• No results found

3 (4 Chloro­phenyl) 4 (O,O′ di­ethyl­phospho­no) 2 phenyl­isoxazolidine

N/A
N/A
Protected

Academic year: 2020

Share "3 (4 Chloro­phenyl) 4 (O,O′ di­ethyl­phospho­no) 2 phenyl­isoxazolidine"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1330

Ye, Liu and Zhao C19H23ClNO4P DOI: 10.1107/S1600536804016599 Acta Cryst.(2004). E60, o1330±o1331 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

3-(4-Chlorophenyl)-4-(

O,O

000

-diethylphosphono)-2-phenylisoxazolidine

Yong Ye,a* Lun-Zu Liuband Yu-Fen Zhaoa

aThe Key Laboratory for Bioorganic Phosphorus

Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China, andbThe Key Laboratory of Organic Chemistry, Institute of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: yeyong03@tsinghua.org.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.008 AÊ Disorder in main residue

Rfactor = 0.070

wRfactor = 0.211

Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C19H23ClNO4P, is a novel heterocyclic

compound which can be synthesized by the reaction of a vinyl phosphonate with a nitrone. The phenyl and chlorophenyl rings lie on opposite sides of the isoxazolidine ring, which adopts a twist conformation.

Comment

In the title compound, (I), the phenyl and chlorophenyl rings lie on opposite sides of the isoxazolidine ring, which adopts a twist conformation. The dihedral angle between the two six-membered rings is 54.7 (2).

The geometry of the heterocyclic ring is similar to that found in (+)-(3R,5S )-3-(4-chlorophenyl)-5-ethoxy-2-phenyl-isoxazolidine (Simonsenet al., 1999),

5-acetoxy-2,3-diphenyl-isoxazolidine and

5-acetoxy-3-(4-nitrophenyl)-2-phenyl-isoxazolidine (Mukherjeeet al., 1999).

The geometry of the phosphonate group has been compared with those found in four other phosphonate struc-tures: diethyl (N -hydroxy-2-methylpyrrolidin-2-yl)phosphon-ate (Barbati et al., 1997), diethyl 5,6-dihydro-2H -1,3-dithiolo[4,5-b][1,4]dithiin-2ylphosphonate (Kelkar et al., 1994), (20S,30S,40R)-50-O-benzoyl-30-deoxy-30

-diethylphos-phono-20-O-tert-butyldimethylsilyluridine (McEldoon et al.,

1996) and diethyl (1-hydroxy-2-butynyl)phosphonate

(Sanders et al., 1996). For these four structures, the average bond lengths are: PÐC = 1.810 AÊ, PÐO = 1.569 AÊ and P O

(2)

= 1.465 AÊ. The corresponding values in the title compound are markedly different, viz. 1.776 (5), 1.544 (4)/1.590(5) and 1.419 (5) AÊ, respectively. In the title compound, the P atom adopts a distorted tetrahedral con®guration, with angles in the range 101.9 (2)±117.0 (3).

Experimental

To a solution of nitrone (0.278g, 1.2 mmol) in 20 ml dried benzene was added vinyl phosphonate (0.164g, 1 mmol) and the resulting solution was heated under an N2atmosphere with re¯ux for 24 h. The

reaction mixture was then cooled to room temperature and concen-trated under reduced pressure. The title compound was obtained by column chromatography. Recrystallization from hexane and di-chloroethane (4:1v/v) afforded colorless crystals. Analysis calculated for C19H23ClNO4P: C 57.65, H 5.86, N 3.54%; found: C 57.42, H 5.98,

N 3.38%. Crystal data C19H23ClNO4P Mr= 395.80

Monoclinic,C2=c a= 24.02 (2) AÊ b= 10.563 (9) AÊ c= 16.410 (14) AÊ

= 100.900 (18) V= 4089 (6) AÊ3 Z= 8

Dx= 1.286 Mg mÿ3

MoKradiation Cell parameters from 684

re¯ections

= 3.2±19.3

= 0.29 mmÿ1 T= 293 (2) K Block, colorless 0.220.200.18 mm Data collection

Bruker SMART 1000 CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2001) Tmin= 0.768,Tmax= 0.949 9919 measured re¯ections

3598 independent re¯ections 1569 re¯ections withI> 2(I) Rint= 0.070

max= 25.0 h=ÿ17!28 k=ÿ11!12 l=ÿ19!16 Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.070 wR(F2) = 0.211 S= 1.01 3598 re¯ections 274 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.091P)2

+ 2.6884P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.57 e AÊÿ3

min=ÿ0.31 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0025 (5)

Table 1

Selected geometric parameters (AÊ,).

