• No results found

Bis(2 amino­ethyl­ammonium) (ethylene­di­ammonium) (di μ sulfido κ2S:S)bis­­[di­thiostannate(IV)]

N/A
N/A
Protected

Academic year: 2020

Share "Bis(2 amino­ethyl­ammonium) (ethylene­di­ammonium) (di μ sulfido κ2S:S)bis­­[di­thiostannate(IV)]"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m878

Pulset al. (C

2H10N2)(C2H9N2)2[Sn2S6] Acta Cryst.(2005). E61, m868–m870 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(2-aminoethylammonium)

(ethylene-diammonium) (di-

l

-sulfido-

j

2

S

:

S

)bis-[dithiostannate(IV)]

Angela Puls, Christian Na¨ther and Wolfgang Bensch*

Institut fu¨r Anorganische Chemie, Christian-Albrechts-Universita¨t Kiel, Olshausenstraße 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study

T= 170 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.029

wRfactor = 0.076

Data-to-parameter ratio = 25.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

The crystal structure of the title compound, (C2H10N2

)-(C2H9N2)2[Sn2S6], consists of discrete [Sn2S6] 4

anions and mono- as well as diprotonated ethylenediamine molecules. The anion and the monoprotonated cation occupy general positions, whereas the dications are located on centres of inversion. In the crystal structure, the anions and cations are

connectedviaN—H S and N—H N hydrogen bonds.

Comment

In the last few years, several compounds containing the [Sn2S6]

4

anion have been reported. Examples with

proto-nated organic amines as counterions are (CHAH)2[Sn2S6]

(CHA is cyclohexylamine; Jianget al., 1998), (C12H25NH3)4

-[Sn2S6]2H2O (Li et al., 1997), (C6H20N4)2[Sn2S6]2H2O

(Na¨ther et al., 2003) and (enH)4[Sn2S6] (en =

ethylene-diamine) (Dehnen & Zimmermann, 2002). There are also some compounds containing transition metal complexes as

charge-compensating cations, e.g. [Ni(en)3]2[Sn2S6],

[Ni(dap)3]2[Sn2S6]2H2O (dap is 1,2-diaminopropane),

[Co(tren)3]2[Sn2S6] [tren is tris(2-aminoethyl)amine] and

[Ni(tren)3]2[Sn2S6] (Behrens et al., 2003), and C12H44N8O2

-[S6Sn2][M(en)3]2[Sn2S6] (Mis Mn, Co or Zn; Jiaet al., 2004).

Many of these compounds were prepared under solvothermal conditions. We are interested in the syntheses, structures and properties of thiostannates containing protonated organic amines. We now report the synthesis and crystal structure of the title novel thiostannate, (I), prepared under solvothermal conditions.

The asymmetric unit of (I) consists of one

crystal-lographically independent [Sn2S6]

4

anion, two crystal-lographically independent monoprotonated ethylenediamine ions and half each of two crystallographically independent diprotonated ethylenediammonium dications (Fig. 1). The two diprotonated cations are each located on centres of inversion, whereas the [Sn2S6]

4

anion and the two monoprotonated

cations occupy general positions. The [Sn2S6]

4

anions are

formed by two edge-sharing SnS4tetrahedra.

The Sn—S distances to the terminal S atoms range from

2.3337 (9) to 2.3509 (8) A˚ , shorter than the Sn—S bond

lengths to the bridging S atoms [2.4409 (9)–2.4868 (8) A˚ ]

(2)

(Table 1). The S—Sn—S angles in the Sn2S2ring [93.46 (3) and

94.34 (3)] are smaller than those to the terminal S atoms

[106.50 (3)–117.06 (3)]. The geometric parameters found in

the [Sn2S6] 4

anion are comparable with those in other

thio-stannates (Behrenset al., 2003).

Between the anions and cations, N—H S hydrogen bonds

are found (Fig. 2). The N S distances are in the range

3.228 (3)–3.683 (3) A˚ and the H S distances are between

2.40 and 2.83 A˚ ; the N—H S angles range from 147 to 174.

The two monoprotonated cations are also connectedviaN—

H N hydrogen bonds into dimers (Fig. 1). The two

dipro-tonated cations are each. In these dimers, each of the cations

acts as a hydrogen-bond donor and acceptor. The N N

distances are 2.833 (4) and 2.849 (5) A˚ , the H N distances

are 1.95 and 1.97 A˚ , and the N—H N angles are both 162.

