• No results found

catena Poly­[[aqua­nickel(II)] di μ (4 pyridyl­sulfanyl)­acetato κ6N:O,O;O,O′:N]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly­[[aqua­nickel(II)] di μ (4 pyridyl­sulfanyl)­acetato κ6N:O,O;O,O′:N]"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m933±m934 DOI: 10.1107/S1600536804013340 Yong-Qing Huanget al. [Ni(C7H6NO2S)2(H2O)]

m933

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena

-Poly[[aquanickel(II)]-di-

l

-(4-pyridyl-sulfanyl)acetato-

j

6

N

:

O,O

;

O,O

000

:

N

]

Yong-Qing Huang,aHui Zhang,a

Jian-Gu Chen,aWei Zouaand

Seik Weng Ngb*

aState Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China, and bDepartment of Chemistry, University of

Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.003 AÊ

Rfactor = 0.035

wRfactor = 0.095

Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The water-coordinated Ni atom in the title compound, [Ni(C7H6NO2S)2(H2O)]n, is covalently bonded to two

carboxylate groups (one binding in a monodentate mode and the other in a chelating mode); it is also linked to the N atoms of two other carboxylate anions in an octahedral environment. The compound adopts a linear chain architec-ture; adjacent chains are linked into layers by hydrogen bonds.

Comment

A number of compounds resulting from the reaction of pyridyl-4-thiolylacetic acid with metal salts have been crys-tallographically authenticated; some of these are neutral complexes whereas others are zwitterions (Qin et al., 2004; Zhanget al., 2004a,b).

Tetraaquabis(pyridyl-4-thiolylacetato)nickel(II), which exists as a zwitterion, was synthesized hydrothermally in a nearly neutral aqueous solvent system; the reaction when carried out at a lower temperature and for a shorter time gave the title polymeric compoundcatena

-(4-pyridylsulfanyl)acetato], (I) (Fig. 1), whose Ni atom is instead covalently linked to two carboxylate anions. One of the anions functions as a chelate [bite angle = 60.84 (6)]; its

two O atoms, the water molecule and the O atom of a monodentate carboxylate anion are coplanar; the pyridyl N atoms belonging to two other carboxylate anions lie on opposite sides of the plane, these interactions giving rise to a chain motif (Fig. 2).

Experimental

Nickel acetate (100 mg, 0.4 mmol), 4-pyridylthioacetic acid (68 mg, 0.4 mmol) and sodium hydroxide (16 mg, 0.4 mmol) were dissolved in a water±ethanol (12:5v/v) mixture (17 ml). The solution was placed in a Te¯on-lined stainless-steel bomb (23 ml). The bomb was heated at 393 K for 12 h and then cooled to room temperature. CHN elemental analyses on the green crystals found (calculated) for C14H14N2NiO5S2 (%): C 40.23 (40.70), H 3.42 (3.42), N 6.64 (6.78). IR (KBr): 3385, 2921, 1599, 1579, 1561, 1487, 1430, 1376, 1218, 1147, 1119, 1057, 817, 804, 724, 701, 589, 503 cmÿ1.

(2)

Crystal data

[Ni(C7H6NO2S)2(H2O)]

Mr= 413.10

Triclinic,P1

a= 8.1693 (4) AÊ

b= 10.3430 (5) AÊ

c= 10.6876 (5) AÊ

= 67.371 (1)

= 73.176 (1)

= 86.825 (1) V= 796.25 (7) AÊ3

Z= 2

Dx= 1.723 Mg mÿ3

MoKradiation Cell parameters from 5217

re¯ections

= 2.8±26.3

= 1.51 mmÿ1

T= 293 (2) K Prism, green

0.130.120.10 mm

Data collection

Bruker SMART APEX area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2001)

Tmin= 0.665,Tmax= 0.864 6789 measured re¯ections

3511 independent re¯ections 3266 re¯ections withI> 2(I)

Rint= 0.017

max= 27.5

h=ÿ10!10

k=ÿ13!13

l=ÿ13!13

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.035

wR(F2) = 0.095

S= 1.06 3511 re¯ections 225 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.056P)2

+ 0.2563P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.49 e AÊÿ3

min=ÿ0.26 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Ni1ÐO3 2.023 (2) Ni1ÐO1 2.094 (2) Ni1ÐO2 2.210 (2)

Ni1ÐO1w 2.049 (2) Ni1ÐN1i 2.099 (2) Ni1ÐN2ii 2.094 (2)