P1ÐO2 1.419 (5)

P1ÐO4 1.544 (4)

P1ÐO3 1.590 (5)

P1ÐC2 1.776 (5)

N1ÐO1 1.447 (5)

N1ÐC1 1.496 (6)

O1ÐC3 1.422 (6)

C1ÐC2 1.550 (6)

C2ÐC3 1.514 (7)

O2ÐP1ÐO4 114.4 (2)

O2ÐP1ÐO3 117.0 (3)

O4ÐP1ÐO3 102.6 (3)

O2ÐP1ÐC2 113.9 (3)

O4ÐP1ÐC2 105.4 (2)

O3ÐP1ÐC2 101.9 (2)

C10ÐN1ÐO1 111.5 (3)

C10ÐN1ÐC1 117.6 (3)

O1ÐN1ÐC1 107.0 (3)

C3ÐO1ÐN1 105.6 (3)

N1ÐC1ÐC4 111.1 (3)

N1ÐC1ÐC2 104.3 (3)

C4ÐC1ÐC2 115.2 (4)

C3ÐC2ÐC1 101.0 (4)

C3ÐC2ÐP1 115.1 (3)

C1ÐC2ÐP1 114.1 (3)

O1ÐC3ÐC2 103.4 (4)

The H atoms were positioned geometrically, with CÐH = 0.93, 0.98, 0.97 or 0.96 AÊ for phenyl, tertiary, methylene and methyl H atoms, respectively, and were included in the re®nement in the riding-model approximation. For methyl H atoms,Uiso(H) = 1.5Ueq(carrier

atom); for other H atomsUiso(H) = 1.2Ueq(carrier atom). Both ethyl

groups exhibit disorder over two positions, and a split model has been used. The site-occupancy factors have been re®ned to 0.728 (13):0.272 (13) for C16 and C17, and to 0.537 (14):0.463 (14) for C18 and C19.

Data collection:SMART(Bruker, 2001); cell re®nement:SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:SHELXTL(Bruker, 2001).

This research has been supported by the PhD Programs Foundation of the Ministry of Education of China.

References

Barbati, S., Siri, D., Tordo, P. & Reboul, J.-P. (1997).Acta Cryst.C53, 461±463. Bruker (2001).SAINT (Version 6.22),SMART(Version 5.625),SADABS (Version 2.03) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Kelkar, S. V., Kilburn, J. D. & Webster, M. (1994).Acta Cryst.C50, 724±726. McEldoon, W. L., Swenson, D. C. & Wiemer, D. F. (1996).Acta Cryst.C52,

1552±1554.

Mukherjee, S., Parmar, V. S. & Errington, W. (1999).Acta Cryst.C55, 1829± 1831.

Sanders, T. C., Hammond, G. B., Golen, J. A. & Williard, P. G. (1996).Acta Cryst.C52, 667±669.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Simonsen, K. B., Bayon, P., Hazell, R. G., Gothelf, K. V. & Jorgensen, K. A. (1999).J. Am. Chem. Soc.121, 3845±3853.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, o1330–o1331

supporting information

Acta Cryst. (2004). E60, o1330–o1331 [https://doi.org/10.1107/S1600536804016599]

3-(4-Chlorophenyl)-4-(

O,O

-diethylphosphono)-2-phenylisoxazolidine

Yong Ye, Lun-Zu Liu and Yu-Fen Zhao

3-(4-Chlorophenyl)-4-(O,O′-diethylphosphono)-2-phenylisoxazolidine

Crystal data

C19H23ClNO4P

Mr = 395.80

Monoclinic, C2/c a = 24.02 (2) Å

b = 10.563 (9) Å

c = 16.410 (14) Å

β = 100.900 (18)°

V = 4089 (6) Å3

Z = 8

F(000) = 1664

Dx = 1.286 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 684 reflections

θ = 3.2–19.3°

µ = 0.29 mm−1

T = 293 K Block, colorless 0.22 × 0.20 × 0.18 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2001)

