• No results found

Selective medium for culture of Mycoplasma hyopneumoniae

N/A
N/A
Protected

Academic year: 2020

Share "Selective medium for culture of Mycoplasma hyopneumoniae"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Short

communication

Selective

medium

for

culture

of

Mycoplasma

hyopneumoniae

Beth

S.

Cook

1

,

Jessica

G.

Beddow,

Lucía

Manso-Silván

2

,

Gareth

A.

Maglennon,

Andrew

N.

Rycroft

*

DepartmentofPathology&PathogenBiology,RoyalVeterinaryCollege,HawksheadLane,NorthMymms,AL97TA,UK

ARTICLE INFO

Articlehistory:

Received22April2016

Receivedinrevisedform27September2016 Accepted29September2016

Keywords:

Mycoplasmahyopneumoniae

Selectiveculture Enzooticpneumonia Pig

ABSTRACT

ThefastidiousporcinerespiratorypathogenMycoplasmahyopneumoniaehasprovendifficulttoculture sinceitwasfirstisolatedin1965.Areliablesolidmediumhasbeenparticularlychallenging.Moreover, clinicalandpathologicalsamplesoftencontainthefast-growingM.hyorhiniswhichcontaminatesand overgrowsM.hyopneumoniaeinprimaryculture.Theaimofthisstudywastooptimisetheculture mediumforrecoveryofM.hyopneumoniaeandtodeviseamediumforselectionofM.hyopneumoniae fromclinicalsamplesalsocontainingM.hyorhinis.ThesolidmediumdevisedbyNielsFriiswasimproved byuseofPurifiedagarandincorporationofDEAE-dextran.Additionofglucoseorneutralizationofacidity inliquidmediumwithNaOHdidnotimprovethefinalyieldofviableorganismsoralterthetimingof peakviability.AnalysisoftherelativesusceptibilityofM.hyopneumoniaeandM.hyorhinisstrainstofour antimicrobialsshowedthatM.hyopneumoniaeislesssusceptiblethanM.hyorhinistokanamycin.This wasconsistentinallUKandDanishstrainstested.Aconcentrationof2mg/mlofkanamycinselectively inhibitedthegrowthofallM.hyorhinistested,whileM.hyopneumoniaewasabletogrow.Thisformsthe basisofaneffectiveselectiveculturemediumforM.hyopneumoniae.

ã2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1.Introduction

Mycoplasma hyopneumoniaeistheprimarycauseof enzootic pneumonia(EP)inpigs.Thediseaseisofglobalsignificancebothin reducing growth efficiency and in promoting susceptibility to concurrentbacterial and viralinfections (Thacker et al.,1999). DiagnosisofEPisusuallybyacombinationofserologicaltests(Feld etal.,1992;Djordjevicetal.,1994),PCRofnasalsecretionorlung tissueatslaughter(Mattssonetal.,1995;Baumeisteretal.,1998; Stemke,1997),real-timePCR(Dubossonetal.,2004;Maroisetal., 2010)andisolationinculture(KobischandFriis,1996).However,

M.hyopneumoniaeisnotoriouslyfastidious(GoodwinandHurrell, 1970)andcultureremainschallengingandtimeconsuming.The mostwidelyusedliquidmediumforcultureofM.hyopneumoniae

wasdevelopedbyNielsFriis(1975).Homogenisedlungtissuewas seriallydilutedintubes ofthemediumandincubationledtoa gradualcolourchangeofthephenolredindicatorfrompinkto

yellow, without turbidity, over a period of 3–10days growth. However, individual mycoplasmas could only be purified by terminaldilutionintheliquidmedium.

AcommercialmediumisavailablefromMycoplasma Experi-ence1Ltd.U.K. (ME).Bothliquidand solidmediaareavailable. ThesesupportthegrowthofM.hyopneumoniaebutthe constit-uents of this commercial medium are not publicly available. SolidicationofFriismediumwithAgardidnotallowgrowthof colonies of M. hyopneumoniae, suggesting that the agar was inhibitorytogrowthorsequesteredanessentialnutrient.Theuse ofabetterdenedsolidmediumwouldallowgreaterexibilityfor research,suchastransformationofM.hyopneumoniae(Maglennon etal.,2013a).

