa Sakai, Hiroyuki Yanagisawa and Jin Mizuguchi

1,4:8,11:15,18:22,25-Tetraethano-29H,31H-tetrabenzo[b,g,l,q]porphine toluene trisolvate

Crystal data

C44H38N4·3C7H8 Mr = 899.18

Triclinic, P1 Hall symbol: -P 1

a = 9.986 (3) Å

b = 11.682 (3) Å

c = 12.222 (4) Å

α = 117.17 (2)°

β = 103.69 (2)°

γ = 92.56 (2)°

V = 1213.0 (7) Å3

Z = 1

F(000) = 480

Dx = 1.231 Mg m−3

Cu radiation, λ = 1.5418 Å Cell parameters from 8380 reflections

θ = 4.2–56.9°

µ = 0.54 mm−1 T = 93 K Block, dark red 0.40 × 0.40 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID imaging plate diffractometer

Detector resolution: 10.00 pixels mm-1

48 frames, δω = 15° scans Absorption correction: multi-scan

(ABSCOR; Higashi, 1995)

Tmin = 0.471, Tmax = 0.897 8409 measured reflections

3020 independent reflections 1754 reflections with F2 > 2σ(F2) Rint = 0.067

θmax = 56.9°

h = 0→10

k = −12→12

l = −13→12

Refinement

Refinement on F2 R[F2 > 2σ(F2)] = 0.073 wR(F2) = 0.197 S = 1.26 3020 reflections 316 parameters

H-atom parameters constrained

w = 1/[σ2(Fo2) + (0.05(Max(Fo2,0) + 2Fc2)/3)2]

(Δ/σ)max < 0.001

Δρmax = 0.45 e Å−3

Δρmin = −0.46 e Å−3

Special details

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are

based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o659–o661

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

N1 0.4543 (4) 0.9085 (4) 0.2983 (4) 0.033 (1) N2 0.6729 (4) 0.9136 (4) 0.5039 (4) 0.033 (1) C1 0.6541 (5) 0.7942 (5) 0.2741 (5) 0.032 (2) C2 0.5308 (5) 0.8277 (5) 0.2251 (5) 0.030 (2) C3 0.4586 (5) 0.7868 (5) 0.0927 (5) 0.035 (2) C4 0.4760 (6) 0.7001 (6) −0.0366 (5) 0.038 (2) C5 0.3418 (6) 0.5977 (6) −0.1127 (5) 0.047 (2) C6 0.2184 (6) 0.6558 (6) −0.1131 (5) 0.045 (2) C7 0.2502 (6) 0.8047 (6) −0.0436 (5) 0.038 (2) C8 0.3417 (5) 0.8424 (5) 0.0906 (5) 0.034 (2) C9 0.4710 (6) 0.7846 (7) −0.1034 (6) 0.051 (2) C10 0.3463 (6) 0.8410 (6) −0.1070 (5) 0.046 (2) C11 0.3374 (5) 0.9207 (5) 0.2199 (5) 0.032 (2) C12 0.2361 (5) 0.9926 (5) 0.2604 (5) 0.031 (2) C13 0.7214 (5) 0.8334 (5) 0.4014 (5) 0.031 (2) C14 0.8531 (5) 0.8020 (5) 0.4501 (5) 0.032 (2) C15 0.8819 (6) 0.8603 (5) 0.5785 (5) 0.033 (2) C16 1.0209 (5) 0.8443 (5) 0.6475 (5) 0.034 (2) C17 1.1299 (6) 0.8963 (6) 0.6044 (6) 0.045 (2) C18 1.0998 (6) 0.8360 (6) 0.4682 (6) 0.043 (2) C19 0.9654 (5) 0.7335 (5) 0.3986 (5) 0.032 (2) C20 1.0197 (6) 0.6972 (5) 0.5873 (5) 0.041 (2) C21 0.9899 (6) 0.6352 (5) 0.4501 (5) 0.043 (2) C22 0.7697 (5) 0.9308 (5) 0.6141 (5) 0.035 (2) C23 0.1954 (5) 0.4492 (5) 0.1300 (5) 0.035 (2) C24 0.2206 (6) 0.3839 (6) 0.2015 (5) 0.042 (2) C25 0.1860 (6) 0.2495 (6) 0.1446 (6) 0.044 (2) C26 0.1232 (6) 0.1776 (6) 0.0137 (6) 0.047 (2) C27 0.0957 (6) 0.2413 (6) −0.0588 (5) 0.045 (2) C28 0.1313 (6) 0.3760 (6) −0.0006 (5) 0.040 (2) C29 0.2401 (7) 0.5962 (6) 0.1937 (6) 0.054 (2) C30 0.4276 (8) 0.4140 (9) 0.5241 (6) 0.066 (2) C31 0.5326 (8) 0.3776 (8) 0.4649 (6) 0.064 (2) C32 0.6027 (8) 0.4643 (9) 0.4404 (6) 0.069 (3)

