• No results found

2 Amino 1 [bis­(N,N di­methyl­amino)phospho­ramido]benz­imidazole

N/A
N/A
Protected

Academic year: 2020

Share "2 Amino 1 [bis­(N,N di­methyl­amino)phospho­ramido]benz­imidazole"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o1583±o1585 DOI: 10.1107/S1600536804020161 NourEddine Raouafiet al. C11H18N5OP

o1583

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2-Amino-1-[bis(

N

,

N

-dimethylamino)phosphor-amido]benzimidazole

NourEddine Raouafi,a* Matthias Freytag,bPeter G. Jonesb and Mohamed Lamine BenKhouda

aLaboratoire de Chimie Analytique et Electrochimie, Faculty of Science of Tunis El-Manar University, Tunis El-Manar 2092, Tunisia, andbInstitut fuÈr Anorganische und Analytische Chemie, Technische UniversitaÈt Braunschweig, Hagenring 30, 38106 Braunschweig, Germany

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study T= 133 K

Mean(C±C) = 0.002 AÊ Rfactor = 0.035 wRfactor = 0.102

Data-to-parameter ratio = 23.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The crystal structure of the title compound, C11H18N5OP, is

stabilized by an intermolecular NÐH N-type hydrogen bond and another CÐH O interaction that is intramol-ecular. The NÐH N hydrogen bonding leads to inversion-related dimers.

Comment

Phosphorylation of benzimidazole has been extensively studied by Matevosyan and co-workers (Matevosyan et al.

1981, 1990; Matevosyan & Zalvin, 1998). These substrates are known for their activities as growth regulators, stability inductors for plants and antifungal agents (Zalvinet al., 1999; Matevosyan & Zalvin, 1998; Andersonet al., 2001). They are also used as intermediates in the Wittig±Horner reaction for the preparation of substituted ole®ns (Maier & Rist, 1987). Direct phosphorylation of benzimidazole can be accomplished by the reaction the sodium salt of 2-aminobenzimidazole derivative with chlorophosphoramide (Raoua® et al., 2003). The structure determination of the title compound, (I), was undertaken as a part of our studies on phosphorylated benz-imidazole derivatives.

The X-ray structure of (I) (Fig. 1), shows that the ®ve-membered ring has an r.m.s. deviation of 0.004 AÊ, with the P atom lying 0.311 (2) AÊ outside this plane. The six-membered ring has an r.m.s deviation of 0.005 AÊ and makes an angle of 2.7 (9)with the ®ve-membered ring.

The PÐN4 [1.6317 (11) AÊ] and PÐN5 [1.6352 (10) AÊ] bonds are shorter than the PÐN1 bond [1.7124 (9) AÊ] (Table 1) which is close to standard non conjugated PÐN bond length (1.73 AÊ; Allen et al., 1987; Schulz et al., 1999; Cruickshank, 1964; Yamamoto & Akiba, 2000). The three CÐ N bond lengths of the cyclic guanidine function are not equal; the C1ÐN3 and C1ÐN2 bond lengths are 1.3199 (14) AÊ and 1.3396 (14) AÊ, respectively, while the C1ÐN1 bond length is

(2)

1.4140 (14) AÊ. These three bonds are shorter than a standard single CÐN bond (1.47 AÊ; Hamada et al., 1986) and longer than a pure non-conjugated C N bond (1.27 AÊ; HaÈfelinger, 1970). This could be explained by conjugation of only two bonds (C1ÐN2 and C1ÐN3). Unlike the non-cyclic guanidine (Bishopet al., 2003), the C1ÐN1 bond is not involved in this conjugation.

The packing reveals the presence of three intermolecular interactions (Table 2). The N3ÐH1 N2iii hydrogen bond

[symmetry code: (iii) ÿx, ÿy, ÿz] leads to inversion-related dimers (Fig. 2).

Experimental

The aminolysis of the product from the reaction ofN -benzimidazol-2-yl imidate sodium salt and tetrameth-benzimidazol-2-ylchlorophosphoramide gives the corresponding compound, (I), in 90% yield. Compound (I) was recrystallized twice from tetrahydrofuran (m.p. = 472±473 K). The spectroscopic characterization was obtained from the analysis of IR,

1H,13C and31P NMR spectra. IR (CHCl

3, cmÿ1):NH= 3489,NH=

3331,NH= 1633,PO= 1251. 1H NMR (CDCl3,, p.p.m.): 2.72 (d,

12H, NÐCH3,3JPH= 11 Hz), 6.93±7.31 (m, 6H, 4 CH = C, 2NÐH). 13C NMR: 36.09, 36.15, 111.20, 115.29, 119.33, 122.54, 132.68, 143.46,

157.07.31P NMR: 15.21.