Tmin = 0.768, Tmax = 0.949

9919 measured reflections 3598 independent reflections 1569 reflections with I > 2σ(I)

Rint = 0.070

θmax = 25.0°, θmin = 1.7°

h = −17→28

k = −11→12

l = −19→16

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.070

wR(F2) = 0.211

S = 1.01 3598 reflections 274 parameters 168 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.091P)2 + 2.6884P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.57 e Å−3 Δρmin = −0.31 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0025 (5)

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

P1 0.35461 (8) 0.35075 (14) 0.12099 (11) 0.0843 (6)

Cl1 0.47925 (7) 0.86932 (18) 0.40679 (11) 0.1193 (8)

N1 0.24630 (16) 0.5735 (4) 0.2069 (2) 0.0564 (10)

O1 0.22648 (14) 0.4495 (3) 0.2258 (2) 0.0717 (10)

O2 0.3333 (2) 0.3839 (4) 0.0371 (3) 0.1300 (19)

O3 0.41648 (19) 0.3994 (4) 0.1605 (3) 0.1370 (19)

O4 0.3591 (2) 0.2069 (3) 0.1375 (2) 0.1031 (14)

C1 0.30372 (19) 0.5559 (4) 0.1857 (3) 0.0506 (12)

H1 0.3021 0.5821 0.1280 0.061*

C2 0.3138 (2) 0.4110 (4) 0.1920 (3) 0.0581 (13)

H2 0.3331 0.3905 0.2485 0.070*

C3 0.2534 (2) 0.3626 (5) 0.1797 (3) 0.0678 (14)

H3A 0.2357 0.3635 0.1214 0.081*

H3B 0.2522 0.2772 0.2010 0.081*

C4 0.34737 (19) 0.6349 (4) 0.2408 (3) 0.0512 (12)

C5 0.3529 (2) 0.6317 (5) 0.3266 (3) 0.0628 (13)

H5 0.3290 0.5801 0.3503 0.075*

C6 0.3930 (2) 0.7035 (6) 0.3769 (3) 0.0751 (15)

H6 0.3965 0.6995 0.4343 0.090*

C7 0.4277 (2) 0.7808 (5) 0.3420 (4) 0.0733 (15)

C8 0.4228 (2) 0.7888 (5) 0.2585 (4) 0.0788 (16)

H8 0.4462 0.8427 0.2354 0.095*

C9 0.3826 (2) 0.7156 (5) 0.2082 (3) 0.0666 (14)

H9 0.3793 0.7209 0.1510 0.080*

C10 0.2050 (2) 0.6386 (4) 0.1489 (3) 0.0534 (12)

C11 0.2208 (3) 0.7471 (5) 0.1120 (3) 0.0664 (14)

H11 0.2587 0.7719 0.1217 0.080*

C12 0.1800 (3) 0.8193 (5) 0.0603 (3) 0.0825 (17)

H12 0.1905 0.8921 0.0351 0.099*

C13 0.1246 (3) 0.7823 (7) 0.0470 (4) 0.100 (2)

H13 0.0974 0.8300 0.0124 0.120*

C14 0.1088 (3) 0.6763 (7) 0.0839 (4) 0.106 (2)

H14 0.0710 0.6516 0.0741 0.127*

C15 0.1489 (2) 0.6054 (5) 0.1359 (3) 0.0786 (16)

H15 0.1377 0.5345 0.1623 0.094*

C16 0.4645 (4) 0.3644 (10) 0.1283 (9) 0.151 (5) 0.728 (13)

H16A 0.4531 0.3303 0.0727 0.181* 0.728 (13)

H16D 0.4858 0.2998 0.1630 0.181* 0.728 (13)

C17 0.5006 (4) 0.4800 (11) 0.1262 (9) 0.142 (5) 0.728 (13)

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, o1330–o1331

H17B 0.5129 0.5112 0.1816 0.212* 0.728 (13)

H17C 0.4789 0.5442 0.0929 0.212* 0.728 (13)