C33 0.5583 (11) 0.2617 (13) 0.4296 (11) 0.035 (3) 0.50 H1 0.6969 0.7378 0.2129 0.0382*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o659–o661

H16 1.0387 0.8861 0.7382 0.0406* H17A 1.2187 0.8807 0.6386 0.0544* H17B 1.1328 0.9877 0.6372 0.0544* H18A 1.1758 0.7947 0.4442 0.0520* H18B 1.0897 0.9015 0.4428 0.0520* H19 0.9433 0.6937 0.3077 0.0390* H20 1.0368 0.6517 0.6354 0.0497* H21 0.9858 0.5444 0.3971 0.0511* H24 0.2627 0.4328 0.2917 0.0500* H25 0.2052 0.2067 0.1951 0.0524* H26 0.0990 0.0851 −0.0263 0.0559* H27 0.0521 0.1923 −0.1488 0.0541* H28 0.1115 0.4187 −0.0512 0.0474* H29A 0.3386 0.6186 0.2320 0.0646* H29B 0.2153 0.6243 0.1310 0.0646* H29C 0.1943 0.6378 0.2578 0.0646* H30 0.3775 0.3545 0.5396 0.0797*

H31 0.5565 0.2934 0.4413 0.0507* 0.50 H32 0.6730 0.4381 0.3980 0.0824*

H33A 0.5852 0.2485 0.5024 0.0417* 0.50 H33B 0.6321 0.2503 0.3908 0.0417* 0.50 H33C 0.4766 0.2003 0.3695 0.0417* 0.50 H34 0.4783 0.9500 0.3894 0.0395*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, o659–o661

C20 0.049 (4) 0.028 (3) 0.039 (4) 0.004 (3) −0.005 (3) 0.018 (3) C21 0.058 (4) 0.029 (3) 0.039 (4) 0.008 (3) 0.011 (3) 0.016 (3) C22 0.032 (3) 0.033 (3) 0.037 (4) 0.004 (3) 0.007 (3) 0.016 (3) C23 0.026 (3) 0.040 (4) 0.036 (3) 0.004 (3) 0.007 (3) 0.017 (3) C24 0.035 (3) 0.050 (4) 0.029 (3) 0.003 (3) 0.005 (3) 0.012 (3) C25 0.037 (3) 0.045 (4) 0.051 (4) 0.006 (3) 0.008 (3) 0.028 (3) C26 0.036 (3) 0.041 (4) 0.049 (4) −0.000 (3) 0.007 (3) 0.014 (3) C27 0.043 (4) 0.043 (4) 0.034 (3) −0.004 (3) 0.003 (3) 0.011 (3) C28 0.037 (3) 0.046 (4) 0.033 (3) 0.004 (3) 0.006 (3) 0.020 (3) C29 0.057 (4) 0.045 (4) 0.050 (4) 0.007 (3) 0.011 (3) 0.017 (3) C30 0.065 (5) 0.080 (6) 0.028 (4) −0.042 (5) −0.003 (4) 0.017 (4) C31 0.072 (5) 0.067 (5) 0.025 (4) −0.032 (5) −0.006 (4) 0.013 (4) C32 0.066 (5) 0.087 (6) 0.029 (4) −0.031 (5) 0.003 (4) 0.018 (4) C33 0.032 (6) 0.050 (8) 0.030 (6) 0.008 (6) 0.013 (5) 0.024 (6)

Geometric parameters (Å, º)

N1—C2 1.376 (7) C16—H16 0.950

N1—C11 1.382 (7) C17—C18 1.426 (9)

N1—H34 0.950 C17—H17A 0.950

N2—C13 1.392 (7) C17—H17B 0.950

N2—C22 1.381 (7) C18—C19 1.531 (7)

C1—C2 1.391 (8) C18—H18A 0.950

C1—C13 1.382 (8) C18—H18B 0.950

C1—H1 0.950 C19—C21 1.54 (1)

C2—C3 1.441 (8) C19—H19 0.950

C3—C4 1.496 (8) C20—C21 1.436 (8)

C3—C8 1.361 (8) C20—H20 0.950

C4—C5 1.530 (7) C21—H21 0.950

C4—C9 1.54 (1) C23—C24 1.39 (1)

C4—H4 0.950 C23—C28 1.382 (7)

C5—C6 1.433 (9) C23—C29 1.516 (9)

C5—H5A 0.950 C24—C25 1.382 (9)

C5—H5B 0.950 C24—H24 0.950

C6—C7 1.524 (9) C25—C26 1.382 (8)

C6—H6A 0.950 C25—H25 0.950

C6—H6B 0.950 C26—C27 1.38 (1)

C7—C8 1.522 (8) C26—H26 0.950

C7—C10 1.52 (1) C27—C28 1.385 (9)

C7—H7 0.950 C27—H27 0.950

C8—C11 1.433 (7) C28—H28 0.950

C9—C10 1.435 (10) C29—H29A 0.950

C9—H9 0.950 C29—H29B 0.950

C10—H10 0.950 C29—H29C 0.950

C11—C12 1.382 (8) C30—C31 1.39 (1)

C12—C22i 1.397 (8) C30—C32ii 1.36 (1)

C12—H12 0.950 C30—H30 0.950

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, o659–o661

C14—C15 1.343 (8) C31—C33 1.28 (2)

C14—C19 1.500 (8) C31—H31 0.950

C15—C16 1.512 (8) C32—H32 0.950

C15—C22 1.452 (8) C33—H33A 0.950

C16—C17 1.53 (1) C33—H33B 0.950

C16—C20 1.527 (8) C33—H33C 0.950

N2···C18iii 3.458 (7) C9···C25iv 3.592 (8)

N2···C33ii 3.49 (1) C13···C17iii 3.467 (8)

C1···C17iii 3.580 (8) C18···C22iii 3.596 (8)

C2—N1—C11 110.0 (4) C16—C17—H17A 108.6 C2—N1—H34 125.0 C16—C17—H17B 108.6 C11—N1—H34 125.0 C18—C17—H17A 108.6 C13—N2—C22 106.5 (4) C18—C17—H17B 108.6 C2—C1—C13 127.5 (5) H17A—C17—H17B 109.5 C2—C1—H1 116.2 C17—C18—C19 112.4 (6) C13—C1—H1 116.2 C17—C18—H18A 108.7 N1—C2—C1 124.7 (5) C17—C18—H18B 108.7 N1—C2—C3 107.0 (5) C19—C18—H18A 108.7 C1—C2—C3 128.2 (5) C19—C18—H18B 108.7 C2—C3—C4 137.6 (5) H18A—C18—H18B 109.5 C2—C3—C8 107.6 (5) C14—C19—C18 105.9 (4) C4—C3—C8 114.8 (5) C14—C19—C21 105.9 (6) C3—C4—C5 106.3 (5) C14—C19—H19 113.2 C3—C4—C9 105.7 (5) C18—C19—C21 104.8 (5)

C3—C4—H4 113.2 C18—C19—H19 113.2

C5—C4—C9 104.6 (5) C21—C19—H19 113.2 C5—C4—H4 113.2 C16—C20—C21 112.6 (6)

C9—C4—H4 113.2 C16—C20—H20 123.7

C4—C5—C6 112.3 (5) C21—C20—H20 123.7 C4—C5—H5A 108.8 C19—C21—C20 112.1 (5)

C4—C5—H5B 108.8 C19—C21—H21 124.0

C6—C5—H5A 108.8 C20—C21—H21 124.0

C6—C5—H5B 108.8 N2—C22—C12i 125.8 (5)

H5A—C5—H5B 109.5 N2—C22—C15 108.8 (5) C5—C6—C7 113.2 (5) C12i—C22—C15 125.3 (5)