O1ÐNi1ÐO2 60.84 (6) O1ÐNi1ÐO3 166.10 (6) O1ÐNi1ÐO1w 98.41 (6) O1ÐNi1ÐN1i 88.55 (6) O1ÐNi1ÐN2ii 91.65 (6) O2ÐNi1ÐO3 105.37 (6) O2ÐNi1ÐO1w 158.89 (7) O2ÐNi1ÐN1i 86.52 (6)

O2ÐNi1ÐN2ii 92.02 (7) O3ÐNi1ÐN1i 88.82 (7) O3ÐNi1ÐN2ii 90.56 (7) O3ÐNi1ÐO1w 95.20 (7) O1wÐNi1ÐN1i 89.29 (7) O1wÐNi1ÐN2ii 92.43 (7) N1iÐNi1ÐN2ii 178.21 (7)

Symmetry codes: (i) 1ÿx;2ÿy;2ÿz; (ii) 1ÿx;1ÿy;1ÿz.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O1wÐH1w2 O1iii 0.84 (1) 1.88 (1) 2.722 (2) 176 (3) O1wÐH1w1 O4 0.85 (1) 1.83 (2) 2.633 (2) 158 (3)

Symmetry code: (iii) 1ÿx;1ÿy;2ÿz.

The water H atoms were located in a difference map and re®ned with distance restraints of OÐH = 0.85 (1) AÊ and H H = 1.39 (1) AÊ. The aromatic (CÐH = 0.93 AÊ) and aliphatic (CÐH = 0.97 AÊ) H atoms were placed at calculated positions and re®ned using the riding-model approximation, withUiso= 1.2Ueq(C).

Data collection:SMART(Bruker, 2001); cell re®nement:SAINT

(Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne

ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the National Science Foundation of China (Nos. 20171037 and 20073034), the Fujian Province Science Foundation (2002F016) and the University of Malaya for supporting this study.

References

Bruker (2001).SADABS, SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Qin, S. B., Ke, Y. X., Lu, S. M., Li, J. M., Pei, H. X., Wu, X. T. & Du, W. X. (2004).J.Mol. Struct.689, 75±80.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2004a).Acta Cryst.E60, m135±m136.

Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2004b).Acta Cryst.E60,

Figure 1

ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. [Symmetry codes: (i) 1ÿx, 2ÿy, 2ÿz; (ii) 1ÿx, 1ÿy, 1ÿz.]

Figure 2

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, m933–m934

supporting information

Acta Cryst. (2004). E60, m933–m934 [https://doi.org/10.1107/S1600536804013340]

catena

-Poly[[aquanickel(II)]-di-

µ

-(4-pyridylsulfanyl)acetato-

κ

6

N

:

O,O

;

O,O

:

N

]

Yong-Qing Huang, Hui Zhang, Jian-Gu Chen, Wei Zou and Seik Weng Ng

catena-Poly[[aquanickel(II)]-di-µ-(4-pyridylsulfanyl)acetato]

Crystal data

[Ni(C7H6NO2S)2(H2O)]

Mr = 413.10

Triclinic, P1 Hall symbol: -P 1

a = 8.1693 (4) Å

b = 10.3430 (5) Å

c = 10.6876 (5) Å

α = 67.371 (1)°

β = 73.176 (1)°

γ = 86.825 (1)°

V = 796.25 (7) Å3

Z = 2

F(000) = 424

Dx = 1.723 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5217 reflections

θ = 2.8–26.3°

µ = 1.51 mm−1

T = 293 K Prism, green

0.13 × 0.12 × 0.10 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2001)

Tmin = 0.665, Tmax = 0.864

6789 measured reflections 3511 independent reflections 3266 reflections with I > 2σ(I)

Rint = 0.017

θmax = 27.5°, θmin = 2.1°

h = −10→10

k = −13→13

l = −13→13

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.035

wR(F2) = 0.095

S = 1.06 3511 reflections 225 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.056P)2 + 0.2563P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.49 e Å−3

Δρmin = −0.26 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(4)

S1 0.87796 (9) 0.76461 (7) 1.06171 (8) 0.0427 (2)

S2 0.07987 (7) 0.77873 (6) 0.41886 (6) 0.0340 (1)

O1 0.6400 (2) 0.6852 (2) 0.9294 (2) 0.0308 (3)

O2 0.7493 (2) 0.8390 (2) 0.7145 (2) 0.0379 (4)

O3 0.4218 (2) 0.7779 (2) 0.6082 (2) 0.0318 (3)

O4 0.1770 (2) 0.6469 (2) 0.6941 (2) 0.0396 (4)

O1w 0.2967 (2) 0.5799 (2) 0.9134 (2) 0.0336 (3)

N1 0.6162 (2) 1.1238 (2) 1.1669 (2) 0.0301 (4)

N2 0.3642 (2) 0.4463 (2) 0.2762 (2) 0.0304 (4)

C1 0.7555 (3) 0.7773 (2) 0.8382 (2) 0.0294 (4)

C2 0.9081 (3) 0.8081 (3) 0.8771 (3) 0.0384 (5)

C3 0.7725 (3) 0.9048 (2) 1.0942 (2) 0.0310 (4)

C4 0.7327 (3) 1.0240 (2) 0.9941 (2) 0.0371 (5)

C5 0.6569 (3) 1.1294 (2) 1.0348 (2) 0.0376 (5)

C6 0.6526 (3) 1.0068 (2) 1.2639 (2) 0.0326 (5)

C7 0.7296 (3) 0.8973 (2) 1.2329 (2) 0.0349 (5)

C8 0.2769 (3) 0.7468 (2) 0.6042 (2) 0.0275 (4)

C9 0.2249 (3) 0.8486 (2) 0.4777 (2) 0.0345 (5)

C10 0.1975 (3) 0.6541 (2) 0.3642 (2) 0.0282 (4)

C11 0.1141 (3) 0.5710 (2) 0.3235 (2) 0.0329 (5)

C12 0.2002 (3) 0.4707 (2) 0.2810 (2) 0.0328 (5)

C13 0.4442 (3) 0.5272 (2) 0.3149 (3) 0.0358 (5)

C14 0.3678 (3) 0.6307 (2) 0.3585 (2) 0.0340 (5)

H1w1 0.240 (3) 0.583 (3) 0.857 (3) 0.06 (1)*

H1w2 0.320 (4) 0.498 (2) 0.959 (3) 0.07 (1)*

H2a 0.9418 0.9074 0.8268 0.046*

H2b 1.0026 0.7572 0.8436 0.046*

H4 0.7568 1.0328 0.9005 0.045*

H5 0.6326 1.2094 0.9658 0.045*

H6 0.6239 0.9996 1.3572 0.039*

H7 0.7530 0.8187 1.3039 0.042*

H9a 0.3279 0.8868 0.3992 0.041*

H9b 0.1728 0.9260 0.5013 0.041*

H11 0.0000 0.5832 0.3250 0.039*

H12 0.1414 0.4164 0.2539 0.039*

H13 0.5584 0.5127 0.3123 0.043*

H14 0.4297 0.6844 0.3840 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ni1 0.0293 (2) 0.0241 (2) 0.0255 (2) 0.0018 (1) −0.0103 (1) −0.0092 (1)

S1 0.0500 (4) 0.0401 (3) 0.0602 (4) 0.0187 (3) −0.0349 (3) −0.0312 (3)

S2 0.0364 (3) 0.0368 (3) 0.0390 (3) 0.0133 (2) −0.0199 (2) −0.0202 (2)

O1 0.033 (1) 0.028 (1) 0.032 (1) 0.000 (1) −0.014 (1) −0.009 (1)

O2 0.046 (1) 0.030 (1) 0.034 (1) 0.001 (1) −0.011 (1) −0.008 (1)

O3 0.035 (1) 0.034 (1) 0.028 (1) 0.001 (1) −0.013 (1) −0.011 (1)

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, m933–m934

O1w 0.036 (1) 0.029 (1) 0.031 (1) 0.002 (1) −0.010 (1) −0.008 (1)

N1 0.031 (1) 0.028 (1) 0.032 (1) 0.002 (1) −0.011 (1) −0.012 (1)

N2 0.031 (1) 0.031 (1) 0.032 (1) 0.003 (1) −0.010 (1) −0.015 (1)

C1 0.035 (1) 0.020 (1) 0.037 (1) 0.006 (1) −0.012 (1) −0.015 (1)

C2 0.031 (1) 0.041 (1) 0.052 (1) 0.004 (1) −0.009 (1) −0.030 (1)

C3 0.029 (1) 0.030 (1) 0.042 (1) 0.004 (1) −0.016 (1) −0.018 (1)

C4 0.045 (1) 0.037 (1) 0.032 (1) 0.008 (1) −0.012 (1) −0.015 (1)

C5 0.046 (1) 0.032 (1) 0.031 (1) 0.008 (1) −0.012 (1) −0.009 (1)

C6 0.039 (1) 0.031 (1) 0.031 (1) 0.001 (1) −0.015 (1) −0.012 (1)

C7 0.044 (1) 0.028 (1) 0.039 (1) 0.005 (1) −0.022 (1) −0.012 (1)

C8 0.032 (1) 0.027 (1) 0.029 (1) 0.008 (1) −0.012 (1) −0.014 (1)

C9 0.045 (1) 0.028 (1) 0.037 (1) 0.006 (1) −0.021 (1) −0.013 (1)

C10 0.032 (1) 0.029 (1) 0.026 (1) 0.004 (1) −0.011 (1) −0.011 (1)

C11 0.031 (1) 0.038 (1) 0.036 (1) 0.005 (1) −0.014 (1) −0.017 (1)

C12 0.032 (1) 0.036 (1) 0.036 (1) 0.001 (1) −0.013 (1) −0.018 (1)

C13 0.027 (1) 0.041 (1) 0.045 (1) 0.004 (1) −0.012 (1) −0.021 (1)

C14 0.028 (1) 0.038 (1) 0.045 (1) 0.002 (1) −0.013 (1) −0.024 (1)

Geometric parameters (Å, º)

Ni1—O3 2.023 (2) C4—C5 1.376 (3)

Ni1—O1 2.094 (2) C6—C7 1.370 (3)

Ni1—O2 2.210 (2) C8—C9 1.518 (3)

Ni1—O1w 2.049 (2) C10—C11 1.384 (3)

Ni1—N1i 2.099 (2) C10—C14 1.387 (3)

Ni1—N2ii 2.094 (2) C11—C12 1.368 (3)

S1—C3 1.743 (2) C13—C14 1.377 (3)

S1—C2 1.790 (3) O1w—H1w1 0.85 (1)

S2—C10 1.745 (2) O1w—H1w2 0.84 (1)

S2—C9 1.788 (2) C2—H2a 0.97

O1—C1 1.265 (3) C2—H2b 0.97

O2—C1 1.243 (3) C4—H4 0.93

O3—C8 1.260 (3) C5—H5 0.93

O4—C8 1.238 (3) C6—H6 0.93

N1—C5 1.332 (3) C7—H7 0.93

N1—C6 1.342 (3) C9—H9a 0.97

N2—C13 1.335 (3) C9—H9b 0.97

N2—C12 1.339 (3) C11—H11 0.93

C1—C2 1.508 (3) C12—H12 0.93

C3—C4 1.383 (3) C13—H13 0.93

C3—C7 1.394 (3) C14—H14 0.93

O1—Ni1—O2 60.84 (6) O3—C8—C9 114.0 (2)

O1—Ni1—O3 166.10 (6) C8—C9—S2 116.3 (2)

O1—Ni1—O1w 98.41 (6) C11—C10—C14 117.1 (2)

O1—Ni1—N1i 88.55 (6) C11—C10—S2 117.5 (2)

O1—Ni1—N2ii 91.65 (6) C14—C10—S2 125.5 (2)

(6)

O2—Ni1—O1w 158.89 (7) N2—C12—C11 123.8 (2)

O2—Ni1—N1i 86.52 (6) N2—C13—C14 123.8 (2)

O2—Ni1—N2ii 92.02 (7) C13—C14—C10 119.3 (2)

O3—Ni1—N1i 88.82 (7) Ni1—O1w—H1w1 103 (2)

O3—Ni1—N2ii 90.56 (7) Ni1—O1w—H1w2 114 (2)

O3—Ni1—O1w 95.20 (7) H1w1—O1w—H1w2 113 (3)

O1w—Ni1—N1i 89.29 (7) C1—C2—H2a 108.3

O1w—Ni1—N2ii 92.43 (7) S1—C2—H2a 108.3

N1i—Ni1—N2ii 178.21 (7) C1—C2—H2b 108.3

C3—S1—C2 104.3 (1) S1—C2—H2b 108.3

C10—S2—C9 103.1 (1) H2a—C2—H2b 107.4

C1—O1—Ni1 91.5 (1) C5—C4—H4 120.4

C1—O2—Ni1 86.8 (1) C3—C4—H4 120.4

C8—O3—Ni1 126.4 (1) N1—C5—H5 118.0

C5—N1—C6 116.5 (2) C4—C5—H5 118.0

C5—N1—Ni1i 120.9 (2) N1—C6—H6 118.2

C6—N1—Ni1i 122.5 (2) C7—C6—H6 118.2

C13—N2—C12 116.2 (2) C6—C7—H7 120.3

C13—N2—Ni1ii 120.0 (2) C3—C7—H7 120.3

C12—N2—Ni1ii 123.7 (2) C8—C9—H9a 108.2

O2—C1—O1 120.9 (2) S2—C9—H9a 108.2

O2—C1—C2 119.1 (2) C8—C9—H9b 108.2

O1—C1—C2 119.9 (2) S2—C9—H9b 108.2

C1—C2—S1 116.1 (2) H9a—C9—H9b 107.4

C4—C3—C7 117.3 (2) C12—C11—H11 120.1

C4—C3—S1 125.9 (2) C10—C11—H11 120.1

C7—C3—S1 116.7 (2) N2—C12—H12 118.1

C5—C4—C3 119.1 (2) C11—C12—H12 118.1

N1—C5—C4 124.0 (2) N2—C13—H13 118.1

N1—C6—C7 123.5 (2) C14—C13—H13 118.1

C6—C7—C3 119.4 (2) C13—C14—H14 120.3

O4—C8—O3 126.1 (2) C10—C14—H14 120.3

O4—C8—C9 119.9 (2)

O3—Ni1—O1—C1 −7.4 (3) C6—N1—C5—C4 −0.2 (4)

O1w—Ni1—O1—C1 −175.6 (1) Ni1i—N1—C5—C4 −177.8 (2)

N2ii—Ni1—O1—C1 91.7 (1) C3—C4—C5—N1 −1.0 (4)

N1i—Ni1—O1—C1 −86.5 (1) C5—N1—C6—C7 0.9 (3)

O2—Ni1—O1—C1 0.3 (1) Ni1i—N1—C6—C7 178.5 (2)

O3—Ni1—O2—C1 177.8 (1) N1—C6—C7—C3 −0.5 (4)

O1w—Ni1—O2—C1 11.0 (2) C4—C3—C7—C6 −0.6 (3)

N2ii—Ni1—O2—C1 −91.1 (1) S1—C3—C7—C6 177.5 (2)

O1—Ni1—O2—C1 −0.3 (1) Ni1—O3—C8—O4 −18.4 (3)

N1i—Ni1—O2—C1 90.0 (1) Ni1—O3—C8—C9 159.1 (1)

O1w—Ni1—O3—C8 5.2 (2) O4—C8—C9—S2 −29.3 (3)

N2ii—Ni1—O3—C8 97.7 (2) O3—C8—C9—S2 153.0 (2)

O1—Ni1—O3—C8 −163.1 (2) C10—S2—C9—C8 −63.7 (2)

(7)

supporting information

sup-5

Acta Cryst. (2004). E60, m933–m934

O2—Ni1—O3—C8 −170.0 (2) C9—S2—C10—C14 −5.3 (2)

Ni1—O2—C1—O1 0.5 (2) C14—C10—C11—C12 0.4 (3)

Ni1—O2—C1—C2 177.2 (2) S2—C10—C11—C12 −179.4 (2)

Ni1—O1—C1—O2 −0.6 (2) C13—N2—C12—C11 −0.5 (3)

Ni1—O1—C1—C2 −177.2 (2) Ni1ii—N2—C12—C11 177.5 (2)

O2—C1—C2—S1 159.7 (2) C10—C11—C12—N2 0.2 (4)

O1—C1—C2—S1 −23.6 (3) C12—N2—C13—C14 0.2 (3)

C3—S1—C2—C1 −80.6 (2) Ni1ii—N2—C13—C14 −177.8 (2)

C2—S1—C3—C4 −3.2 (2) N2—C13—C14—C10 0.3 (4)

C2—S1—C3—C7 179.0 (2) C11—C10—C14—C13 −0.6 (3)

C7—C3—C4—C5 1.3 (4) S2—C10—C14—C13 179.1 (2)

S1—C3—C4—C5 −176.6 (2)

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1w—H1w2···O1iii 0.84 (1) 1.88 (1) 2.722 (2) 176 (3)

O1w—H1w1···O4 0.85 (1) 1.83 (2) 2.633 (2) 158 (3)

References

Related documents

In the present study, using a rabbit model, we exam- ined reactions of HEL in the diaphysis of proximal femur, which is the site most susceptible to the development of

Our results confirm a distinct improvement in accuracy and variance of the present optimization scheme for linear regis- tration of structural MR imaging data into MNI

Agent-based models apply a bottom-up approach to yield better understanding of urban systems by allowing the simulation of individual actions of agents and measure- ment of

- Taux d'utilisation en énergie : quotient de l'énergie produite au cours de la période considérée par l'énergie qu'aurait pu produire, pendant la même période, La

Under Regulation 23 (1) (c) you are required to: Put management systems in place in the designated centre to ensure that the service provided is safe, appropriate to residents'

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages

gender wage gap is higher in the lower deciles of the wage distribution; women earn. about 10.2 per cent less wage than men at the

This parser can take advan- tage of target language monolingual data through word embeddings, data which is usually available for resource-poor languages.. Chen and Manning’s