C16′ 0.4565 (12) 0.460 (2) 0.122 (3) 0.170 (9) 0.272 (13)

H16B 0.4688 0.5379 0.1519 0.203* 0.272 (13)

H16C 0.4394 0.4819 0.0658 0.203* 0.272 (13)

C17′ 0.5071 (9) 0.375 (3) 0.122 (3) 0.170 (13) 0.272 (13)

H17D 0.5355 0.4199 0.1001 0.255* 0.272 (13)

H17E 0.4955 0.3015 0.0891 0.255* 0.272 (13)

H17F 0.5225 0.3492 0.1783 0.255* 0.272 (13)

C18 0.3184 (5) 0.1196 (11) 0.0946 (10) 0.119 (5) 0.537 (14)

H18A 0.2952 0.1606 0.0471 0.143* 0.537 (14)

H18B 0.2937 0.0902 0.1311 0.143* 0.537 (14)

C19 0.3496 (7) 0.0102 (13) 0.0665 (13) 0.146 (7) 0.537 (14)

H19A 0.3229 −0.0483 0.0360 0.219* 0.537 (14)

H19B 0.3713 −0.0318 0.1140 0.219* 0.537 (14)

H19C 0.3746 0.0404 0.0316 0.219* 0.537 (14)

C18′ 0.3578 (8) 0.1112 (13) 0.0758 (10) 0.123 (6) 0.463 (14)

H18C 0.3944 0.0696 0.0831 0.147* 0.463 (14)

H18D 0.3502 0.1495 0.0211 0.147* 0.463 (14)

C19′ 0.3129 (9) 0.0161 (16) 0.0826 (12) 0.132 (8) 0.463 (14)

H19D 0.3129 −0.0489 0.0417 0.198* 0.463 (14)

H19E 0.2766 0.0571 0.0735 0.198* 0.463 (14)

H19F 0.3203 −0.0210 0.1370 0.198* 0.463 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

P1 0.1030 (14) 0.0664 (10) 0.0936 (13) −0.0087 (9) 0.0445 (10) −0.0136 (9)

Cl1 0.0843 (12) 0.1429 (16) 0.1179 (14) −0.0231 (11) −0.0139 (10) −0.0406 (11)

N1 0.052 (3) 0.066 (3) 0.053 (2) 0.000 (2) 0.014 (2) 0.007 (2)

O1 0.065 (2) 0.080 (2) 0.074 (2) −0.005 (2) 0.0234 (19) 0.024 (2)

O2 0.221 (6) 0.100 (3) 0.088 (3) 0.031 (3) 0.078 (3) 0.009 (2)

O3 0.097 (4) 0.128 (4) 0.207 (5) −0.032 (3) 0.082 (3) −0.074 (4)

O4 0.140 (4) 0.065 (3) 0.103 (3) 0.004 (2) 0.019 (3) −0.018 (2)

C1 0.053 (3) 0.057 (3) 0.043 (2) −0.003 (2) 0.013 (2) 0.002 (2)

C2 0.062 (3) 0.061 (3) 0.052 (3) −0.004 (3) 0.009 (2) −0.002 (2)

C3 0.071 (4) 0.064 (3) 0.066 (3) −0.013 (3) 0.008 (3) 0.009 (3)

C4 0.051 (3) 0.053 (3) 0.052 (3) 0.007 (2) 0.017 (2) 0.003 (2)

C5 0.055 (3) 0.076 (3) 0.060 (3) 0.000 (3) 0.015 (3) 0.004 (3)

C6 0.066 (4) 0.097 (4) 0.058 (3) 0.004 (3) 0.000 (3) −0.007 (3)

C7 0.055 (4) 0.083 (4) 0.077 (4) −0.006 (3) 0.001 (3) −0.016 (3)

C8 0.062 (4) 0.090 (4) 0.084 (4) −0.017 (3) 0.014 (3) 0.000 (3)

C9 0.063 (4) 0.085 (4) 0.052 (3) −0.015 (3) 0.012 (3) −0.001 (3)

C10 0.056 (3) 0.054 (3) 0.049 (3) −0.001 (3) 0.006 (3) −0.002 (2)