Whenusedfordiagnosticpurposes,bothFriismediumandME media areeasily overgrown bythe faster-growing M.hyorhinis

which is sometimes present in pig lung lesions alongside

M. hyopneumoniae and frequently in apparently normal tissue (KobischandFriis,1996).TosuppressthegrowthofM.hyorhinis, Friisrecommendedtheuseof5%hyperimmuneanti-M.hyorhinis

rabbit serum and 500

m

g/ml cycloserine (Friis,1971).However, suchserumisnotalwaysavailable,isexpensive,andbatchesof serumvaryintheircapacitytosuppressM.hyorhinis.

*Correspondingauthor.

E-mailaddress:arycroft@rvc.ac.uk(A.N. Rycroft).

1

Presentaddress:MSDAnimalHealth,MiltonKeynes,UK.

2

Presentaddress:INRA,UMR1309CMAEE,F-34398Montpellier,France.

http://dx.doi.org/10.1016/j.vetmic.2016.09.022

0378-1135/ã2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/). ContentslistsavailableatScienceDirect

Veterinary

Microbiology

(2)

Thepurposeofthisstudywasthereforetoimprovetheculture mediumfortransformationandmutagenesisofM.hyopneumoniae, allowingsinglecoloniestobereadilydistinguishedandselected, andtodeviseanimprovedselectionmediumforthesuppressionof

M.hyorhinis.

2.Materials&methods

2.1.Mycoplasmastrains

M.hyopneumoniaestrains277/94and325/95werethegiftof NielsFriis,DanishVeterinaryInstitute,Copenhagen.Otherstrains ofM.hyopneumoniaewereDanishfieldisolatesfromlesionsofEP, thegiftofDrBrankoKokotovic,DanishVeterinaryInstitute,orUK

fieldisolatesfromslaughterhouselesionsofEP.M.hyorhinisstrains wereUK fieldisolatesobtainedfrompiglungswithor without grosslesionsatpost-mortem.Theidentityofallorganismswas confirmedusingspecies-specificPCRamplifyinga regionof the conservedhypotheticalproteinmhp165fromM.hyopneumoniae

(Baumeisteretal.,1998)andthehighlyconserved16SrRNAregion of M. hyorhinis (Lin et al., 2006). The identity of all

M.hyopneumoniaestrainswassubsequentlyconfirmedbywhole genome sequencing and genome-wide analysis (J. Welch personalcommunication).

2.2.Liquidculturemedium

FriismediumwaspreparedlargelyasdescribedbyKobischand Friis (1996) with the following modifications: bacitracin and meticillinwere replaced withazlocillin and flucloxacillin(final concentration50

m

g/ml).To make500ml ofFriis medium,1.5g Brain Heart Infusion (BHI) (Difco) and 1.6g PPLO (Difco) was dissolved in365ml waterand sterilised byautoclaving.To this wereadded 18ml of yeastextract(prepared fromdried bakers yeast),12.5mlsterilesolutionA(160g/lNaCl,4g/l;8g/lKCl,2g/l MgSO4

7H2O,2g/lMgCl2.6H2O,3.7g/lCaCl2

2H2O),12.5mlsterile

solutionB(3.0g/lNa2HPO4.12H2O,1.2g/lKH2PO4),50mlpigserum

(Invitrogen)heat-treatedat 56C for20min,50mlheat-treated horseserum(Invitrogen),1mlphenolredsolution(0.6%in0.1M NaOH),25

m

lofeachof100mg/mlazlocillinandflucloxacillinand adjustedtopH7.4with1.0MNaOH.

2.3.Solidculturemedium

Concentrated(2.8)Friismediumwaspreparedbytheaddition of88ml waterto4.3gBHI,4.6gPPLO sterilisedbyautoclaving, 51.4ml yeast extract, 35.7ml sterile solution A, 35.7ml sterile solutionB,143mlheat-treatedhorseserum,143mlheat-treated pig serum, 2.8ml 0.6% phenol red solution, azlocillin and

flucloxacillin(finalconcentration 140

m

g/ml), pH7.4. Friis agar waspreparedbymixingconcentratedFriismedium(2.8),mixed ataratioof35:65witheither1.8%agarNo.1(Oxoid,L11),Purified agar(Oxoid,L28)oragarose(Invitrogen).Whereindicated, DEAE-dextran (Sigma-Aldrich, Gillingham, UK) was added toagar at 0.1mg/ml.MycoplasmaExperience1solidmediumwasprepared accordingtothemanufacturer’sinstructions(Mycoplasma Expe-rience1Ltd,Reigate,UK).Cultureswereincubatedinahumidified incubatorat37Cin5%CO2.