Crystal data

C11H18N5OP

Mr= 267.27

Monoclinic,P21=n

a= 9.8997 (6) AÊ

b= 10.5514 (6) AÊ

c= 13.739 (1) AÊ

= 103.613 (3)

V= 1394.80 (15) AÊ3

Z= 4

Dx= 1.273 Mg mÿ3

MoKradiation Cell parameters from 5780

re¯ections

= 2±30

= 0.20 mmÿ1

T= 133 (2) K Prism, colourless 0.290.280.27 mm

Data collection

Bruker SMART 1000 CCD diffractometer

!and'scans

Absorption correction: none 28550 measured re¯ections 4081 independent re¯ections

3346 re¯ections with >2(I)

Rint= 0.036

max= 30.0

h=ÿ13!13

k=ÿ14!14

l=ÿ19!19

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.035

wR(F2) = 0.102

S= 1.05 4081 re¯ections 175 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.057P)2

+ 0.3169P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.43 e AÊÿ3

min=ÿ0.24 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

PÐN4 1.6317 (11) PÐN5 1.6352 (10) PÐN1 1.7124 (9)

N1ÐC1 1.4140 (14) N1ÐC2 1.4242 (14) N3ÐC1 1.3396 (14)

N4ÐPÐN1 111.39 (5) N5ÐPÐN1 101.86 (5) C1ÐN1ÐC2 104.65 (9)

N2ÐC1ÐN3 123.99 (10) N2ÐC1ÐN1 113.42 (10) N3ÐC1ÐN1 122.59 (10)

C2ÐN1ÐC1ÐN2 1.08 (13)

C2ÐN1ÐC1ÐN3 ÿ179.07 (11) PÐN1ÐC2ÐC7PÐN1ÐC2ÐC3 ÿ166.78 (8)16.60 (19)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C6ÐH6 Oi 0.95 2.56 3.4982 (15) 169

C9ÐH9C Oii 0.98 2.62 3.5932 (18) 175

N3ÐH1 N2iii 0.925 (18) 2.024 (18) 2.9402 (14) 170.1 (15)

Symmetry codes: (i)1

2ÿx;yÿ12;21ÿz; (ii)32ÿx;yÿ12;12ÿz; (iii) 1ÿx;1ÿy;1ÿz.

Methyl H atoms were identi®ed in difference syntheses, idealized and then re®ned using rigid methyl groups [CÐH 0.98 AÊ,HÐCÐH 109.5;U

iso(H) = 1.2Ueq(C)] and allowed to rotate, but not to tip. H7

was included using a riding model, with CÐH = 0.95 AÊ andUiso(H) =

1.2Ueq(C). NÐH H atoms were freely re®ned.

Data collection:SMART(Bruker, 1998); cell re®nement:SAINT (Bruker, 1998); data reduction:SAINT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne

organic papers

o1584

NourEddine Raouafiet al. C11H18N5OP Acta Cryst.(2004). E60, o1583±o1585

Figure 1

ORTEX (McArdle, 1995) plot of the title compound. Displacement ellipsoids are drawn at the 40% probability level. H atoms are drawn as small spheres of arbitrary radius.

Figure 2

(3)

structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

The authors thank SERT for ®nancial support (Lab-CH02). Professors Reinhard Schmutzler and Khaled Boujlel are acknowledged for their valuable help.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans.2, pp. S1±19.

Anderson, R. J., Bendell, D. J., Hooper, M., Cairns, D., Mackay, S. P., Hiremath, S. P., Jivanagi, A. S., Badami, S., Biradar J. S. & Townson, S. (2001).J. Pharm. Pharmacol.53, 89±94.

Bishop, M. M., Lee, A. H. W., Lindoy, L. F. & Turner, P. (2003).Polyhedron,22, 735±743.

Bruker (1998).SMART(Version 5.0) andSAINT(Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Cruickshank, D. W. J. (1964).Acta Cryst.17, 671±672. HaÈfelinger, G. (1970).Chem. Ber.103, 2902±2921.

Hamada, Y., Tsuboi, M., Yamanouchi, K. & Kuchitsu, K. (1986).J. Mol. Struct.

146, 253±262.

McArdle, P. (1995).J. Appl. Cryst.28, 65.

Maier, L. & Rist, G. (1987).Phosphorus Sulfur Silicon,32, 65±72.