C11 0.080 (4) 0.063 (3) 0.054 (3) 0.005 (3) 0.008 (3) −0.003 (3)

C12 0.116 (6) 0.074 (4) 0.059 (3) 0.016 (4) 0.019 (4) 0.004 (3)

C13 0.100 (6) 0.112 (6) 0.080 (4) 0.035 (5) −0.001 (4) 0.009 (4)

(6)

C15 0.062 (4) 0.090 (4) 0.080 (4) 0.000 (3) 0.003 (3) 0.016 (3)

C16 0.089 (8) 0.165 (10) 0.208 (11) −0.028 (8) 0.051 (8) −0.086 (10)

C17 0.093 (8) 0.158 (10) 0.184 (11) −0.007 (8) 0.052 (8) 0.021 (10)

C16′ 0.119 (17) 0.15 (2) 0.25 (2) −0.031 (16) 0.062 (16) 0.00 (2)

C17′ 0.105 (19) 0.20 (3) 0.23 (3) −0.03 (2) 0.08 (2) −0.03 (3)

C18 0.131 (13) 0.082 (9) 0.146 (12) −0.017 (8) 0.029 (10) −0.018 (8)

C19 0.181 (19) 0.093 (10) 0.176 (16) −0.012 (11) 0.060 (14) −0.047 (10)

C18′ 0.159 (16) 0.084 (11) 0.151 (12) −0.006 (10) 0.094 (12) −0.036 (9)

C19′ 0.18 (2) 0.117 (14) 0.115 (13) −0.043 (13) 0.073 (14) −0.024 (10)

Geometric parameters (Å, º)

P1—O2 1.419 (5) C11—H11 0.9300

P1—O4 1.544 (4) C12—C13 1.365 (9)

P1—O3 1.590 (5) C12—H12 0.9300

P1—C2 1.776 (5) C13—C14 1.360 (8)

Cl1—C7 1.745 (5) C13—H13 0.9300

N1—C10 1.416 (6) C14—C15 1.380 (8)

N1—O1 1.447 (5) C14—H14 0.9300

N1—C1 1.496 (6) C15—H15 0.9300

O1—C3 1.422 (6) C16—C17 1.502 (8)

O3—C16′ 1.398 (10) C16—H16A 0.9700

O3—C16 1.408 (8) C16—H16D 0.9700

O4—C18′ 1.426 (9) C17—H17A 0.9600

O4—C18 1.429 (8) C17—H17B 0.9600

C1—C4 1.502 (6) C17—H17C 0.9600

C1—C2 1.550 (6) C16′—C17′ 1.513 (10)

C1—H1 0.9800 C16′—H16B 0.9700

C2—C3 1.514 (7) C16′—H16C 0.9700

C2—H2 0.9800 C17′—H17D 0.9600

C3—H3A 0.9700 C17′—H17E 0.9600

C3—H3B 0.9700 C17′—H17F 0.9600

C4—C9 1.379 (6) C18—C19 1.497 (9)

C4—C5 1.389 (6) C18—H18A 0.9700

C5—C6 1.372 (7) C18—H18B 0.9700

C5—H5 0.9300 C19—H19A 0.9600

C6—C7 1.367 (7) C19—H19B 0.9600

C6—H6 0.9300 C19—H19C 0.9600

C7—C8 1.355 (7) C18′—C19′ 1.494 (9)

C8—C9 1.382 (7) C18′—H18C 0.9700

C8—H8 0.9300 C18′—H18D 0.9700

C9—H9 0.9300 C19′—H19D 0.9600

C10—C15 1.370 (7) C19′—H19E 0.9600

C10—C11 1.382 (6) C19′—H19F 0.9600

C11—C12 1.396 (7)

O2—P1—O4 114.4 (2) C13—C12—H12 120.3

(7)

supporting information

sup-5

Acta Cryst. (2004). E60, o1330–o1331

O4—P1—O3 102.6 (3) C14—C13—C12 120.7 (6)

O2—P1—C2 113.9 (3) C14—C13—H13 119.6

O4—P1—C2 105.4 (2) C12—C13—H13 119.6

O3—P1—C2 101.9 (2) C13—C14—C15 120.0 (7)