Charcoal-treated agar was prepared by incubating a 1.3% solutionofBacteriologicalagarwith2%w/vofactivatedcharcoal (Oxoid,Basingstoke,UK)for10minat55C,thecharcoalwasthen removedusingasieve.Followingsterilisation,eachagartypewas mixed withmedium supplement (Mycoplasma Experience Ltd, UK)orconcentratedFriismediumataratioof35:65(supplement: agar)andplatespoured.

2.4.Viabilitydetermination

Ten-fold serial dilutions in Hanks’ Balanced salts Solution (HBSS;LifeTechnologies)werespotted(10

m

lintriplicate)onto solid medium. Cultureswereincubatedfor 7days in5% CO2 at

37C. Colonieswerecounted,fromthosedilutionsshowingthe largest number of separate colonies, using a dissecting micro-scope; the triplicate counts were combined and the viability calculated.Growthwasalsoestimatedfromthemetabolicactivity recordedasacolourshiftofthephenolredpHindicatorfrompH 7.4to6.8asdescribedbyFriis(1975).

2.5.Antibioticsusceptibilitytesting

Solutions of kanamycin (Sigma), tetracycline (Sigma) and puromycin(Fisher)werepreparedinde-ionisedwater. Chloram-phenicol (Sigma) was dissolved in ethanol at 10mg/ml final concentration.Allweresterilisedthrougha0.2

m

mfilter(Nalgene, UK).Afinalantibioticconcentrationrangewasachievedby two-foldserialdilutionsofeachantibioticinsterilewaterorethanolas appropriate.Antibioticswereincorporatedintosolidmediumover a range of concentrations 20–0.01

m

g/ml (kanamycin), 4.0–

0.03

m

g/ml (tetracycline), 20–0.06

m

g/ml (chloramphenicol and puromycin)

M.hyopneumoniaeandM.hyorhinisinoculawerepreparedin1x sterilephosphatebufferedsaline(BR0014G,Oxoid)asasuspension containingapproximately103CFU/ml.Asampleof10

m

lofeach

strainwas inoculated onto each platein triplicate. Plateswere incubatedat37Cwith5%CO2andobservedforgrowthofcolonies

betweenday2andday10.TheMICwasdeterminedasthehighest dilutionofantibioticgivinganabsenceofgrowthasdeterminedby theformationofmycoplasmacolonies.

3.Results

3.1.Therelationshipofviabilityandcolourshift

TheviabilityofM.hyopneumoniaetothecommonlyusedcolour shiftinliquidmediumwasdetermined(Fig.1).Culturesreacheda maximumviabilityof108.9atapproximately2.5daysincubation.

Thiscorrespondedtoacolourshiftbetween2(pH7.2)and3(pH 7.1).Afterthispointtherewasanexponentialdeclinereaching106

CFU/mlafter8days(beyondcolourshift4).

(3)

3.2.TheeffectofglucoseandNaOH

TheconcentrationofglucoseinFriismediumisapproximately 2mM:1mMisderivedfromthebrainheartinfusionbrothand another1mM from the dilutedserum. To investigate whether glucoseislimitingthegrowth,furtherglucosewassupplemented intotheliquidmediumtogive4mM(2)and8mM(4)glucose, andviablecountsperformedthroughthegrowthcycle.Thegrowth curvewas unchanged by the increased glucose concentrations (Fig.2).Friissuggestedthatthedeclineinviabilitywhenyellow colour shift was reached was due to the acidification of the medium.Ifso,thismightbepreventedbyadditionofalkalitothe mediumasthecolourchangesatthegrowthpeak(60h).Addition ofalkalitoneutralizethepHcausedamarginalimprovementin survival at 4–6days although this difference was not marked (Fig.2).