Matevosyan, G. L., Matyushicheva, R. M., Vodovatova, S. N. & Zalvin, P. M. (1981).Russ. J. Gen. Chem.51, 636±638.

Matevosyan, G. L. & Zalvin, P. M. (1990).Chem. Heterocycl.Compd,26, 599± 616.

Matevosyan, G. L. & Zalvin, P. M. (1998).Russ. J. Gen. Chem.68, 1467±1476. Raoua®, N., Boujlel, K. & Benkhoud, M. L. (2003).Phosphorus Sulfur Silicon.

In the press.

Schulz, S., Bauer, T. & Nieger, M. (1999).Chem. Commun.pp. 879±880. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Siemens (1994).XP. Version 5.03. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.

Spek, A. L. (2001).PLATON.University of Utrecht, The Netherlands. Yamamoto, Y. & Akiba, K. (2000).J. Organomet. Chem.611, 200±209. Zalvin, P. M., Matevosyan, G. L. & Ofengeim, D. L. (1999).Phosphorus Sulfur

Silicon,144±146, 629±632.

organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, o1583–o1585

supporting information

Acta Cryst. (2004). E60, o1583–o1585 [https://doi.org/10.1107/S1600536804020161]

2-Amino-1-[bis(

N

,

N

-dimethylamino)phosphoramido]benzimidazole

NourEddine Raouafi, Matthias Freytag, Peter G. Jones and Mohamed Lamine BenKhoud

1-(N,N,N′,N′-Tertramethylphosphoramido)-2-aminobenz[d]imidazole

Crystal data

C11H18N5OP Mr = 267.27

Monoclinic, P21/n a = 9.8997 (6) Å b = 10.5514 (6) Å c = 13.739 (1) Å β = 103.613 (3)° V = 1394.80 (15) Å3 Z = 4

F(000) = 568

Dx = 1.273 Mg m−3 Melting point: 199.50°C K Mo radiation, λ = 0.71073 Å Cell parameters from 5780 reflections θ = 2–30°

µ = 0.20 mm−1 T = 133 K Prism, colourless 0.29 × 0.28 × 0.27 mm

Data collection

Bruker SMART 1000 CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8.192 pixels mm-1 ω & φ scans

28550 measured reflections

4081 independent reflections 3346 reflections with I > 2σ(I) Rint = 0.036

θmax = 30.0°, θmin = 2.3° h = −13→13

k = −14→14 l = −19→19

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.035 wR(F2) = 0.102 S = 1.05 4081 reflections 175 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.057P)2 + 0.3169P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.43 e Å−3 Δρmin = −0.24 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, o1583–o1585

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

P 0.49345 (3) 0.20054 (3) 0.23693 (2) 0.01748 (9)

O 0.58500 (9) 0.30285 (8) 0.21649 (6) 0.02233 (18)

N1 0.41121 (10) 0.25522 (9) 0.32523 (7) 0.01761 (19)

N2 0.39248 (10) 0.36376 (9) 0.46544 (7) 0.0197 (2)

N3 0.55826 (11) 0.43631 (11) 0.38118 (8) 0.0249 (2)

H1 0.5768 (17) 0.5053 (17) 0.4239 (13) 0.038 (4)*

H2 0.5934 (17) 0.4266 (15) 0.3292 (12) 0.029 (4)*

N4 0.58220 (12) 0.07213 (11) 0.27469 (9) 0.0298 (2)

N5 0.36254 (10) 0.15227 (10) 0.14850 (7) 0.0230 (2)

C1 0.45762 (11) 0.35652 (10) 0.39212 (8) 0.0179 (2)

C3 0.29600 (12) 0.26529 (11) 0.44844 (8) 0.0187 (2)

C4 0.19830 (13) 0.23360 (12) 0.50263 (9) 0.0226 (2)

H4 0.1937 0.2787 0.5616 0.027*

C5 0.10789 (13) 0.13415 (12) 0.46790 (10) 0.0252 (3)

H5 0.0404 0.1110 0.5037 0.030*

C6 0.11435 (13) 0.06736 (12) 0.38114 (10) 0.0259 (3)

H6 0.0505 0.0004 0.3587 0.031*

C2 0.30385 (11) 0.19639 (10) 0.36226 (8) 0.0180 (2)

C7 0.21312 (13) 0.09732 (11) 0.32669 (9) 0.0236 (2)

H7 0.2179 0.0519 0.2679 0.028*

C8 0.5190 (2) −0.04732 (16) 0.29554 (18) 0.0572 (5)