We note that a thiostannate with four monoprotonated ethylenediamine molecules has been obtained using a room-temperature solvent route (Dehnen & Zimmermann, 2002).

Experimental

The title compound was prepared by the reaction of elemental Sn (275.4 mg) and S (48.2 mg) in a 20% solution of ethylenediamine in methanol (3.75 ml), in a Teflon-lined steel autoclave under solvo-thermal conditions. The reaction mixture was heated for 3 d at 433 K, tempered for 12 h at 363 K and cooled. The product was washed with water and ethanol (yield 10%, based on Sn) and was contaminated with large amounts of SnS2.

Crystal data

(C2H10N2)(C2H9N2)2[Sn2S6] Mr= 614.08

Triclinic,P1

a= 8.7638 (7) A˚

b= 10.729 (1) A˚

c= 12.222 (1) A˚

= 74.85 (1)

= 73.00 (1)

= 88.98 (1)

V= 1058.54 (16) A˚3

Z= 2

Dx= 1.927 Mg m

3

MoKradiation Cell parameters from 8000

reflections

= 2.5–28

= 2.95 mm1 T= 170 (2) K Block, colourless 0.090.090.08 mm

Data collection

Stoe IPDS-1 diffractometer

’scans

Absorption correction: none 11 088 measured reflections 4820 independent reflections 3926 reflections withI> 2(I)

Rint= 0.044

max= 28.0

h=11!11

k=14!14

l=16!16

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.029 wR(F2) = 0.077 S= 0.97 4820 reflections 186 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0472P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.91 e A˚

3 min=1.80 e A˚ 3

Extinction correction:SHELXL97

(Sheldrick, 1997)

Extinction coefficient: 0.0039 (5)

Table 1

Selected geometric parameters (A˚ ,).

Sn1—S2 2.3337 (9)

Sn1—S1 2.3474 (8)

Sn1—S3 2.4549 (9)

Sn1—S4 2.4868 (8)

Sn2—S5 2.3434 (9)

Sn2—S6 2.3509 (8)

Sn2—S4 2.4409 (9)

Sn2—S3 2.4659 (8)

S2—Sn1—S1 117.06 (3)

S2—Sn1—S3 111.51 (3)

S1—Sn1—S3 112.48 (3)

S2—Sn1—S4 109.00 (3)

S1—Sn1—S4 110.79 (3)

S3—Sn1—S4 93.46 (3)

S5—Sn2—S6 114.80 (3)

S5—Sn2—S4 113.84 (3)

S6—Sn2—S4 112.12 (3)

S5—Sn2—S3 106.50 (3)

S6—Sn2—S3 113.35 (3)

S4—Sn2—S3 94.34 (3)

Sn1—S3—Sn2 86.14 (3)

[image:2.610.44.293.70.226.2]

Sn2—S4—Sn1 85.98 (3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1N1 N4 0.91 1.95 2.833 (4) 162

N1—H2N1 S2i

0.91 2.40 3.228 (3) 151

N1—H3N1 S5 0.91 2.49 3.390 (3) 168

N2—H1N2 S6ii

0.91 2.65 3.477 (3) 152

N2—H2N2 S1iii

0.91 2.83 3.683 (3) 157

N3—H1N3 N2 0.91 1.97 2.849 (5) 162

N3—H2N3 S5ii

0.91 2.36 3.271 (3) 174

N3—H3N3 S6 0.91 2.55 3.436 (4) 164

N4—H1N4 S1i

0.91 2.68 3.523 (3) 155

N4—H2N4 S2iii 0.91 2.72 3.533 (3) 150

N5—H1N5 S2iv

0.91 2.41 3.263 (3) 157

N5—H2N5 S1v

0.91 2.44 3.303 (3) 159

N5—H3N5 S6vi 0.91 2.35 3.260 (3) 174

N6—H1N6 S5 0.91 2.40 3.293 (3) 167

N6—H2N6 S6vii

0.91 2.60 3.399 (3) 147

N6—H3N6 S1iv

0.91 2.35 3.250 (3) 173

Symmetry codes: (i) xþ1;yþ1;z; (ii) x;y;zþ1; (iii) x;y1;z; (iv) xþ1;yþ1;zþ1; (v)x;y;zþ1; (vi)xþ1;y;zþ1; (vii)x;yþ1;zþ1.