C10—N1—O1 111.5 (3) C13—C14—H14 120.0

C10—N1—C1 117.6 (3) C15—C14—H14 120.0

O1—N1—C1 107.0 (3) C10—C15—C14 120.6 (6)

C3—O1—N1 105.6 (3) C10—C15—H15 119.7

C16′—O3—C16 43.1 (10) C14—C15—H15 119.7

C16′—O3—P1 129 (2) O3—C16—C17 108.2 (7)

C16—O3—P1 122.1 (6) O3—C16—H16A 110.1

C18′—O4—C18 43.3 (6) C17—C16—H16A 110.1

C18′—O4—P1 125.5 (8) O3—C16—H16D 110.1

C18—O4—P1 122.0 (7) C17—C16—H16D 110.1

N1—C1—C4 111.1 (3) H16A—C16—H16D 108.4

N1—C1—C2 104.3 (3) C16—C17—H17A 109.5

C4—C1—C2 115.2 (4) C16—C17—H17B 109.5

N1—C1—H1 108.7 H17A—C17—H17B 109.5

C4—C1—H1 108.7 C16—C17—H17C 109.5

C2—C1—H1 108.7 H17A—C17—H17C 109.5

C3—C2—C1 101.0 (4) H17B—C17—H17C 109.5

C3—C2—P1 115.1 (3) O3—C16′—C17′ 110.3 (10)

C1—C2—P1 114.1 (3) O3—C16′—H16B 109.6

C3—C2—H2 108.7 C17′—C16′—H16B 109.6

C1—C2—H2 108.7 O3—C16′—H16C 109.6

P1—C2—H2 108.7 C17′—C16′—H16C 109.6

O1—C3—C2 103.4 (4) H16B—C16′—H16C 108.1

O1—C3—H3A 111.1 C16′—C17′—H17D 109.5

C2—C3—H3A 111.1 C16′—C17′—H17E 109.5

O1—C3—H3B 111.1 H17D—C17′—H17E 109.5

C2—C3—H3B 111.1 C16′—C17′—H17F 109.5

H3A—C3—H3B 109.0 H17D—C17′—H17F 109.5

C9—C4—C5 117.4 (4) H17E—C17′—H17F 109.5

C9—C4—C1 121.3 (4) O4—C18—C19 108.3 (9)

C5—C4—C1 121.3 (4) O4—C18—H18A 110.0

C6—C5—C4 121.2 (5) C19—C18—H18A 110.0

C6—C5—H5 119.4 O4—C18—H18B 110.0

C4—C5—H5 119.4 C19—C18—H18B 110.0

C7—C6—C5 119.5 (5) H18A—C18—H18B 108.4

C7—C6—H6 120.3 C18—C19—H19A 109.5

C5—C6—H6 120.3 C18—C19—H19B 109.5

C8—C7—C6 121.2 (5) H19A—C19—H19B 109.5

C8—C7—Cl1 119.8 (5) C18—C19—H19C 109.5

C6—C7—Cl1 118.9 (5) H19A—C19—H19C 109.5

C7—C8—C9 119.0 (5) H19B—C19—H19C 109.5

C7—C8—H8 120.5 O4—C18′—C19′ 110.0 (9)

C9—C8—H8 120.5 O4—C18′—H18C 109.7

(8)

C4—C9—H9 119.2 O4—C18′—H18D 109.7

C8—C9—H9 119.2 C19′—C18′—H18D 109.7

C15—C10—C11 119.2 (5) H18C—C18′—H18D 108.2

C15—C10—N1 121.6 (5) C18′—C19′—H19D 109.5

C11—C10—N1 118.7 (4) C18′—C19′—H19E 109.5

C10—C11—C12 119.9 (6) H19D—C19′—H19E 109.5

C10—C11—H11 120.0 C18′—C19′—H19F 109.5

C12—C11—H11 120.0 H19D—C19′—H19F 109.5

C13—C12—C11 119.5 (6) H19E—C19′—H19F 109.5

C10—N1—O1—C3 102.2 (4) N1—C1—C4—C5 50.8 (5)

C1—N1—O1—C3 −27.7 (4) C2—C1—C4—C5 −67.5 (5)

O2—P1—O3—C16′ −7.5 (15) C9—C4—C5—C6 −1.8 (7)

O4—P1—O3—C16′ 118.6 (15) C1—C4—C5—C6 179.6 (4)

C2—P1—O3—C16′ −132.4 (15) C4—C5—C6—C7 0.9 (8)

O2—P1—O3—C16 −60.6 (9) C5—C6—C7—C8 0.6 (8)

O4—P1—O3—C16 65.5 (9) C5—C6—C7—Cl1 −178.9 (4)

C2—P1—O3—C16 174.5 (8) C6—C7—C8—C9 −1.1 (8)

O2—P1—O4—C18′ 16.8 (10) Cl1—C7—C8—C9 178.4 (4)

O3—P1—O4—C18′ −111.0 (9) C5—C4—C9—C8 1.3 (7)

C2—P1—O4—C18′ 142.8 (9) C1—C4—C9—C8 179.9 (4)

O2—P1—O4—C18 −35.8 (9) C7—C8—C9—C4 0.1 (8)

O3—P1—O4—C18 −163.6 (8) O1—N1—C10—C15 20.1 (6)

C2—P1—O4—C18 90.2 (8) C1—N1—C10—C15 144.2 (5)

C10—N1—C1—C4 110.5 (4) O1—N1—C10—C11 −167.6 (4)

O1—N1—C1—C4 −123.2 (4) C1—N1—C10—C11 −43.5 (5)

C10—N1—C1—C2 −124.8 (4) C15—C10—C11—C12 −1.8 (7)

O1—N1—C1—C2 1.5 (4) N1—C10—C11—C12 −174.3 (4)

N1—C1—C2—C3 23.1 (4) C10—C11—C12—C13 0.4 (8)

C4—C1—C2—C3 145.1 (4) C11—C12—C13—C14 0.3 (9)

N1—C1—C2—P1 147.2 (3) C12—C13—C14—C15 0.5 (10)

C4—C1—C2—P1 −90.8 (4) C11—C10—C15—C14 2.6 (8)

O2—P1—C2—C3 62.7 (4) N1—C10—C15—C14 174.9 (5)

O4—P1—C2—C3 −63.6 (4) C13—C14—C15—C10 −2.0 (9)

O3—P1—C2—C3 −170.4 (4) C16′—O3—C16—C17 22 (3)

O2—P1—C2—C1 −53.4 (4) P1—O3—C16—C17 136.8 (9)

O4—P1—C2—C1 −179.7 (3) C16—O3—C16′—C17′ −15 (2)

O3—P1—C2—C1 73.5 (4) P1—O3—C16′—C17′ −112 (3)

N1—O1—C3—C2 43.1 (4) C18′—O4—C18—C19 24.7 (14)

C1—C2—C3—O1 −40.4 (4) P1—O4—C18—C19 134.3 (12)

P1—C2—C3—O1 −163.8 (3) C18—O4—C18′—C19′ −24.8 (14)

N1—C1—C4—C9 −127.7 (4) P1—O4—C18′—C19′ −126.0 (16)

References

Related documents

Because of high surface expression of the immuno- inhibitory ligand PD-L1, CAD macrophages provide negative sig- nals to T cells and inhibit their activation and clonal expansion,

Although HDAC3 silencing in LM2 cells signifi- cantly increased acetylation levels of both FoxO1 and FoxO3 (Fig- ure 4A and Supplemental Figure 4A), geminin depletion induced

Previous studies have analyzed how the Teletandem practice in the context of very close languages, such as Portuguese and Spanish, present some inherent specificity related to

To better utilize textual evidence for im- proving QA over incomplete KBs, this paper presents a new end-to-end model, which con- sists of (1) a simple yet effective subgraph

In contrast, our work develops an intrinsic metric which is highly corre- lated with multiple downstream tasks but does not require external resources, and considers both intra-

import tariffs should reduce the global steel price on stock markets, further positive externalities for African iron ore exporters like South Africa might develop in

The above experiments used the data set of sentences with their spoken forms and additional information like morphological tags and classes.. Details about the data set and

In this paper we aim to study three points of interest: (1) whether controlling for such fac- tors as age, level of education and native lan- guage of the annotator group in the task