H8A 0.5747 −0.1185 0.2809 0.069*

H8B 0.4245 −0.0534 0.2534 0.069*

H8C 0.5158 −0.0499 0.3662 0.069*

C9 0.73034 (16) 0.08340 (17) 0.32468 (13) 0.0447 (4)

H9A 0.7406 0.0890 0.3973 0.054*

H9B 0.7687 0.1599 0.3009 0.054*

H9C 0.7804 0.0088 0.3092 0.054*

C10 0.39383 (16) 0.07664 (15) 0.06603 (11) 0.0363 (3)

H10A 0.3147 0.0215 0.0377 0.044*

H10B 0.4766 0.0247 0.0918 0.044*

H10C 0.4110 0.1336 0.0139 0.044*

C11 0.24039 (14) 0.23365 (14) 0.11363 (10) 0.0294 (3)

H11A 0.2561 0.2897 0.0605 0.035*

H11B 0.2251 0.2847 0.1696 0.035*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, o1583–o1585 Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

P 0.01790 (14) 0.01772 (15) 0.01805 (14) 0.00011 (10) 0.00672 (10) −0.00189 (10)

O 0.0237 (4) 0.0242 (4) 0.0220 (4) −0.0046 (3) 0.0112 (3) −0.0034 (3)

N1 0.0181 (4) 0.0190 (4) 0.0166 (4) −0.0038 (4) 0.0060 (3) −0.0041 (3)

N2 0.0204 (4) 0.0211 (5) 0.0186 (4) −0.0045 (4) 0.0070 (4) −0.0040 (4)

N3 0.0273 (5) 0.0277 (5) 0.0230 (5) −0.0113 (4) 0.0124 (4) −0.0092 (4)

N4 0.0270 (5) 0.0253 (5) 0.0393 (6) 0.0080 (4) 0.0119 (5) 0.0055 (5)

N5 0.0224 (5) 0.0265 (5) 0.0208 (5) −0.0017 (4) 0.0070 (4) −0.0095 (4)

C1 0.0182 (5) 0.0189 (5) 0.0161 (5) −0.0013 (4) 0.0029 (4) −0.0024 (4)

C3 0.0193 (5) 0.0193 (5) 0.0178 (5) −0.0009 (4) 0.0050 (4) −0.0016 (4)

C4 0.0252 (6) 0.0237 (5) 0.0213 (5) −0.0017 (4) 0.0104 (4) −0.0019 (4)

C5 0.0261 (6) 0.0241 (6) 0.0292 (6) −0.0042 (5) 0.0143 (5) 0.0008 (5)

C6 0.0257 (6) 0.0233 (6) 0.0307 (6) −0.0080 (5) 0.0104 (5) −0.0041 (5)

C2 0.0184 (5) 0.0188 (5) 0.0180 (5) −0.0018 (4) 0.0065 (4) −0.0011 (4)

C7 0.0262 (6) 0.0225 (5) 0.0238 (5) −0.0055 (5) 0.0095 (5) −0.0058 (5)

C8 0.0521 (10) 0.0317 (8) 0.0978 (15) 0.0139 (7) 0.0374 (10) 0.0261 (9)

C9 0.0352 (8) 0.0486 (9) 0.0445 (9) 0.0195 (7) −0.0023 (7) −0.0057 (7)

C10 0.0342 (7) 0.0438 (8) 0.0343 (7) −0.0090 (6) 0.0150 (6) −0.0238 (6)

C11 0.0283 (6) 0.0350 (7) 0.0223 (6) 0.0020 (5) 0.0005 (5) −0.0021 (5)

Geometric parameters (Å, º)

P—O 1.4784 (8) C5—C6 1.3991 (17)

P—N4 1.6317 (11) C6—C7 1.4000 (16)

P—N5 1.6352 (10) C2—C7 1.3899 (16)