All H atoms were located in difference maps. C-bound H atoms were positioned with idealized geometry, with C—H = 0.99 A˚ , and refined with fixed isotropic displacement parameters [Uiso(H) =

1.2Ueq(C)] using a riding model. The positions of the N-bound H

atoms of the tertiary amino group were idealized with N—H distances of 0.91 A˚ , and they were then refined as rigid groups allowed to rotate but not tip, withUiso(H) = 1.5Ueq(N). N-bound H

atoms of the secondary amino groups were located in difference maps, and they were refined as riding with N—H 0.91 A˚ andUiso(H)

metal-organic papers

Acta Cryst.(2005). E61, m868–m870 Pulset al. (C

2H10N2)(C2H9N2)2[Sn2S6]

m879

Figure 1

[image:2.610.314.564.461.619.2]
(3)

= 1.2Ueq(N). The deepest hole in the difference map is1.80 e/A˚ 3

, located 0.78 A˚ from Sn2.

Data collection:IPDS(Stoe & Cie, 1998); cell refinement:IPDS; data reduction: IPDS; program(s) used to solve structure:

SHELXS97(Sheldrick, 1997); program(s) used to refine structure:

SHELXL97(Sheldrick, 1997); molecular graphics:XPinSHELXTL

(Bruker, 1998); software used to prepare material for publication:

CIFTABinSHELXL97.

This work was supported by the State of Schleswig– Holstein.

References

Behrens, M., Scherb, S., Na¨ther, C. & Bensch, W. (2003).Z. Anorg. Allg. Chem. 629, 1367–1373.

Bruker (1998) SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Dehnen, S. & Zimmermann, C. (2002).Z. Anorg. Allg. Chem.628, 2463–2469. Jiang, T., Lough, A., Ozin, G. A. & Bedard, R. L. (1998).J. Mater. Chem.8,

733–741.

Li, J., Marler, B., Kessler, H., Soulard, M. & Kallus, S. (1997).Inorg. Chem.36, 4697–4701.

Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004).Z. Anorg. Allg. Chem.630, 313–318.

Na¨ther, C., Scherb, S. & Bensch, W. (2003).Acta Cryst.E59, m280–m282. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Stoe & Cie (1998).IPDS. Version 2.89. Stoe & Cie, Darmstadt, Germany.

metal-organic papers

m880

Pulset al. (C

[image:3.610.315.565.71.236.2]

2H10N2)(C2H9N2)2[Sn2S6] Acta Cryst.(2005). E61, m868–m870 Figure 2

The crystal structure of (I), viewed in the direction of the crystallographic

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, m868–m870

supporting information

Acta Cryst. (2005). E61, m868–m870 [https://doi.org/10.1107/S1600536805010871]

Bis(2-aminoethylammonium) (ethylenediammonium) (di-

µ

-sulfido-

κ

2

S

:

S

)bis[di-thiostannate(IV)]

Angela Puls, Christian N

ä

ther and Wolfgang Bensch

Bis(2-aminoethylammonium)(ethylenediammonium)(di-µ-sulfido- κ2S:S)bis[disulfidotin(IV)]

Crystal data

(C2H10N2)(C2H9N2)2[Sn2S6]

Mr = 614.08

Triclinic, P1 Hall symbol: -P 1 a = 8.7638 (7) Å b = 10.7287 (10) Å c = 12.2216 (10) Å α = 74.845 (10)° β = 72.997 (10)° γ = 88.978 (10)° V = 1058.54 (16) Å3

Z = 2 F(000) = 604 Dx = 1.927 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 8000 reflections θ = 2.5–28°

µ = 2.95 mm−1

T = 170 K Block, colourless 0.09 × 0.09 × 0.08 mm

Data collection Stoe IPDS-1

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ scans

11088 measured reflections 4820 independent reflections

3926 reflections with I > 2σ(I) Rint = 0.044

θmax = 28.0°, θmin = 2.3°

h = −11→11 k = −14→14 l = −16→16

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.029

wR(F2) = 0.077

S = 0.97 4820 reflections 186 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0472P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.91 e Å−3

Δρmin = −1.80 e Å−3

Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, m868–m870

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Sn1 0.34747 (2) 0.63752 (2) 0.154153 (17) 0.00856 (8) Sn2 0.13770 (2) 0.36405 (2) 0.334696 (17) 0.00832 (8) S1 0.58686 (9) 0.70422 (8) 0.17769 (7) 0.01206 (16) S2 0.25563 (9) 0.77505 (8) 0.00775 (7) 0.01272 (16) S3 0.34584 (9) 0.41326 (8) 0.14064 (6) 0.01217 (16) S4 0.12997 (9) 0.58798 (8) 0.34600 (7) 0.01226 (16) S5 0.24852 (9) 0.22744 (8) 0.47117 (7) 0.01222 (16) S6 −0.10768 (9) 0.28440 (8) 0.32975 (7) 0.01187 (16) N1 0.4617 (3) 0.1191 (3) 0.2382 (3) 0.0172 (6)

H1N1 0.3919 0.0876 0.2080 0.026*

H2N1 0.5356 0.1758 0.1785 0.026*

H3N1 0.4075 0.1603 0.2928 0.026*

C1 0.5430 (4) 0.0112 (4) 0.2955 (3) 0.0185 (7)

H1A 0.6289 0.0465 0.3186 0.022*

H1B 0.5931 −0.0387 0.2380 0.022*

C2 0.4283 (4) −0.0776 (4) 0.4039 (3) 0.0183 (7)

H2A 0.4870 −0.1481 0.4405 0.022*

H2B 0.3813 −0.0287 0.4628 0.022*

N2 0.3002 (3) −0.1333 (3) 0.3732 (3) 0.0196 (6)

H1N2 0.2409 −0.1942 0.4383 0.029*

H2N2 0.3452 −0.1736 0.3156 0.029*

N3 0.0231 (4) −0.0186 (3) 0.3250 (3) 0.0209 (7)

H1N3 0.1225 −0.0389 0.3300 0.031*

H2N3 −0.0515 −0.0737 0.3856 0.031*

H3N3 0.0069 0.0641 0.3298 0.031*

C3 0.0089 (4) −0.0303 (4) 0.2093 (4) 0.0257 (9)

H3A −0.1039 −0.0229 0.2096 0.031*

H3B 0.0411 −0.1165 0.1993 0.031*

C4 0.1134 (5) 0.0740 (5) 0.1061 (3) 0.0277 (9)

H4A 0.0949 0.0683 0.0314 0.033*

H4B 0.0837 0.1602 0.1174 0.033*

N4 0.2832 (4) 0.0595 (3) 0.0970 (3) 0.0220 (7)

H1N4 0.3453 0.1211 0.0340 0.033*

H2N4 0.3099 −0.0195 0.0857 0.033*

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, m868–m870

H1N5 0.7591 0.4119 1.0636 0.020*

H2N5 0.7114 0.5131 1.1279 0.020*

H3N5 0.8118 0.4089 1.1693 0.020*

C5 0.9384 (4) 0.5432 (3) 1.0258 (3) 0.0148 (7)

H5A 0.9813 0.5888 1.0723 0.018*

H5B 0.9128 0.6088 0.9610 0.018*

N6 0.2903 (3) 0.4523 (3) 0.6009 (2) 0.0140 (6)

H1N6 0.2649 0.3974 0.5626 0.021*

H2N6 0.2055 0.5000 0.6230 0.021*

H3N6 0.3151 0.4059 0.6666 0.021*

C6 0.4303 (4) 0.5403 (3) 0.5202 (3) 0.0146 (7)