3.3.SolidifyingFriismedium

InordertouseFriismediumasthebaseforasolidmediumto cultureM.hyopneumoniae,differentagarpreparationsweremixed withFriisbaseandorMycoplasmaExperience1(ME)supplement and investigated for the ability to support the growth of M. hyopneumoniaecolonies.TheresultsareshowninTable1.

Friis medium solidified with thecommercially supplied ME agargrewcoloniesofM.hyopneumoniae277/94&325/95.When Agar no.1, used widely in the solidification of bacteriological culture medium, was mixed with either Friis medium or ME supplement there was no growth of M. hyopneumoniae. Pre-treatmentof theagarwithactivated charcoal,in anattemptto remove any growth-inhibiting components, did not alter the abilityof medium madewitheither supplement tosupportM. hyopneumoniae.However, when eitherPurifiedagar oragarose wereusedasthesolidifyingagent,Friismedium,butnottheME supplement,grewcoloniesofM.hyopneumoniae(Table1).

MEsolidmediumsupportedthegrowthofM.hyorhinis.When charcoal-treated agar, agarose or Purified agar were used, ME supplementdidnotgrowM.hyorhiniscolonieswhileFriismedium supportedM.hyorhiniswhensolidifiedwitheachofthedifferent agars.

BasedonthefindingsofTauraso(1967)andasnotedbyFriis (1975)&KobischandFriis(1996),DEAE-dextranwasaddedtothe agar while molten and the growth of two strains of

M.hyopneumoniaeandM.hyorhinis werecompared. Resultsare showninTable1.TheinclusionofDEAE-dextranintoPurifiedagar further enhanced the growth of colonies for strains of

M.hyopneumoniae(strains277/94and 325/95)andappearedto besuperiortothemediumcommerciallyavailable(Fig.3).

3.4.SelectivecultureofM.hyopneumoniae

ThesusceptibilityofM.hyopneumoniae277/94and325/95,and

M.hyorhinisMhr1/09wasmeasuredonsolidmediumcontaining fourantimicrobialsoverarangeofconcentrations.Theresultsare showninTable 2.The MICofkanamycinfor M.hyopneumoniae

isolates 325/95 and 277/94 was shown to be 8.0

m

g/ml while

M.hyorhinisappearedtobesusceptibletoalowerconcentration, withanMICof1.0

m

g/ml.BothstrainsofM.hyopneumoniaegrew on medium containing 6.5

m

g/ml. A mixed culture (equal numbers) of M. hyopneumoniae strain 277/94 and M. hyorhinis

Mhr1/09wasusedtoassesstheabilityofkanamycintoselectively suppressthegrowthofM.hyorhinisonsolidmedium.After8days incubation in the absence of kanamycin, M. hyorhinis colonies outgrewM.hyopneumoniaeasrecognisedbycolonymorphology (Fig.4A&B).However,withadditionof2

m

g/mlkanamycinonly

M.hyopneumoniaecoloniesappearedtogrow(Fig.4C&D). TherelativesensitivityofMhr1/09tokanamycinpromptedthe testingofmorestrains.Afurther19M.hyopneumoniaeand12M. hyorhinisfieldisolatesfromtheUKandDenmark,whoseidentity wasconfirmedbybothPCRandgrowthcharacteristics,weretested for their susceptibility tokanamycin on MH selectivemedium (Table3).AllM.hyopneumoniaeisolatesgrewinthepresenceof 2

m

g/mlkanamycin.Theisolatesappearedtobeunaffectedbythe incorporationofkanamycinintothemediumwiththeexceptionof isolateMp258/94inwhichasmallamountofgrowthsuppression wasnotedintermsofcolonysize.Thegrowthofall12M.hyorhinis

isolateswascompletelyinhibitedbytheadditionofkanamycinin solidmedium.Samplesofpneumoniclunglesionswereobtained fromtheabattoirovera periodof12months.Culturesofthese grownonMHselectivemediumwerefreefromM.hyorhiniswhile approximately60%ofsamplesgrownonnon-selectiveFriisliquid and solid medium contained M. hyorhinis and became rapidly overgrown(Table3).