P—N1 1.7124 (9) C7—H7 0.9500

N1—C1 1.4140 (14) C8—H8A 0.9800

N1—C2 1.4242 (14) C8—H8B 0.9800

N2—C1 1.3199 (14) C8—H8C 0.9800

N2—C3 1.3934 (14) C9—H9A 0.9800

N3—C1 1.3396 (14) C9—H9B 0.9800

N4—C8 1.4648 (19) C9—H9C 0.9800

N4—C9 1.4705 (19) C10—H10A 0.9800

N5—C11 1.4685 (17) C10—H10B 0.9800

N5—C10 1.4770 (15) C10—H10C 0.9800

C3—C4 1.3929 (15) C11—H11A 0.9800

C3—C2 1.4071 (15) C11—H11B 0.9800

C4—C5 1.3888 (17) C11—H11C 0.9800

O—P—N4 111.01 (6) C5—C4—H4 121.0

O—P—N5 120.02 (5) C3—C4—H4 121.0

N4—P—N5 104.53 (6) C4—C5—H5 119.4

O—P—N1 107.67 (5) C6—C5—H5 119.4

N4—P—N1 111.39 (5) C5—C6—H6 119.4

N5—P—N1 101.86 (5) C7—C6—H6 119.4

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, o1583–o1585

C1—N1—P 125.39 (8) C6—C7—H7 121.4

C2—N1—P 128.72 (8) N4—C8—H8A 109.5

C1—N2—C3 105.53 (9) N4—C8—H8B 109.5

C8—N4—C9 113.76 (13) H8A—C8—H8B 109.5

C8—N4—P 123.64 (10) N4—C8—H8C 109.5

C9—N4—P 118.98 (10) H8A—C8—H8C 109.5

C11—N5—C10 111.78 (11) H8B—C8—H8C 109.5

C11—N5—P 120.53 (8) N4—C9—H9A 109.5

C10—N5—P 117.75 (9) N4—C9—H9B 109.5

N2—C1—N3 123.99 (10) H9A—C9—H9B 109.5

N2—C1—N1 113.42 (10) N4—C9—H9C 109.5

N3—C1—N1 122.59 (10) H9A—C9—H9C 109.5

C4—C3—N2 128.63 (11) H9B—C9—H9C 109.5

C4—C3—C2 120.56 (11) N5—C10—H10A 109.5

N2—C3—C2 110.78 (9) N5—C10—H10B 109.5

C5—C4—C3 118.05 (11) H10A—C10—H10B 109.5

C4—C5—C6 121.22 (11) N5—C10—H10C 109.5

C5—C6—C7 121.28 (11) H10A—C10—H10C 109.5

C7—C2—C3 121.69 (10) H10B—C10—H10C 109.5

C7—C2—N1 132.61 (10) N5—C11—H11A 109.5

C3—C2—N1 105.61 (9) N5—C11—H11B 109.5

C2—C7—C6 117.18 (11) H11A—C11—H11B 109.5

C1—N3—H1 117.7 (10) N5—C11—H11C 109.5

C1—N3—H2 118.0 (11) H11A—C11—H11C 109.5

H1—N3—H2 123.7 (15) H11B—C11—H11C 109.5

O—P—N1—C1 −21.19 (11) P—N1—C1—N2 −167.09 (8)

N4—P—N1—C1 100.74 (10) C2—N1—C1—N3 −179.07 (11)

N5—P—N1—C1 −148.30 (10) P—N1—C1—N3 12.76 (16)

O—P—N1—C2 173.54 (9) C1—N2—C3—C4 −177.99 (12)

N4—P—N1—C2 −64.53 (11) C1—N2—C3—C2 0.22 (13)

N5—P—N1—C2 46.42 (11) N2—C3—C4—C5 176.82 (12)

O—P—N4—C8 −176.59 (14) C2—C3—C4—C5 −1.23 (18)

N5—P—N4—C8 −45.81 (15) C3—C4—C5—C6 0.05 (19)

N1—P—N4—C8 63.44 (15) C4—C5—C6—C7 0.7 (2)

O—P—N4—C9 26.22 (13) C4—C3—C2—C7 1.72 (18)

N5—P—N4—C9 157.00 (11) N2—C3—C2—C7 −176.65 (11)

N1—P—N4—C9 −93.76 (11) C4—C3—C2—N1 178.80 (11)

O—P—N5—C11 −70.53 (11) N2—C3—C2—N1 0.43 (13)

N4—P—N5—C11 164.19 (10) C1—N1—C2—C7 175.77 (13)

N1—P—N5—C11 48.13 (10) P—N1—C2—C7 −16.60 (19)

O—P—N5—C10 72.32 (12) C1—N1—C2—C3 −0.85 (12)

N4—P—N5—C10 −52.96 (11) P—N1—C2—C3 166.78 (8)

N1—P—N5—C10 −169.03 (10) C3—C2—C7—C6 −0.93 (18)

C3—N2—C1—N3 179.33 (11) N1—C2—C7—C6 −177.11 (12)

C3—N2—C1—N1 −0.81 (13) C5—C6—C7—C2 −0.26 (19)

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, o1583–o1585 Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C6—H6···Oi 0.95 2.56 3.4982 (15) 169

C9—H9C···Oii 0.98 2.62 3.5932 (18) 175

N3—H1···N2iii 0.925 (18) 2.024 (18) 2.9402 (14) 170.1 (15)

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical