• No results found

Testing Protocols for the Internet of Things and Coexistence with Wi Fi Networks

N/A
N/A
Protected

Academic year: 2021

Share "Testing Protocols for the Internet of Things and Coexistence with Wi Fi Networks"

Copied!
39
0
0

Loading.... (view fulltext now)

Full text

(1)

Testing

 

Protocols

 

for

 

the

 

Internet

 

of

 

Things

 

and

 

Coexistence

 

with

 

Wi

Fi

 

Networks

Chiara

 

Buratti,

 

Andrea

 

Stajkic,

 

Danilo

 

Abrignani

Stefan

 

Mijovic,

 

Roberto

 

Verdone

(2)

1. EuWIn:

 

Testing

 

IoT Protocols

2. IoT Applications

3. Comparing

 

Protocols

 

for

 

IoT

4. Coexistence

 

Issues

 

at

 

2.4

 

GHz

(3)

1. EuWIn:

 

Testing

 

IoT Protocols

2. IoT Applications

 

and

 

Motivations

3. Comparing

 

Protocols

 

for

 

IoT

4. Coexistence

 

Issues

 

at

 

2.4

 

GHz

Outline

 

(4)

NEWCOM#

Network

 

of

 

Excellence

 

in

 

Wireless

 

Communications

EuWIn

European

 

Laboratory

 

of

Wireless

 

Communications

 

for

 

the

 

Future

 

Internet

www.euwin.org

(5)

CNIT

 

(Italy)

CNRS

 

(France)

CTTC

 

(Spain)

Aalborg Univ.

 

(Denmark)

Bilkent Univ.

 

(Turkey)

IASA

 

(Greece)

INOV

 

(Portugal)

Poznan Univ.

 

of Technology (Poland)

Technical Univ.

 

of Vienna

 

(Austria)

Technion (Israel)

Univ.

 

of Cambridge

 

(UK)

Univ.

 

Catholique de

 

Louvain (Belgium)

Univ.

 

of Dresden (Germany)

Univ.

 

of Oulu (Finland)

5

(6)

The Lab is composed of three main sites

It is open to all researchers, SMEs, institutions

Director: Prof. Roberto Verdone

Radio Interfaces

(EuWIn@CTTC, Barcelona, ES)

Internet of Things

(EuWIn@UniBO, Bologna, IT)

Flexible Communication Terminals

(EuWIn@EURECOM, Sophia Antipolis, FR)

(7)

The

 

lab

 

provides

 

more

 

than

 

200

 

wireless

 

nodes

 

implementing

 

different

 

types

 

of

 

radio

 

interfaces

 

and

 

distributed

 

according

 

to

 

different

 

platforms

7

EuWIn@Unibo

EuWIN

 

UniBO

(8)

53

 

devices in

 

fixed positions

1 Coordinator

 

/

 

Gateway

2

 

Sniffers

TI

 

CC2530

 

802.15.4

compliant

 

devices

Flextop

:

 

deployment

C

(9)

Remotely accessible

Over

the

air

 

programming

9

(10)

Controllable environment

Possibility to

 

emulate

 

different topologies

Flextop

:

 

strengths

Coord /

 

GW

(11)

Studying social

 

behaviour of

 

human

 

environments

Testing Delay

 

Tolerant Networking

 

approaches

11

(12)

1. EuWIn:

 

Testing

 

IoT Protocols

2. IoT Applications

 

and

 

Motivations

3. Comparing

 

Protocols

 

for

 

IoT

4. Coexistence

 

Issues

 

at

 

2.4

 

GHz

(13)

Smart

 

Cities

Smart

 

Grid

Smart

 

Bodies

Smart

 

Homes

Smart

 

Buildings

13

IoT

:

 

applications

(14)

GW/Coordinator

 

periodically queries devices in

 

order to

 

monitor

 

their status

IoT

:

 

smart

 

home

(15)

Which is the

 

best

 

standard

 

solution to

 

be

 

used?

Which is the

 

impact

 

of

 

interference?

Studied Metrics:

 

Round

 

Trip

 

Time

Overhead

Directly connected to

 

Energy

 

Consumption

15

(16)

1. EuWIn:

 

Testing

 

IoT Protocols

2. IoT Applications

 

and

 

Motivations

3. Comparing

 

Protocols

 

for

 

IoT

4. Coexistence

 

Issues

 

at

 

2.4

 

GHz

(17)

Protocols

 

for

 

IoT:

considered

 

solutions

17

IEEE

 

802.15.4

 

/

 

Zigbee

IEEE

 

802.15.4

 

/

 

6LowPAN

(18)
(19)

Zigbee:

 

Many

to

One

 

routing

 

19

Node 3

Node 2

Coord

Node 1

Node 5

Node 4

MTO RREQ (broadcast) Route Record node 5 

(unicast) MTO RREQ 3 MTO RREQ 4 MTO RREQ 5 MTO RREQ 2 MTO RREQ 1 RREC MTO RREQ Coord

(20)

6LowPAN:

 

RPL

 

routing

 

Node 3

Node 2

Coord

Node 1

Node 5

Node 4

DIO 3 DIO 4 DIO 5 DIO 2 DIO 1 DAO DIO Coord

DODAG Information Object (DIO) 

(21)

Numerical

 

Results:

 

scenario

21

Coordinator

 

and

 

10

 

Nodes

 

switched

 

ON

Coordinator

 

periodically

 

queries

 

one

 

of

 

the

 

nodes

Coordinator

Node at 1

 

hop

Node at 2

 

hops

Node at 3

 

hops

(22)

Numerical

 

Results:

 

RTT

 

comparison

20

 

Bytes payload

1

 

hop

 

scenario

0 10 20 30 40 50 60 70 80 90

1 hop 2 hop 3 hop

RTT   [ms] Number of hops

RTT

 

[ms]

Zigbee 6LoWPAN 0 5 10 15 20 25 30 10B 20B 30B RTT   [ms] Payload Size

RTT

 

[ms]

Zigbee 6LoWPAN

(23)

Numerical

 

Results:

 

impact

 

of

 

environment

23

Quasi

Static conditions

Dynamic conditions

0 10 20 30 40 50 60 70 80

Static Quasi‐Static Dynamic

RTT   [ms]

RTT

 

[ms]

Zigbee 6LoWPAN

(24)

Numerical

 

Results:

 

impact

 

of

 

environment

0 10 20 30 40 50 60 70 80

Static Quasi‐Static Dynamic

RTT   [ms]

RTT

 

[ms]

Zigbee 6LoWPAN

Quasi

Static conditions

(25)

Numerical

 

Results:

 

overhead

25

One Hop

[#packets]

Two hops

[#packets]

One Hop

[#Bytes]

Two hops

[#Bytes]

Zigbee

4.7

8.7

6.5

11.4

6LoWPAN

6.2

9.5

10.9

16.8

(26)

Numerical

 

Results:

 

Zigbee vs SDWN

Centralised routing:

 

Controller

 

takes

 

decisions

 

Low

 

delay

 

at

 

routers

0 10 20 30 40 50 60 70 80 90

1 hop 2 hop 3 hop

RTT   [ms] Number of hops

RTT

 

[ms]

SDWN Zigbee 6LoWPAN

(27)

1. EuWIn:

 

Testing

 

IoT Protocols

2. IoT Applications

 

and

 

Motivations

3. Comparing

 

Protocols

 

for

 

IoT

4. Coexistence

 

Issues

 

at

 

2.4

 

GHz

Outline

 

(28)

Motivation

Smart

 

Home:

 

strong

 

presence

 

of

 

Wi

Fi

 

Check

 

the

 

impact

 

of

 

Wi

Fi

 

on

 

Zigbee

Extremely

 

bad

 

conditions

 

tested

Up

 

to

 

3

 

APs

 

setup

Close

 

proximity

 

of

 

APs

 

to

 

Zigbee Coordinator

(29)

29

Environment

 

Characterisation

• Avg. Rx Power Matrix • Energy Peak Detection • Wi‐Fi Channel Utilization

Measurements

• Zigbee PointNetwork ‐to‐Point 

Data

 

Process

• Packet Loss Rate

• Avg. Round Trip Time

• Overhead

(30)

Experimental

 

Characterisation:

 

why

 

EuWIn?

Avg.

 

Rx

 

Power

 

Matrix

 

[dBm]

Energy

 

Peak

 

Detection

 

[dBm]

(31)

Test:

 

testbed setup

31

10

 

cm

  

/

 

3

 

m

Clients APs 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Channel No. IEEE 802.15.4 Channels

IEEE 802.11b Used Channel 

IEEE 802.11n Used Channel IEEE 802.15.4 Used Channels CH 6 22 MHz  CH 6 40 MHz 5 MHz 2405 2480 f [MHz] 2437 2435 2475

(32)

Numerical

 

Results:

 

an

 

example

0 50 100 150 200 250 300 350 No Interference CH 25 CH 17 ‐ 2 APs @ 10 cm CH 17 ‐ 3 APs @ 10 cm CH 17 ‐ 3 APs @ 3 m

RTT

 

[ms]

RTT

(33)

Conclusions

33

EuWIn:

 

a

 

remote

 

programming

 

platform

 

for

 

testing

 

IoT protocols

 

at

 

disposal

 

of

 

SMEs

Zigbee outperforms

 

6LoWPAN

Coexistence

 

Issues

 

between

 

Zigbee and

 

Wi

Fi

 

(34)

If

 

you

 

want

 

to

 

know

 

something

 

more…

Visit

 

Our

 

EuWIn DEMO

 

!

(35)

D. Abrignani, C. Buratti, L. Frost, R. Verdone, “Testing The Impact of Wi

Fi Interference on

Zigbee Networks”, EuroMed 2014, Napoli, Italy, 2014.

D. Abrignani, C. Buratti, L. Frost, R. Verdone, “Technical Report on Testing The Impact of

Wi

Fi Interference on Zigbee Networks”, presented to Home Gateway Initiative.

A. Stajkic, M. D. Abrignani, C. Buratti, R. Verdone, “The EuWin Platform: From a Down

Scaled Testbed to the Real Deployment”, Atti di EUCNC 2014, June 23

26, Bologna, Italy.

M. D. Abrignani, C. Buratti, D. Dardari, N. El Rachkidy, A. Guitton, F. Martelli, A. Stajkic, R.

oberto Verdone, “The EuWIn Testbed for 802.15.4/Zigbee Networks: From the Simulation

to the Real World”, Proc. of ISWCS 2013, August 27

30 2013, Ilmenau, Germany.

C.

 

Buratti,

 

G.

 

Gardasevic,

 

S.

 

Milardo,

 

M.D.

 

Abrignani,

 

S.

 

Mijovic,

 

A.

 

Stajkic,

 

G.

 

Mirabito,

 

R.

 

Verdone,

 

“Testing Protocols for

 

The

 

Internet

 

of

 

Things on

 

The

 

EuWIn Platform

 

”,

 

submitted to

 

IEEE

 

IoT Journal.

 

References

(36)

Numerical

 

Results:

 

traffic

 

and

 

metrics

Traffic:

 

Query

based

 

APPs

Coordinator

 

periodically

 

triggers

 

one

 

of

 

the

 

nodes

Packets

 

are

 

generated

 

every

 

300 ms

Metrics

:

 Average

 

Round

 

Trip

 

Time,

 

Overhead

(37)

Measurements

 

Result:

 

PLR

 

– CH

 

17

 

– Unicast

37

Wifi Ut. 10‐15%

Wifi Ut. 50‐60%

(38)

Measurements

 

Result:

 

RTT

 

– CH

 

17

 

– Broadcast

 

vs

Unicast

0 100 200 300 400 500 600 700

2 APs 10 cm 3 APs 3 m 3 APs 10 cm

Avg.   RTT   [ms]

Average RTT

 

[ms]

Unicast Broadcast 0 5 10 15 20 25 30 35 40

2 APs 10 cm 3 APs 3 m 3 APs 10 cm

Overhead   [%]

Overhead

 

[%]

Unicast Broadcast

(39)

Measurements

 

Result:

 

RTT

 

– Unicast

 

– CH

 

17

 

vs CH

 

25

39 No Interf CH 25 CH 25 CH 25 CH 25 CH 17 CH 17 CH 17

Average RTT

 

[ms]

CH 17

References

Related documents

In addition, other key documents, published by the WHO, ILO and international non- governmental organisations (NGOs) working in the disability arena have collated data or

These influences—museological missions, collection processses, curatorial choices, loan possibilities, design concepts, research specialties, funding options, consultant opinions,

If we assume that the Heston model is the market model, there are market prices that are not reached with the implied BS model (for example the option price A).. Moreover, we

The particular variables used in this study (ease of use; discount; delivery system; security; post- purchase customer service) considered as e-service quality factors which

Acknowledgement of michigan public property sale county government offices in information on a home to finish the dnr terms and play area of michigan center lake in ready..

Trinity Temple Redemption Center Kansas City, Missouri Kansas City, Missouri 2007 House of Refuge of Orange County Orlando, Florida 2006 Buckner Children’s Center Dallas, Texas

Study One (Investigation of the Dubai Police records) focused mainly on the investigative interplay, while the second and third case studies focused mainly on

Results from the acute toxicity study showed that TAT2 did not cause toxicity in mice even at the highest dose of 2 000 mg/kg body weight.. All mice treated with TAT2 survived and