4.Discussion

M.hyopneumoniae hasbeenlong recognisedas difficultand unreliabletoculture(Friis,1971).Growthonsolid mediumhas been considered particularly difficult with colonies growing to only 0.3–0.5mm diameter in 7–10days. This study was a systematic investigation to improvethe medium for cultureof thispathogen.Theresultingimprovedmediumwascrucialinthe successfuldevelopmentoftransformationandtransposon muta-genesis of M.hyopneumoniae as described byMaglennon et al. (2013a,b).

Establishmentof thegrowth curve forM. hyopneumoniaein Friis medium was a pre-requisite for studies toallow efficient transformation. Using viable counts on the solid medium described here,rather than colourchange unitsor theindirect methods of colour shift (Friis, 1975) or measuring ATP by luminometry (Stemke and Robertson,1990; Calus et al., 2010), thegrowthcurvecouldbeaccuratelydetermined.

Ithasbeenconsideredthatglucoseistheprimarycarbonand energy source for M. hyopneumoniae. Supplementation of the mediumwithadditionalglucosedidnotimprovetheviabilityor growthrate.ThiswasconsistentwiththeresultsofStemkeand Fig.2.EffectofglucoseandalkalionthegrowthcurveofM.hyopneumoniae.Viable

(4)

Robertson(1990) whofoundnoincreaseingrowthrateorpeak viability. Theyused27mMglucose. Since physiologicalglucose concentrationsarenormallybetween3and5mM,weconsidered an increase to4 and 8mM tobe appropriate for themedium.

QuenchingoftheacidformedinthemediumusingNaOHhadonly a minoreffectonthe viability,which by8days incubation had reachedthelevelofthecontrolwithoutaddedNaOH.Thusit is likelythatdepletionofkeynutrientsratherthanacidinhibitionisa factorlimitinggrowthinculture.

Initialexperimentsindicatedthatthepurityoftheagarusedto solidify modified Friis medium greatly affected the growth of

M.hyopneumoniae.Bacteriologicalagarwasfoundtopreventthe growth of M. hyopneumoniae colonies. Gould et al. (1944) had reported a similar inhibitory effect on the growth of Neisseria gonorrhoeae following the solidification of liquid medium with agar.LeyandMueller(1946)identifiedacomponent,similartoa fatty acid, present in agar following methanol extraction. This extractedcomponentpresentwithinagarwasfoundtoinhibitthe growth of N. gonorrhoeae in the absence of starch. Activated charcoalisknowntoadsorbseveralimpuritiessuchasfattyacids.

Table1

GrowthofM.hyopneumoniaeandM.hyorhinisondifferentsolidmediafollowing10and5daysincubationat37C.

Sample Liquidmedium Testagar M.hyopneumoniae M.hyorhinis

1 MEsupplement MEagar +++ +++

2 1.3%AgarNo.1. NG NG

3 Charcoal-treatedNo.1 NG NG

4 1.3%agarose NG NG

5 1.3%Purifiedagar NG NG

6 ModifiedFriis(x2.8) MEagar +++ +++

7 1.3%AgarNo.1. NG +++

8 Charcoal-treatedNo.1 NG +++

9 1.3%agarose +++ +++

10 1.3%Purifiedagar ++ +++

Fig.3. ColoniesofM.hyopneumoniae325ondifferentsolidmediapreparations.Colonieswereincubatedfor7daysat37Cinahumidiedboxandphotographedusinga dissectingmicroscope.A,MEsupplementsolidifiedwithMEagar;B,modifiedFriismediumsolidifiedwith0.85%Purifiedagar;C,modifiedFriismediumsolidifiedwith0.8% Purifiedagarand0.1mg/mlDEAE-dextran;D,modifiedFriismediumsolidifiedwith0.9%agarose.ArrowsindicatesmallM.hyopneumoniaecolonies..

Table2

MICsofantimicrobialagentsforM.hyopneumoniaestrain277/94and325/95,and

M.hyorhinisMhr1/09forkanamycin,tetracycline,chloramphenicolandpuromycin

determinedonsolidmedium.