H6A 0.4607 0.5986 0.5622 0.018*

H6B 0.4024 0.5941 0.4504 0.018*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Sn1 0.00919 (11) 0.00736 (13) 0.00709 (11) 0.00105 (8) −0.00028 (8) −0.00094 (8) Sn2 0.00882 (11) 0.00705 (13) 0.00717 (11) 0.00145 (8) −0.00073 (8) −0.00059 (8) S1 0.0114 (3) 0.0132 (4) 0.0111 (3) 0.0007 (3) −0.0031 (3) −0.0027 (3) S2 0.0154 (3) 0.0103 (4) 0.0109 (3) 0.0033 (3) −0.0034 (3) −0.0009 (3) S3 0.0157 (3) 0.0084 (4) 0.0084 (3) 0.0032 (3) 0.0022 (3) −0.0023 (3) S4 0.0129 (3) 0.0090 (4) 0.0113 (3) 0.0014 (3) 0.0026 (3) −0.0037 (3) S5 0.0131 (3) 0.0111 (4) 0.0111 (3) 0.0034 (3) −0.0037 (3) −0.0006 (3) S6 0.0110 (3) 0.0122 (4) 0.0119 (3) 0.0011 (3) −0.0034 (3) −0.0023 (3) N1 0.0174 (13) 0.0142 (16) 0.0152 (13) 0.0001 (12) 0.0006 (11) −0.0020 (11) C1 0.0149 (14) 0.0149 (18) 0.0227 (16) 0.0011 (13) −0.0016 (13) −0.0048 (14) C2 0.0248 (16) 0.0134 (18) 0.0191 (16) 0.0030 (14) −0.0121 (14) −0.0025 (13) N2 0.0201 (13) 0.0183 (17) 0.0160 (13) −0.0050 (12) −0.0016 (11) −0.0011 (11) N3 0.0186 (13) 0.0189 (17) 0.0201 (14) 0.0010 (12) 0.0005 (12) −0.0033 (12) C3 0.0174 (15) 0.033 (2) 0.0276 (19) 0.0012 (16) −0.0036 (15) −0.0136 (17) C4 0.0314 (19) 0.032 (2) 0.0181 (16) 0.0119 (18) −0.0081 (16) −0.0031 (16) N4 0.0256 (14) 0.0187 (17) 0.0160 (13) −0.0057 (13) −0.0009 (12) −0.0005 (12) N5 0.0144 (12) 0.0154 (15) 0.0104 (11) 0.0033 (11) −0.0028 (10) −0.0037 (10) C5 0.0136 (14) 0.0108 (17) 0.0186 (15) 0.0036 (13) −0.0032 (13) −0.0037 (13) N6 0.0120 (11) 0.0198 (16) 0.0086 (11) 0.0032 (11) −0.0003 (10) −0.0046 (11) C6 0.0121 (13) 0.0138 (18) 0.0159 (15) 0.0050 (13) −0.0017 (12) −0.0037 (13)

Geometric parameters (Å, º)

Sn1—S2 2.3337 (9) N3—H3N3 0.9100

Sn1—S1 2.3474 (8) C3—C4 1.517 (6)

Sn1—S3 2.4549 (9) C3—H3A 0.9900

Sn1—S4 2.4868 (8) C3—H3B 0.9900

Sn2—S5 2.3434 (9) C4—N4 1.468 (5)

Sn2—S6 2.3509 (8) C4—H4A 0.9900

Sn2—S4 2.4409 (9) C4—H4B 0.9900

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, m868–m870

N1—C1 1.475 (5) N4—H2N4 0.9100

N1—H1N1 0.9100 N5—C5 1.497 (4)

N1—H2N1 0.9100 N5—H1N5 0.9100

N1—H3N1 0.9100 N5—H2N5 0.9100

C1—C2 1.507 (5) N5—H3N5 0.9100

C1—H1A 0.9900 C5—C5i 1.514 (7)

C1—H1B 0.9900 C5—H5A 0.9900

C2—N2 1.465 (4) C5—H5B 0.9900

C2—H2A 0.9900 N6—C6 1.489 (4)

C2—H2B 0.9900 N6—H1N6 0.9100

N2—H1N2 0.9100 N6—H2N6 0.9100

N2—H2N2 0.9100 N6—H3N6 0.9100

N3—C3 1.491 (5) C6—C6ii 1.521 (6)

N3—H1N3 0.9100 C6—H6A 0.9900

N3—H2N3 0.9100 C6—H6B 0.9900

S2—Sn1—S1 117.06 (3) H2N3—N3—H3N3 109.5 S2—Sn1—S3 111.51 (3) N3—C3—C4 111.2 (3)

S1—Sn1—S3 112.48 (3) N3—C3—H3A 109.4

S2—Sn1—S4 109.00 (3) C4—C3—H3A 109.4

S1—Sn1—S4 110.79 (3) N3—C3—H3B 109.4

S3—Sn1—S4 93.46 (3) C4—C3—H3B 109.4

S5—Sn2—S6 114.80 (3) H3A—C3—H3B 108.0 S5—Sn2—S4 113.84 (3) N4—C4—C3 110.9 (3)

S6—Sn2—S4 112.12 (3) N4—C4—H4A 109.5

S5—Sn2—S3 106.50 (3) C3—C4—H4A 109.5

S6—Sn2—S3 113.35 (3) N4—C4—H4B 109.5

S4—Sn2—S3 94.34 (3) C3—C4—H4B 109.5

Sn1—S3—Sn2 86.14 (3) H4A—C4—H4B 108.0 Sn2—S4—Sn1 85.98 (3) C4—N4—H1N4 110.5

C1—N1—H1N1 109.5 C4—N4—H2N4 108.9

C1—N1—H2N1 109.5 H1N4—N4—H2N4 108.3

H1N1—N1—H2N1 109.5 C5—N5—H1N5 109.5

C1—N1—H3N1 109.5 C5—N5—H2N5 109.5

H1N1—N1—H3N1 109.5 H1N5—N5—H2N5 109.5

H2N1—N1—H3N1 109.5 C5—N5—H3N5 109.5

N1—C1—C2 111.6 (3) H1N5—N5—H3N5 109.5

N1—C1—H1A 109.3 H2N5—N5—H3N5 109.5

C2—C1—H1A 109.3 N5—C5—C5i 108.8 (3)

N1—C1—H1B 109.3 N5—C5—H5A 109.9

C2—C1—H1B 109.3 C5i—C5—H5A 109.9

H1A—C1—H1B 108.0 N5—C5—H5B 109.9

N2—C2—C1 111.0 (3) C5i—C5—H5B 109.9

N2—C2—H2A 109.4 H5A—C5—H5B 108.3

C1—C2—H2A 109.4 C6—N6—H1N6 109.5

N2—C2—H2B 109.4 C6—N6—H2N6 109.5

C1—C2—H2B 109.4 H1N6—N6—H2N6 109.5

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, m868–m870

C2—N2—H1N2 108.8 H1N6—N6—H3N6 109.5

C2—N2—H2N2 108.6 H2N6—N6—H3N6 109.5

H1N2—N2—H2N2 107.9 N6—C6—C6ii 109.1 (4)

C3—N3—H1N3 109.5 N6—C6—H6A 109.9

C3—N3—H2N3 109.5 C6ii—C6—H6A 109.9

H1N3—N3—H2N3 109.5 N6—C6—H6B 109.9

C3—N3—H3N3 109.5 C6ii—C6—H6B 109.9

H1N3—N3—H3N3 109.5 H6A—C6—H6B 108.3

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1N1···N4 0.91 1.95 2.833 (4) 162 N1—H2N1···S2iii 0.91 2.40 3.228 (3) 151

N1—H3N1···S5 0.91 2.49 3.390 (3) 168 N2—H1N2···S6iv 0.91 2.65 3.477 (3) 152

N2—H2N2···S1v 0.91 2.83 3.683 (3) 157

N3—H1N3···N2 0.91 1.97 2.849 (5) 162 N3—H2N3···S5iv 0.91 2.36 3.271 (3) 174

N3—H3N3···S6 0.91 2.55 3.436 (4) 164 N4—H1N4···S1iii 0.91 2.68 3.523 (3) 155

N4—H2N4···S2v 0.91 2.72 3.533 (3) 150

N5—H1N5···S2ii 0.91 2.41 3.263 (3) 157

N5—H2N5···S1vi 0.91 2.44 3.303 (3) 159

N5—H3N5···S6vii 0.91 2.35 3.260 (3) 174

N6—H1N6···S5 0.91 2.40 3.293 (3) 167 N6—H2N6···S6viii 0.91 2.60 3.399 (3) 147

N6—H3N6···S1ii 0.91 2.35 3.250 (3) 173

Figure

Figure 1
Figure 2

References

Related documents

Since hydrocephalus is associated with tissue compression, reduced cerebral blood flow, and periventricular white matter ischemia, studies have also shown that periventricular

The Commission has also proposed a European Travel Information and Authorisation System (ETIAS) that will allow for advance checks on third-country travellers to the

Question 6.1 of the 2011 questionnaire asked informants to report the importance of different general English language skill areas in terms of having success during a PhD program,

We call the poem generated by the generation module in one pass the draft, since the user may revise it for several times to collaboratively cre- ate a satisfying poem together with

Joint est. Source: Saha et al. Table 5 puts forward three risk scenarios: “Join est.”; “Under CARA” and “Only CDE.” For convenience, these risk scenarios are represented

The first approach re-ranks single QA system’s outputs by using a traditional MBR model, by mea- suring correlations between answer can- didates; while the second approach re- ranks

Using a sample of firms that are observed to be exploring strategic alternatives, I model (1) the self-selection of firms to become potential takeover targets, which is distinct

Purpose of the proposed research project is to make a studied attempt in understanding the level of financial literacy in urban India, especially of the Bohra