C5—C6—H6A 108.5 C24—C23—C28 118.0 (6) C5—C6—H6B 108.5 C24—C23—C29 120.7 (5) C7—C6—H6A 108.5 C28—C23—C29 121.3 (7) C7—C6—H6B 108.5 C23—C24—C25 121.6 (5) H6A—C6—H6B 109.5 C23—C24—H24 119.2 C6—C7—C8 104.7 (6) C25—C24—H24 119.2 C6—C7—C10 105.5 (5) C24—C25—C26 119.6 (7)

C6—C7—H7 113.5 C24—C25—H25 120.2

C8—C7—C10 105.3 (4) C26—C25—H25 120.2 C8—C7—H7 113.5 C25—C26—C27 119.5 (6)

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, o659–o661

C3—C8—C7 114.2 (5) C27—C26—H26 120.2 C3—C8—C11 108.9 (5) C26—C27—C28 120.3 (5) C7—C8—C11 136.9 (5) C26—C27—H27 119.9 C4—C9—C10 112.0 (6) C28—C27—H27 119.9 C4—C9—H9 124.0 C23—C28—C27 120.9 (7)

C10—C9—H9 124.0 C23—C28—H28 119.6

C7—C10—C9 113.3 (7) C27—C28—H28 119.6 C7—C10—H10 123.3 C23—C29—H29A 109.5 C9—C10—H10 123.3 C23—C29—H29B 109.5 N1—C11—C8 106.5 (5) C23—C29—H29C 109.5 N1—C11—C12 125.9 (5) H29A—C29—H29B 109.5 C8—C11—C12 127.6 (5) H29A—C29—H29C 109.5 C11—C12—C22i 128.3 (5) H29B—C29—H29C 109.5

C11—C12—H12 115.9 C31—C30—C32ii 119.0 (9)

C22i—C12—H12 115.9 C31—C30—H30 120.5

N2—C13—C1 124.4 (5) C32ii—C30—H30 120.5

N2—C13—C14 109.3 (5) C30—C31—C32 119.9 (8) C1—C13—C14 126.3 (5) C30—C31—C33 118 (1) C13—C14—C15 107.2 (5) C30—C31—H31 120.1 C13—C14—C19 138.0 (5) C32—C31—C33 121.6 (10) C15—C14—C19 114.6 (5) C32—C31—H31 120.1 C14—C15—C16 114.9 (5) C33—C31—H31 2.9 C14—C15—C22 108.1 (5) C30ii—C32—C31 121.1 (8)

C16—C15—C22 136.9 (5) C30ii—C32—H32 119.5

C15—C16—C17 105.1 (6) C31—C32—H32 119.5 C15—C16—C20 105.9 (4) C31—C33—H33A 109.5 C15—C16—H16 113.3 C31—C33—H33B 109.5 C17—C16—C20 105.0 (5) C31—C33—H33C 109.5 C17—C16—H16 113.3 H33A—C33—H33B 109.5 C20—C16—H16 113.3 H33A—C33—H33C 109.5 C16—C17—C18 112.9 (4) H33B—C33—H33C 109.5

Figure

Fig. 1 shows the structure of the CP molecule of (I). The
Figure 2

References

Related documents

Under Regulation 14 (4) you are required to: Where a person is appointed as a person in charge of more than one designated centre, satisfy the chief inspector that he or she

In this paper, we design the methods for es- timating marginal distribution for data in NLG and NLU tasks: language modeling is utilized for sequential data (natural

Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation Zhiting Hu, Haoran Shi, Bowen Tan, Wentao Wang, Zichao Yang, Tiancheng Zhao, Junxian He, Lianhui Qin,

Because de facto states can’t win independence struggle against thier parent state without an external support, their patron states’ involvement would become inevitable. Such

These results support foreign aid skeptics such as [7, 16, 28 &amp; 29] amongst others whose school of thought argues that foreign aid does not help poor countries to grow richer

This research analyzed the influence of emotional intelligence which consists of self-awareness, self-regulation, motivation, empathy and social skills on the

Its Evidence score is 3: in this essay there are two other supporting claims not in the excerpt, with persuasiveness scores of only 3 and 2, so M1 ’s evidence has one decently

Equipped with supervised character- level representations and pre-trained unsupervised word embeddings, such neural architectures have not only come to dominate named entity