Antimicrobialagent MICmg/ml

277/94 325/95 Mhr1/09

Kanamycin 8.0 8.0 1.0

Tetracycline 0.125 0.125 0.06

Chloramphenicol 2.5 2.5 2.5

(5)

Therefore, attempts were made to remove potential inhibitory factorsfrom the agar suchas free fatty acid-like inhibitorsby treatmentwithactivatedcharcoal.Sinceactivatedcharcoalhadno effectontheagar,we concludethat this wasfailuretoremove inhibitoryfactor(s).

WhenthecommercialMEsupplementwassolidifiedwithagar otherthanthesuppliedagarcomponentitwasunabletosupport the growth of either M. hyorhinis or M. hyopneumoniae. This suggestedthatanessentialconstituentforgrowthwasabsentfrom theliquidsupplementandonlypresentwithintheagar compo-nent. Solidifying Friis medium with Purified agar treated with DEAE-dextranconfersasubstantialimprovementonthe commer-ciallyavailable medium forgrowth of M. hyopneumoniae. Since DEAEisapositivelychargedgroupabletobindnegativelycharged ions,itsactionmaybeexplainedbychelationoftheagaropectin present in agar which may be inhibitory to growth of M. hyopneumoniae.Agaropectinisthemixtureofsmallermolecules, comprising alternating residues of L- and D-galactose modified

withacidic side-groups(particularly sulfate). Thisis consistent withthebeneficialuseofpurifiedagarose,whichisdepletedof agaropectin, over agar no. 1 in this study. No equivalent improvement was seen from DEAE in culture of M. hyorhinis, suggestingthat it is less sensitive totheacidic components of agaropectin.

Friis (1971) described a selective medium to suppress M. hyorhinis.Thisrequiresrabbitantiserumwhichisexpensiveand

not always available for regular culture. In testing the relative sensitivity of M. hyopneumoniae and M. hyorhinis to four antimicrobials,ourresultsshowedthatthelatterwasconsistently more sensitive to kanamycin. Williams (1978) had previously shown that both M. hyorhinis and M. hyopneumoniae were susceptible to kanamycin (0.1 and 0.5

m

g/ml respectively). However,differentisolateswereused,anddeterminationofthe MIC byWilliams was in liquid medium.Nevertheless, incorpo-rationof2

m

g/mlofkanamycinintotheagarmediumappearedto prevent thegrowthof M.hyorhinisfollowing 8daysincubation. WhenmixedinequalvolumeswithM.hyopneumoniaestrain325, theM.hyorhinisdidnotformcolonieswhilecontrols,withoutthe additionofkanamycin,yieldedonlyM.hyorhiniscoloniesfromthe mixedculture.Screeningof M.hyopneumoniaeandM.hyorhinis

strainsshowedthatthisdifferenceinkanamycinsusceptibilitywas present betweenallM.hyopneumoniaeand M. hyorhinisstrains tested.

The addition of kanamycin can be used in place of the hyperimmune rabbit serum and gives a clean selection for the cultureofM.hyopneumoniae,effectivelypreventingthegrowthof

M.hyorhiniswhileallowingcoloniesofM.hyopneumoniaetoform. TherelativekanamycinresistanceofM.hyopneumoniaehasgreatly improvedtheprimaryisolationofM.hyopneumoniaefromabattoir tissuesamplesoriginatingfrom15differentfarms.Falsenegatives, resultingfromM.hyorhinisovergrowthhavebeenovercomeusing thisselectivemedium.

Fig.4.SuppressionofM.hyorhinisgrowthfollowingkanamycinselectiononsolidmedium.Growthofamixedmycoplasmaculturecontaining1:1equalvolumesofM.

hyopneumoniaeandM.hyorhinismid-logphaseculture,following9daysincubationonFriissolidmediumwithandwithout2mg/mlkanamycinat37Cinahumidifiedbox.

A,M.hyopneumoniae277andM.hyorhinis;B,M.hyopneumoniae325andM.hyorhinis;C,M.hyopneumoniae277andM.hyorhiniswith2mg/mlkanamycin;D,M.

(6)

Conflictsofinterest

None.

Acknowledgements

TheauthorsacknowledgetheBBSRCandPfizerAnimalHealth (nowZoetis)forfinancialsupportofCASEstudentshipstoBSCand LM-S. ANR, GAM and JGB weresupported byBBSRC grant BB/ G020744/1ofwhich5%ofthefundswerecontributedbyZoetis.

References

Baumeister,A.K.,Runge,M.,Ganter,M.,Feenstra,A.A.,Delbeck,F.,Kirchhoff,H., 1998.DetectionofMycoplasmahyopneumoniaeinbronchoalveolarlavagefluids ofpigsbyPCR.J.Clin.Microbiol.36,1984–1988.

Calus,D.,Maes,D.,Vranckx,K.,Villareal,I.,Pasmans,F.,Haesebrouck,F.,2010. ValidationofATPluminometryforrapidandaccuratetitrationofMycoplasma hyopneumoniaeinFriismediumandacomparisonwiththecolorchangingunits assay.J.Microbiol.Methods83,335–340.

Djordjevic,S.P.,Eamens,G.J.,Romalis,L.F.,Saunders,M.M.,1994.Animproved enzymelinkedimmunosorbentassay(ELISA)forthedetectionofporcineserum antibodiesagainstMycoplasmahyopneumoniae.Vet.Microbiol.39,261–274.

Dubosson,C.R.,Conzelmann,C.,Miserez,R.,Boerlin,P.,Frey,J.,Zimmermann,W., Häni,H.,Kuhnert,P.,2004.Developmentoftworeal-timePCRassaysforthe detectionofMycoplasmahyopneumoniaeinclinicalsamples.Vet.Microbiol. 102, 55–65.

Feld,N.C.,Qvist,P.,Ahrens,P.,Friis,N.F.,Meyling,A.,1992.Amonoclonalblocking ELISAdetectingserumantibodiestoMycoplasmahyopneumoniae.Vet. Microbiol.30,35–46.

Friis,N.F.,1971.AselectivemediumforMycoplasmasuipneumoniae.ActaVet.Scand. 12,454–456.

Friis,N.F.,1975.Somerecommendationsconcerningprimaryisolationof

MycoplasmasuipneumoniaeandMycoplasmafiocculareasurvey.Nord.Vet.Med. 27,337–339.

Goodwin,R.F.,Hurrell,J.M.,1970.Furtherobservationsontheproblemofisolating

Mycoplasmasuipneumoniaefromfieldcasesofenzooticpneumoniainpigs.J. Hyg.(Lond.)68,313–325.

Gould,R.G.,Kane,L.W.,Mueller,J.H.,1944.OnthegrowthrequirementsofNeisseria gonorrhoeae.J.Bacteriol.47,287–292.

Kobisch,M.,Friis,N.F.,1996.Swinemycoplasmoses.Rev.Sci.Tech.OIE15, 1569–1605.

Ley,H.L.,Mueller,J.H.,1946.OntheisolationfromagarofaninhibitorforNeisseria gonorrhoeae.J.Bacteriol.52,453–460.

Table3

GrowthofM.hyopneumoniaeandM.hyorhinisisolatesonsolidmediumwithandwithout2mg/mlkanamycin.

M.hyopneumoniaeisolate Source Growthonsolidmedium

Nokanamycin 2mg/mlkanamycin

MH001 UKfieldisolatesfromlunglesions2009–2010 +++ ++

MH002 +++ +++

MH003 +++ +++

MH005 +++ +++

MH008 +++ +++

MH010 +++ +++

MH011 +++ +++

MH015 +++ ++

MH016 +++ +++

MH031 +++ +++

MH033 +++ +++

MS2 Danishfieldisolatesfromlunglesions1969 +++ +++

MS3 +++ +++

MS8 +++ +++

MS13 +++ +++

MS15 +++ +++

MS25 +++ +++

MS29 +++ +++

Mp258/94 Danishfieldisolatesfromlunglesions1994–2007. +++ +

Mp277/94 ++ ++

Mp473/95 + +

Mp738/95 +++ +++

Mp325/95 ++ ++

Mp79/06 +++ ++

Mp87/06 ++ +

Mp92/06 +++ +++

Mp96//06 +++ +++

Mp85/07 + +

Mp261/07 +++ +++

M.hyorhinisisolate Source Growthonsolidmedium

Nokanamycin 2mg/mlkanamycin

MHR01 UKfieldisolatesfromlunglesions2009–2010. +++ NG

MHR02 +++ NG

MHR04 +++ NG

MHR05 +++ NG

MHR06 +++ NG

MHR07 +++ NG

MHR08 +++ NG

MHR09 +++ NG

MHR10 +++ NG

MHR11 +++ NG

MHR12 +++ NG

P450 +++ NG

(7)

Lin,J.H.,Chen,S.P.,Yeh,K.S.,Weng,C.N.,2006.MycoplasmahyorhinisinTaiwan: diagnosisandisolationofswinepneumoniapathogen.Vet.Microbiol.115, 111–116.

Maglennon,G.A.,Cook,B.S.,Matthews,D.,Deeney,A.S.,Bossé,J.T.,Langford,P.R., Maskell,D.J.,Tucker,A.W.,Wren,B.W.,Rycroft,A.N.,2013a.Developmentofa self-replicatingplasmidsystemforMycoplasmahyopneumoniae.Vet.Res.44, 63.

Maglennon,G.A.,Cook,B.S.,Deeney,A.S.,Bossé,J.T.,Peters,S.E.,Langford,P.R., Maskell,D.J.,Tucker,A.W.,Wren,B.W.,Rycroft,A.N.,2013b.Transposon mutagenesisinMycoplasmahyopneumoniaeusinganovelmariner-based systemforgeneratingrandommutations.Vet.Res.44,124.

Marois,C.,Dory,D.,Fablet,C.,Madec,F.,Kobisch,M.,2010.Developmentofa quantitativeReal-TimeTaqManPCRassayfordeterminationoftheminimal doseofMycoplasmahyopneumoniaestrain116requiredtoinducepneumoniain SPFpigs.J.Appl.Microbiol.108,1523–1533.

Mattsson,J.G.,Bergstrom,K.,Wallgren,P.,Johansson,K.E.,1995.Detectionof

Mycoplasmahyopneumoniaeinnoseswabsfrompigsbyinvitroamplificationof the16SrRNAgene.J.Clin.Microbiol.33,893–897.

Stemke,G.W.,Robertson,J.A.,1990.ThegrowthresponseofMycoplasma hyopneumoniaeandMycoplasmafloccularebaseduponATP-dependent luminometry.Vet.Microbiol.24,135–142.

Stemke,G.W.,1997.Geneamplification(PCR)todetectanddifferentiate mycoplasmasinporcinemycoplasmalpneumonia.Lett.Appl.Microbiol.25, 327–330.

Tauraso,N.M.,1967.Effectofdiethylaminoethyldextranonthegrowthof Mycoplasmainagar.J.Bacteriol.93,1559–1564.

Thacker,E.L.,Halbur,P.G.,Ross,R.F.,Thanawongnuwech,R.,Thacker,B.J.,1999.

Mycoplasmahyopneumoniaepotentiationofporcinereproductiveand respiratorysyndromevirus-inducedpneumonia.J.Clin.Microbiol.37, 620–627.

Williams,P.P.,1978.InvitrosusceptibilityofMycoplasmahyopneumoniaeand

References

Related documents

The difference in calculating denudation rates by iterating upon cosmogenic nuclide concentration from all pixels in a basin (the CAIRN method) and calculating it by using a

More quantitatively, extrapolation of the high-temperature literature data to 298.15 K incorporating the temperature de- pendence of the enthalpy of vaporization as detailed in

Conclusion: Whilst many participants valued the importance of the PBL approach in the practice and training of doctors and agreed with most of the conventional descriptions of

Treatment with oral prednisone was instituted and the lesions rapidly resolved in two out of three patients, with suppression of inflammation and blistering typically achieved in

Given the high use of pesticides in this particular area and the scarcity of local investigations, the objective of this study was to investigate the association between past

His research has received frequent awards, including the Boulding Prize in Ecological Economics and a Blue Planet Prize (jointly with his former PhD student, Dr. Mathis

Role of Xanthine Oxidase and Its Inhibitor in Hypoxia: Reoxygenation

Eleven attacks involved a sleeping infant; 19 dogs in- volved in fatal attacks had a prior history of aggression; and 19 of 20 classifiable deaths involved an unneutered dog..